/usr/share/maxima/5.32.1/src/clmacs.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(defun memq (x lis)
(member x lis :test #'eq))
;;this will make operators which declare the type and result of numerical operations
(eval-when (:compile-toplevel :load-toplevel)
(defmacro def-op (name arg-type op &optional return-type)
`(setf (macro-function ',name)
(make-operation ',arg-type ',op ',return-type)))
;;make very sure .type .op and .return are not special!!
(defun make-operation (.type .op .return)
(or .return (setf .return .type))
#'(lambda (bod env)
(declare (ignore env))
(loop for v in (cdr bod)
when (eq t .type) collect v into body
else
collect `(the , .type ,v) into body
finally (setq body `(, .op ,@body))
(return
(if (eq t .return)
body
`(the , .return ,body))))))
;; these allow running of code and they print out where the error occurred
#+fix-debug
(progn
(defvar *dbreak* t)
(defun chk-type (lis na typ sho)
(unless (every #'(lambda (v) (typep v typ)) lis)
(format t "~%Bad call ~a types:~a" (cons na sho) (mapcar #'type-of lis))
(when *dbreak*
(break "hi"))))
(defmacro def-op (name arg-type old)
`(defmacro ,name (&rest l)
`(progn
(chk-type (list ,@l) ',',name ',',arg-type ',l)
(,',old ,@l)))))
(def-op f+ fixnum +)
(def-op f* fixnum *)
(def-op f- fixnum -)
(def-op f1- fixnum 1-)
(def-op f1+ fixnum 1+)
(def-op quotient t quot))
;;this is essentially what the quotient is supposed to do.
(declaim (inline quot))
(defun quot (a b)
(if (and (integerp a) (integerp b))
(truncate a b)
(/ a b)))
(defmacro status (option &optional item)
(cond ((equal (symbol-name option) (symbol-name '#:feature))
`(member ,(intern (string item) (find-package 'keyword)) *features*))
((equal option 'gctime) 0)))
#+(or scl allegro)
(defun string<$ (str1 str2)
"Compare string, but flip the case for maxima variable names to maintain
the same order irrespective of the lisp case mode."
(declare (string str1 str2))
(cond (#+scl (eq ext:*case-mode* :lower)
#+allegro (eq excl:*current-case-mode* :case-sensitive-lower)
(let ((str1l (length str1))
(str2l (length str2)))
(cond ((and (> str1l 1) (char= (aref str1 0) #\$)
(> str2l 1) (char= (aref str2 0) #\$))
(flet ((case-flip (str)
(let ((some-upper nil)
(some-lower nil))
(dotimes (i (length str))
(let ((ch (schar str i)))
(when (lower-case-p ch)
(setf some-lower t))
(when (upper-case-p ch)
(setf some-upper t))))
(cond ((and some-upper some-lower)
nil)
(some-upper
:downcase)
(some-lower
:upcase)))))
(let ((flip1 (case-flip str1))
(flip2 (case-flip str2)))
(do ((index 1 (1+ index)))
((or (>= index str1l) (>= index str2l))
(if (= index str1l) index nil))
(let ((ch1 (aref str1 index))
(ch2 (aref str2 index)))
(cond ((and (eq flip1 :downcase) (both-case-p ch1))
(setf ch1 (char-downcase ch1)))
((and (eq flip1 :upcase) (both-case-p ch1))
(setf ch1 (char-upcase ch1))))
(cond ((and (eq flip2 :downcase) (both-case-p ch2))
(setf ch2 (char-downcase ch2)))
((and (eq flip2 :upcase) (both-case-p ch2))
(setf ch2 (char-upcase ch2))))
(unless (char= ch1 ch2)
(return (if (char< ch1 ch2)
index
nil))))))))
(t
(string< str1 str2)))))
(t
(string< str1 str2))))
;;;
#-(or scl allegro)
(defun string<$ (str1 str2)
(string< str1 str2))
;;numbers<strings<symbols<lists<?
