/usr/share/maxima/5.32.1/src/conjugate.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | ;; Copyright 2005, 2006 by Barton Willis
;; This is free software; you can redistribute it and/or
;; modify it under the terms of the GNU General Public License,
;; http://www.gnu.org/copyleft/gpl.html.
;; This software has NO WARRANTY, not even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
(in-package :maxima)
(macsyma-module conjugate)
($put '$conjugate 1 '$version)
(defprop $conjugate tex-postfix tex)
(defprop $conjugate ("^\\star") texsym)
(defprop $conjugate 160. tex-lbp)
(defprop $conjugate simp-conjugate operators)
(eval-when
#+gcl (load eval)
#-gcl (:load-toplevel :execute)
(let (($context '$global) (context '$global))
(meval '(($declare) $conjugate $complex))))
;; When a function commutes with the conjugate, give the function the
;; commutes-with-conjugate property. The log function commutes with
;; the conjugate on all of C except on the negative real axis. Thus
;; log does not get the commutes-with-conjugate property. Instead,
;; log gets the conjugate-function property.
;; What importation functions have I missed?
;; (1) Arithmetic operators
(setf (get 'mplus 'commutes-with-conjugate) t)
(setf (get 'mtimes 'commutes-with-conjugate) t)
;(setf (get 'mnctimes 'commutes-with-conjugate) t) ;; generally I think users will want this
;; Trig-like functions and other such functions
(setf (get '%cosh 'commutes-with-conjugate) t)
(setf (get '%sinh 'commutes-with-conjugate) t)
(setf (get '%tanh 'commutes-with-conjugate) t)
(setf (get '%sech 'commutes-with-conjugate) t)
(setf (get '%csch 'commutes-with-conjugate) t)
(setf (get '%coth 'commutes-with-conjugate) t)
(setf (get '%cos 'commutes-with-conjugate) t)
(setf (get '%sin 'commutes-with-conjugate) t)
(setf (get '%tan 'commutes-with-conjugate) t)
(setf (get '%sec 'commutes-with-conjugate) t)
(setf (get '%csc 'commutes-with-conjugate) t)
(setf (get '%cot 'commutes-with-conjugate) t)
(setf (get '$atan2 'commutes-with-conjugate) t)
(setf (get '%jacobi_cn 'commutes-with-conjugate) t)
(setf (get '%jacobi_sn 'commutes-with-conjugate) t)
(setf (get '%jacobi_dn 'commutes-with-conjugate) t)
(setf (get '%gamma 'commutes-with-conjugate) t)
(setf (get '$pochhammer 'commutes-with-conjugate) t)
;; Collections
(setf (get '$matrix 'commutes-with-conjugate) t)
(setf (get 'mlist 'commutes-with-conjugate) t)
(setf (get '$set 'commutes-with-conjugate) t)
;; Relations
(setf (get 'mequal 'commutes-with-conjugate) t)
(setf (get 'mnotequal 'commutes-with-conjugate) t)
(setf (get '%transpose 'commutes-with-conjugate) t)
;; Oddball functions
(setf (get '$max 'commutes-with-conjugate) t)
(setf (get '$min 'commutes-with-conjugate) t)
;; When a function has the conjugate-function property,
;; use a non-generic function to conjugate it. Not done:
;; conjugate-functions for all the inverse trigonometric
;; functions.
;; Trig like and hypergeometric like functions
(setf (get '%log 'conjugate-function) 'conjugate-log)
(setf (get 'mexpt 'conjugate-function) 'conjugate-mexpt)
(setf (get '%asin 'conjugate-function) 'conjugate-asin)
(setf (get '%acos 'conjugate-function) 'conjugate-acos)
(setf (get '%atan 'conjugate-function) 'conjugate-atan)
(setf (get '%atanh 'conjugate-function) 'conjugate-atanh)
;;(setf (get '$asec 'conjugate-function) 'conjugate-asec)
;;(setf (get '$acsc 'conjugate-function) 'conjugate-acsc)
(setf (get '%bessel_j 'conjugate-function) 'conjugate-bessel-j)
(setf (get '%bessel_y 'conjugate-function) 'conjugate-bessel-y)
(setf (get '%bessel_i 'conjugate-function) 'conjugate-bessel-i)
(setf (get '%bessel_k 'conjugate-function) 'conjugate-bessel-k)
;; Other things:
(setf (get '%sum 'conjugate-function) 'conjugate-sum)
(setf (get '%product 'conjugate-function) 'conjugate-product)
;; Return true iff Maxima can prove that z is not on the
;; negative real axis.