(defun alphalessp (x y)
(cond ((numberp x)
(if (numberp y) (< x y) t))
((stringp x)
(cond ((numberp y) nil)
((stringp y)
(string< x y))
(t t)))
((symbolp x)
(cond ((or (numberp y) (stringp y)) nil)
((symbolp y)
(let ((nx (symbol-name x))
(ny (symbol-name y)))
(declare (string nx ny))
(cond ((string<$ nx ny)
t)
((string= nx ny)
(cond ((eq nx ny) nil)
((null (symbol-package x)) nil)
((null (symbol-package y)) nil)
(t (string<
(package-name (symbol-package x))
(package-name (symbol-package y))))))
(t nil))))
((consp y) t)))
((listp x)
(cond ((or (numberp y) (stringp y)(symbolp y )) nil)
((listp y)
(or (alphalessp (car x) (car y))
(and (equal (car x) (car y))
(alphalessp (cdr x) (cdr y)))))
(t nil)))
((or (numberp y) (stringp y) (symbolp y)(consp y))
nil)
(t ;neither is of known type:
(alphalessp (format nil "~s" x)(format nil "~s" y)))))
(defmacro symbol-array (sym)
`(get ,sym 'array))
(defun arraydims (ar)
(when (symbolp ar)
(setq ar (symbol-array ar)))
(cons (array-element-type ar) (array-dimensions ar)))
(defun firstn (n lis)
(subseq lis 0 n))
(declaim (inline fixnump))
(defun fixnump (n)
(typep n 'fixnum))
(defun bignump (x)
(typep x 'bignum))
;;actually this was for lists too.
(defun putprop (sym val indic)
(if (consp sym)
(setf (getf (cdr sym) indic) val)
(setf (get sym indic) val)))
(defmacro defprop (sym val indic)
(if (eq indic 'expr)
`(setf (symbol-function ',sym) #',val)
`(setf (get ',sym ',indic) ',val)))
;; Find the N most significant or least significant bits of the
;; absolute value of X. If N is positive, take the most significant;
;; otherwise, the least significant.
(defun haipart (x n)
(let ((x (abs x)))
(if (< n 0)
;; If the desired number of bits is larger than the actual
;; number, just return the number. (Prevents gratuitously
;; generating a huge bignum if n is very large, as can happen
;; with bigfloats.)
(if (< (integer-length x) (- n))
x
(logand x (1- (ash 1 (- n)))))
(ash x (min (- n (integer-length x)) 0)))))
;; also correct but slower.
;;(defun haipart (integer count)
;; (let ((x (abs integer)))
;; (if (minusp count)
;; (ldb (byte (- count) 0) x)
;; (ldb (byte count (max 0 (- (integer-length x) count))) x))))
;;used in translation
(defun fset (sym val)
(setf (symbol-function sym) val))
(defun oldget (plist indic)
(cond ((symbolp plist)
(setq plist (symbol-plist plist)))
((consp plist) (setq plist (cdr plist)))
(t (return-from oldget nil)))
(loop for tail on plist by #'cddr
when (eq (car tail) indic)
do (return (second tail))))
(defun safe-get (sym prop)
(and (symbolp sym) (get sym prop)))
(defmacro safe-getl (sym prop)
`(and (symbolp ,sym) (getl ,sym ,prop)))
(defun getl (plist indicator-list )
(cond ((symbolp plist)
(setq plist (symbol-plist plist)))
((consp plist) (setq plist (cdr plist)))
(t (return-from getl nil)))
(loop for tail on plist by #'cddr
when (member (car tail) indicator-list :test #'eq)
do (return tail)))
(defmacro ncons (x)
`(cons ,x nil)) ;;can one optimize this??
(defvar *acursor* (make-array 11 :element-type 'fixnum :initial-element 0))
;; Format of *acursor*.
;; 0 1 2 3 4 5 6 7 8 9 10
;; dim i1 i2 i3 i4 i5 d1 d2 d3 d4 d5
;; array dimension current index maximal index
(defun set-up-cursor (ar)
(let ((lis (array-dimensions ar)))
(setf (aref *acursor* 0) (length lis))
(loop for v in lis for i from 6 do (setf (aref *acursor* i) (1- v)))
(loop for i from 1 to (length lis) do (setf (aref *acursor* i) 0))))
(defun aset-by-cursor (ar val)
(let ((curs *acursor*))
(declare (type (simple-array fixnum (11)) curs))
(ecase (aref curs 0)
(1 (setf (aref ar (aref curs 1)) val))
(2 (setf (aref ar (aref curs 1) (aref curs 2)) val))
(3 (setf (aref ar (aref curs 1) (aref curs 2) (aref curs 3)) val))
(4 (setf (aref ar (aref curs 1) (aref curs 2) (aref curs 3)
(aref curs 4)) val))
(5 (setf (aref ar (aref curs 1) (aref curs 2) (aref curs 3)
(aref curs 4) (aref curs 5)) val)))
;; set the index (`cursor') for the next call to ASET-BY-CURSOR
(loop for j downfrom (aref curs 0)
do (cond ((< (aref curs j) (aref curs (+ 5 j)))
(setf (aref curs j) (+ (aref curs j) 1))
(return-from aset-by-cursor t))
(t (setf (aref curs j) 0)))
(cond ((eql j 0) (return-from aset-by-cursor nil))))))
(defun fillarray (ar x)
(when (symbolp ar)
(setq ar (get ar 'array)))
(when (/= (array-rank ar) 1)
(setq ar (make-array (array-total-size ar) :displaced-to ar)))
(setq x (cond ((null x)
(ecase (array-element-type ar)
(fixnum '(0))
(float '(0.0))
((t) '(nil))))
((arrayp x)(listarray x))
((atom x) (list x))
(t x)))
(when (> (length ar) 0)
(set-up-cursor ar)
(loop while (aset-by-cursor ar (car x))
do (and (cdr x) (setq x (cdr x))))))
(defun listarray (x)
(when (symbolp x)
(setq x (get x 'array)))
(if (eql (array-rank x) 1)
(coerce x 'list)
(coerce (make-array (apply '* (array-dimensions x)) :displaced-to x
:element-type (array-element-type x))
'list)))
(defmacro check-arg (place pred &rest res)
(when (atom pred)
(setq pred (list pred place)))
`(assert ,pred (,place) ,@res))
(defmacro deff (fun val)
`(setf (symbol-function ',fun) ,val))
(defmacro xcons (x y)
(cond ((atom x) `(cons ,y,x))
(t (let ((g (gensym)))
`(let ((,g ,x))
(cons ,y ,g))))))
(defun make-equal-hash-table (not-dim1)
(let ((table (make-hash-table :test 'equal)))
(or not-dim1 (setf (gethash 'dim1 table) t))
table))
;;; Range of atan should be [0,2*pi]
(defun atan (y x)
(let ((tem (cl:atan y x)))
(if (>= tem 0)
tem
(+ tem (* 2 pi)))))
;;; Range of atan2 should be (-pi,pi]
;;; CL manual says that's what lisp::atan is supposed to have.
(deff atan2 #'cl:atan)
;;; exp is shadowed to save trouble for other packages--its declared special
(deff exp #'cl:exp)
#+clisp
(progn
;; This used to be enabled, but
;; http://clisp.cons.org/impnotes/num-dict.html seems to indicate
;; that the result of float, coerce, sqrt, etc., on a rational will
;; return a float of the specified type. But ANSI CL says we must
;; return a single-float. I (rtoy) am commenting this out for now.
;; (setq custom:*default-float-format* 'double-float)
;; We currently don't want any warnings about floating-point contagion.
(setq custom::*warn-on-floating-point-contagion* nil)
;; We definitely want ANSI-style floating-point contagion.
(setq custom:*floating-point-contagion-ansi* t)
;; Set custom:*floating-point-rational-contagion-ansi* so that
;; contagion is done as per the ANSI CL standard. Has an effect only
;; in those few cases when the mathematical result is exact although
;; one of the arguments is a floating-point number, such as (* 0
;; 1.618), (/ 0 1.618), (atan 0 1.0), (expt 2.0 0)
(setq custom:*floating-point-rational-contagion-ansi* t)
;; When building maxima using with 'flonum being a 'long-float it may be
;; useful to adjust the number of bits of precision that CLISP uses for
;; long-floats.
#+nil
(setf (ext:long-float-digits) 128)
;; We want underflows not to signal errors.
(ext:without-package-lock ()
(setq sys::*inhibit-floating-point-underflow* t))
)
#+abcl
(progn
;; We want underflows not to signal errors
(when (fboundp (find-symbol "FLOAT-UNDERFLOW-MODE" "SYS"))
(funcall (find-symbol "FLOAT-UNDERFLOW-MODE" "SYS") nil))
)
;; Make the maximum exponent larger for CMUCL. Without this, cmucl
;; will generate a continuable error when raising an integer to a
;; power greater than this.
#+cmu
(setf ext::*intexp-maximum-exponent* 100000)
;;;; Setup the mapping from the Maxima 'flonum float type to a CL float type.
;;;;
;;;; Add :flonum-long to *features* if you want flonum to be a
;;;; long-float. Or add :flonum-double-double if you want flonum to
;;;; be a double-double (currently only for CMUCL). Otherwise, you
;;;; get double-float as the flonum type.