(defun off-negative-real-axisp (z)
(setq z (trisplit z)) ; split into real and imaginary
(or (eq t (mnqp (cdr z) 0)) ; y # 0
(eq t (mgqp (car z) 0)))) ; x >= 0
(defun on-negative-real-axisp (z)
(setq z (trisplit z))
(and (eq t (meqp (cdr z) 0))
(eq t (mgrp 0 (car z)))))
(defun in-domain-of-asin (z)
(setq z (trisplit z))
(let ((x (car z)) (y (cdr z)))
(or (eq t (mgrp y 0))
(eq t (mgrp 0 y))
(and
(eq t (mgrp x -1))
(eq t (mgrp 1 x))))))
;; Return conjugate(log(x)). Actually, x is a lisp list (x).
(defun conjugate-log (x)
(setq x (car x))
(cond ((off-negative-real-axisp x)
(take '(%log) (take '($conjugate) x)))
((on-negative-real-axisp x)
(add (take '(%log) (neg x)) (mul -1 '$%i '$%pi)))
(t `(($conjugate simp) ((%log simp) ,x)))))
;; Return conjugate(x^p), where e = (x, p). Suppose x isn't on the negative real axis.
;; Then conjugate(x^p) == conjugate(exp(p * log(x))) == exp(conjugate(p) * conjugate(log(x)))
;; == exp(conjugate(p) * log(conjugate(x)) = conjugate(x)^conjugate(p). Thus, when
;; x is off the negative real axis, commute the conjugate with ^. Also if p is an integer
;; ^ commutes with the conjugate.
(defun conjugate-mexpt (e)
(let ((x (first e)) (p (second e)))
(if (or (off-negative-real-axisp x) ($featurep p '$integer))
(power (take '($conjugate) x) (take '($conjugate) p))
`(($conjugate simp) ,(power x p)))))
(defun conjugate-sum (e)
(take '(%sum) (take '($conjugate) (first e)) (second e) (third e) (fourth e)))
(defun conjugate-product (e)
(take '(%product) (take '($conjugate) (first e)) (second e) (third e) (fourth e)))
(defun conjugate-asin (x)
(setq x (car x))
(if (in-domain-of-asin x) (take '(%asin) (take '($conjugate) x))
`(($conjugate simp) ((%asin) ,x))))
(defun conjugate-acos (x)
(setq x (car x))
(if (in-domain-of-asin x) (take '(%acos) (take '($conjugate) x))
`(($conjugate simp) ((%acos) ,x))))
(defun conjugate-atan (x)
(let ((xx))
(setq x (car x))
(setq xx (mul '$%i x))
(if (in-domain-of-asin xx)
(take '(%atan) (take '($conjugate) x))
`(($conjugate simp) ((%atan) ,x)))))
;; atanh and asin are entire on the same set; see A&S Fig. 4.4 and 4.7.
(defun conjugate-atanh (x)
(setq x (car x))
(if (in-domain-of-asin x) (take '(%atanh) (take '($conjugate) x))
`(($conjugate simp) ((%atanh) ,x))))
;; Integer order Bessel functions are entire; thus they commute with the
;; conjugate (Schwartz refection principle). But non-integer order Bessel
;; functions are not analytic along the negative real axis. Notice that A&S
;; 9.1.40 isn't correct -- it says that the real order Bessel functions
;; commute with the conjugate. Not true.