;;;;
;;;; Default double-float flonum.
(eval-when (:compile-toplevel :load-toplevel :execute)
(setq *read-default-float-format* 'double-float))
#-(or flonum-long flonum-double-double)
(progn
;; Tell Lisp the float type for a 'flonum.
#-clisp
(deftype flonum (&optional low high)
(cond (high
`(double-float ,low ,high))
(low
`(double-float ,low))
(t
'double-float)))
;; Some versions of clisp appear to be buggy: (coerce 1 'flonum)
;; signals an error. So does (coerce 1 '(double-float 0d0)). But
;; (coerce 1 'double-float) returns 1d0 as expected. So for now, make
;; flonum be exactly the same as double-float, without bounds.
#+clisp
(deftype flonum (&optional low high)
(declare (ignorable low high))
'double-float)
(defconstant most-positive-flonum most-positive-double-float)
(defconstant most-negative-flonum most-negative-double-float)
(defconstant least-positive-flonum least-positive-double-float)
(defconstant least-negative-flonum least-negative-double-float)
(defconstant flonum-epsilon double-float-epsilon)
(defconstant least-positive-normalized-flonum least-positive-normalized-double-float)
(defconstant flonum-exponent-marker #\D)
)
#+flonum-long
(progn
;;;; The Maxima 'flonum can be a CL 'long-float on the Scieneer CL or CLISP,
;;;; but should be the same as 'double-float on other CL implementations.
(eval-when (:compile-toplevel :load-toplevel :execute)
(setq *read-default-float-format* 'long-float))
;; Tell Lisp the float type for a 'flonum.
(deftype flonum (&optional low high)
(cond (high
`(long-float ,low ,high))
(low
`(long-float ,low))
(t
'long-float)))
(defconstant most-positive-flonum most-positive-long-float)
(defconstant most-negative-flonum most-negative-long-float)
(defconstant least-positive-flonum least-positive-long-float)
(defconstant least-negative-flonum least-negative-long-float)
(defconstant flonum-epsilon long-float-epsilon)
(defconstant least-positive-normalized-flonum least-positive-normalized-long-float)
(defconstant flonum-exponent-marker #\L)
)
#+flonum-double-double
(progn
;;;; The Maxima 'flonum can be a 'kernel:double-double-float on the CMU CL.
(eval-when (:compile-toplevel :load-toplevel :execute)
(setq *read-default-float-format* 'kernel:double-double-float))
;; Tell Lisp the float type for a 'flonum.
(deftype flonum (&optional low high)
(cond (high
`(kernel:double-double-float ,low ,high))
(low
`(kernel:double-double-float ,low))
(t
'kernel:double-double-float)))
;; While double-double can represent number as up to
;; most-positive-double-float, it can't really do operations on them
;; due to the way multiplication and division are implemented. (I
;; don't think there's any workaround for that.)
;;
;; So, the largest number that can be used is the float just less than
;; 2^1024/(1+2^27). This is the number given here.
(defconstant most-positive-double-double-hi
(scale-float (cl:float (1- 9007199187632128) 1d0) 944))
(defconstant most-positive-flonum (cl:float most-positive-double-double-hi 1w0))
(defconstant most-negative-flonum (cl:float (- most-positive-double-double-hi 1w0)))
(defconstant least-positive-flonum (cl:float least-positive-double-float 1w0))
(defconstant least-negative-flonum (cl:float least-negative-double-float 1w0))
;; This is an approximation to a double-double epsilon. Due to the
;; way double-doubles are represented, epsilon is actually zero
;; because 1+x = 1 only when x is zero. But double-doubles only have
;; 106 bits of precision, so we use that as epsilon.
(defconstant flonum-epsilon (scale-float 1w0 -106))
(defconstant least-positive-normalized-flonum (cl:float least-positive-normalized-double-float 1w0))
(defconstant flonum-exponent-marker #\W)
)
;;;;
(defmacro float (x &optional (y 1e0))
`(cl:float ,x ,y))
(defmacro with-collector (collector-sym &body forms)
(let ((acc (gensym)))
`(let ((,acc))
(flet ((,collector-sym (x) (push x ,acc)))
,@forms
(nreverse ,acc)))))
;; DO-MERGE-ASYM moved here from nset.lisp so that it is defined before
;; it is referenced in compar.lisp.
(defmacro do-merge-symm (list1 list2 eqfun lessfun bothfun onefun)
;; Like do-merge-asym, but calls onefun if an element appears in one but
;; not the other list, regardless of which list it appears in.
`(do-merge-asym ,list1 ,list2 ,eqfun ,lessfun ,bothfun ,onefun ,onefun))
(defmacro do-merge-asym
(list1 list2 eqfun lessfun bothfun only1fun only2fun)
;; Takes two lists.
;; The element equality function is eqfun, and they must be sorted by lessfun.
;; Calls bothfun on each element that is shared by the two lists;
;; calls only1fun on each element that appears only in the first list;
;; calls only2fun on each element that appears only in the second list.
;; If both/only1/only2 fun are nil, treat as no-op.
(let ((l1var (gensym))
(l2var (gensym)))
`(do ((,l1var ,list1)
(,l2var ,list2))
((cond ((null ,l1var)
(if ,only2fun
(while ,l2var
(funcall ,only2fun (car ,l2var))
(setq ,l2var (cdr ,l2var))))
t)
((null ,l2var)
(if ,only1fun
(while ,l1var
(funcall ,only1fun (car ,l1var))
(setq ,l1var (cdr ,l1var))))
t)
((funcall ,eqfun (car ,l1var) (car ,l2var))
(if ,bothfun (funcall ,bothfun (car ,l1var)))
(setq ,l1var (cdr ,l1var) ,l2var (cdr ,l2var))
nil)
((funcall ,lessfun (car ,l1var) (car ,l2var))
(if ,only1fun (funcall ,only1fun (car ,l1var)))
(setq ,l1var (cdr ,l1var))
nil)
(t
(if ,only2fun (funcall ,only2fun (car ,l2var)))
(setq ,l2var (cdr ,l2var))
nil))))))
;;; Test
; (do-merge-asym '(a a a b c g h k l)
; '(a b b c c h i j k k)
; 'eq
; 'string<
; '(lambda (x) (prin0 'both x))
; '(lambda (x) (prin0 'one1 x))
; '(lambda (x) (prin0 'one2 x)))
; both a
; one1 a
; one1 a
; both b
; one2 b
; both c
; one2 c
; one1 g
; both h
; one2 i
; one2 j
; both k
; one2 k
; one1 l
; nil
;; Defines a function named NAME that checks that the number of
;; arguments is correct. If the number of actual arguments is
;; incorrect, a maxima error is signaled.
;;
;; The required arguments is given by REQUIRED-ARG-LIST. Allowed
;; (maxima) keyword arguments is given by KEYWORD-ARG-LIST.
;;
;; The body of the function can refer to KEYLIST which is the list of
;; maxima keyword arguments converted to lisp keyword arguments.
(defmacro defun-checked (name ((&rest required-arg-list)
&rest keyword-arg-list)
&body body)
(let ((number-of-required-args (length required-arg-list))
(number-of-keyword-args (length keyword-arg-list))
(arg-list (gensym "ARG-LIST-"))
(helper-fun (gensym "REAL-FUN-"))
(options (gensym "OPTIONS-ARG-")))
`(defun ,name (&rest ,arg-list)
;; Check that the required number of arguments is given and
;; that we don't supply too many arguments.
;;
;; NOTE: The check when keyword args are given is a little too
;; tight. It's valid to have duplicate keyword args, but we
;; disallow that if the number of arguments exceed the limit.
(when (or (> (length ,arg-list) ,(+ number-of-required-args number-of-keyword-args))
(< (length ,arg-list) ,number-of-required-args))
(merror (intl:gettext "~M arguments supplied to ~M: found ~M")
(if (< (length ,arg-list) ,number-of-required-args)
(intl:gettext "Too few")
(if (> (length ,arg-list) ,(+ number-of-required-args
number-of-keyword-args))
(intl:gettext "Too many")
(intl:gettext "Incorrect number of")))
',(if keyword-arg-list
`((,name) ,@required-arg-list ((mlist simp) ,@keyword-arg-list))
`((,name) ,@required-arg-list))
(cons '(mlist) ,arg-list)))
(flet ((,helper-fun (,@required-arg-list
,@(when keyword-arg-list
`(&rest ,options)))
(let ,(when keyword-arg-list
`((keylist (lispify-maxima-keyword-options ,options
',keyword-arg-list))))
,@body)))
(apply #',helper-fun ,arg-list)))))
|