(defun conjugate-bessel-j (z)
(let ((n (first z)) (x (second z)))
(if (off-negative-real-axisp x)
(take '(%bessel_j) (take '($conjugate) n) (take '($conjugate) x))
`(($conjugate simp) ((%bessel_j simp) ,@z)))))
(defun conjugate-bessel-y (z)
(let ((n (first z)) (x (second z)))
(if (off-negative-real-axisp x)
(take '(%bessel_y) (take '($conjugate) n) (take '($conjugate) x))
`(($conjugate simp) ((%bessel_y simp) ,@z)))))
(defun conjugate-bessel-i (z)
(let ((n (first z)) (x (second z)))
(if (off-negative-real-axisp x)
(take '(%bessel_i) (take '($conjugate) n) (take '($conjugate) x))
`(($conjugate simp) ((%bessel_i simp) ,@z)))))
(defun conjugate-bessel-k (z)
(let ((n (first z)) (x (second z)))
(if (off-negative-real-axisp x)
(take '(%bessel_k) (take '($conjugate) n) (take '($conjugate) x))
`(($conjugate simp) ((%bessel_k simp) ,@z)))))
;; When a function maps "everything" into the reals, put real-valued on the
;; property list of the function name. This duplicates some knowledge that
;; $rectform has. So it goes. The functions floor and ceiling also aren't
;; defined off the real-axis. I suppose these functions could be given the
;; real-valued property.
(setf (get '%imagpart 'real-valued) t)
(setf (get 'mabs 'real-valued) t)
(setf (get '%realpart 'real-valued) t)
(setf (get '%carg 'real-valued) t)
;; manifestly-real-p isn't a great name, but it's OK. Since (manifestly-real-p '$inf) --> true
;; it might be called manifestly-extended-real-p. A nonscalar isn't real.
;; There might be some advantage to requiring that the subscripts to a $subvarp
;; all be real. Why? Well li[n] maps reals to reals when n is real, but li[n] does
;; not map the reals to reals when n is nonreal.
(defun manifestly-real-p (e)
(let (($inflag t))
(and ($mapatom e)
(not (manifestly-pure-imaginary-p e))
(not (manifestly-complex-p e))
(not (manifestly-nonreal-p e))
(or
($numberp e)
(symbolp e)
(and ($subvarp e) (manifestly-real-p ($op e)))))))
(defun manifestly-pure-imaginary-p (e)
(let (($inflag t))
(or
(and ($mapatom e)
(or
(eq e '$%i)
(and (symbolp e) (kindp e '$imaginary) (not ($nonscalarp e)))
(and ($subvarp e) (manifestly-pure-imaginary-p ($op e)))))
;; For now, let's use $csign on constant expressions only; once $csign improves,
;; the ban on nonconstant expressions can be removed
(and ($constantp e) (eq '$imaginary ($csign e))))))
;; Don't use (kindp e '$complex)!
(defun manifestly-complex-p (e)
(let (($inflag t))
(or (and (symbolp e) (decl-complexp e) (not ($nonscalarp e)))
(eq e '$infinity)
(and ($subvarp e) (manifestly-complex-p ($op e))
(not ($nonscalarp e))))))
(defun manifestly-nonreal-p (e)
(and (symbolp e) (or (member e `($und $ind $zeroa $zerob t nil)) ($nonscalarp e))))
;; For a subscripted function, conjugate always returns the conjugate noun-form.
;; This could be repaired. For now, we don't have a scheme for conjugate(li[m](x)).
;; We could make commutes_with_conjugate and maps_to_reals features. But I
;; doubt it would get much use.
(defun simp-conjugate (e f z)
(oneargcheck e)
(setq e (simpcheck (cadr e) z)) ; simp and disrep if necessary
(cond ((complexp e) (conjugate e)) ; never happens, but might someday.
((manifestly-real-p e) e)
((manifestly-pure-imaginary-p e) (mul -1 e))
((manifestly-nonreal-p e) `(($conjugate simp) ,e))
(($mapatom e) `(($conjugate simp) ,e))
((op-equalp e '$conjugate) (car (margs e)))
((and (symbolp (mop e)) (get (mop e) 'real-valued)) e)
((and (symbolp (mop e)) (get (mop e) 'commutes-with-conjugate))
(simplify (cons (list (mop e)) (mapcar #'(lambda (s) (take '($conjugate) s)) (margs e)))))
((setq f (and (symbolp (mop e)) (get (mop e) 'conjugate-function)))
(funcall f (margs e)))
(t `(($conjugate simp) ,e))))
|