This file is indexed.

/usr/share/maxima/5.32.1/src/clmacs.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(defun memq (x lis)
  (member x lis :test #'eq))

;;this will make operators which declare the type and result of numerical operations
(eval-when (:compile-toplevel :load-toplevel)

  (defmacro def-op (name arg-type op &optional return-type)
    `(setf (macro-function ',name)
           (make-operation ',arg-type ',op ',return-type)))

  ;;make very sure .type .op and .return are not special!!
  (defun make-operation (.type .op .return)
    (or .return (setf .return .type))
    #'(lambda (bod env)
        (declare (ignore env))
        (loop for v in (cdr bod)
           when (eq t .type) collect v into body
           else
           collect `(the , .type ,v) into body
           finally (setq body `(, .op ,@body))
	     (return
	       (if (eq t .return)
		   body
		   `(the , .return ,body))))))

  ;; these allow running of code and they print out where the error occurred
  #+fix-debug
  (progn
    (defvar *dbreak* t)

    (defun chk-type (lis na typ sho)
      (unless (every #'(lambda (v) (typep v typ)) lis)
        (format t "~%Bad call ~a types:~a" (cons na sho) (mapcar #'type-of lis))
        (when *dbreak*
          (break "hi"))))

    (defmacro def-op (name arg-type old)
      `(defmacro ,name (&rest l)
         `(progn
            (chk-type (list ,@l) ',',name ',',arg-type ',l)
            (,',old ,@l)))))

  (def-op f+ fixnum +)
  (def-op f* fixnum *)
  (def-op f- fixnum -)
  (def-op f1- fixnum 1-)
  (def-op f1+ fixnum 1+)
  (def-op quotient t quot))

;;this is essentially what the quotient is supposed to do.

(declaim (inline quot))
(defun quot (a b)
  (if (and (integerp a) (integerp b))
      (truncate a b)
      (/ a b)))

(defmacro status (option &optional item)
  (cond ((equal (symbol-name option) (symbol-name '#:feature))
	 `(member ,(intern (string item) (find-package 'keyword)) *features*))
	((equal option 'gctime) 0)))

#+(or scl allegro)
(defun string<$ (str1 str2)
  "Compare string, but flip the case for maxima variable names to maintain
  the same order irrespective of the lisp case mode."
  (declare (string str1 str2))
  (cond (#+scl (eq ext:*case-mode* :lower)
	 #+allegro (eq excl:*current-case-mode* :case-sensitive-lower)
	 (let ((str1l (length str1))
	       (str2l (length str2)))
	   (cond ((and (> str1l 1) (char= (aref str1 0) #\$)
		       (> str2l 1) (char= (aref str2 0) #\$))
		  (flet ((case-flip (str)
			   (let ((some-upper nil)
				 (some-lower nil))
			     (dotimes (i (length str))
			       (let ((ch (schar str i)))
				 (when (lower-case-p ch)
				   (setf some-lower t))
				 (when (upper-case-p ch)
				   (setf some-upper t))))
			     (cond ((and some-upper some-lower)
				    nil)
				   (some-upper
				    :downcase)
				   (some-lower
				    :upcase)))))
		    (let ((flip1 (case-flip str1))
			  (flip2 (case-flip str2)))
		      (do ((index 1 (1+ index)))
			  ((or (>= index str1l) (>= index str2l))
			   (if (= index str1l) index nil))
			(let ((ch1 (aref str1 index))
			      (ch2 (aref str2 index)))
			  (cond ((and (eq flip1 :downcase) (both-case-p ch1))
				 (setf ch1 (char-downcase ch1)))
				((and (eq flip1 :upcase) (both-case-p ch1))
				 (setf ch1 (char-upcase ch1))))
			  (cond ((and (eq flip2 :downcase) (both-case-p ch2))
				 (setf ch2 (char-downcase ch2)))
				((and (eq flip2 :upcase) (both-case-p ch2))
				 (setf ch2 (char-upcase ch2))))
			  (unless (char= ch1 ch2)
			    (return (if (char< ch1 ch2)
					index
					nil))))))))
		 (t
		  (string< str1 str2)))))
	(t
	 (string< str1 str2))))
;;;
#-(or scl allegro)
(defun string<$ (str1 str2)
  (string< str1 str2))

;;numbers<strings<symbols<lists<?
(defun alphalessp (x y)
  (cond ((numberp x)
	 (if (numberp y) (< x y) t))
	((stringp x)
	 (cond ((numberp y) nil)
	       ((stringp y)
		(string< x y))
	       (t t)))
	((symbolp x)
	 (cond ((or (numberp y) (stringp y)) nil)
	       ((symbolp y)
		(let ((nx (symbol-name x))
		      (ny (symbol-name y)))
		  (declare (string nx ny))
		  (cond ((string<$ nx ny)
			 t)
			((string= nx ny)
			 (cond ((eq nx ny) nil)
			       ((null (symbol-package x)) nil)
			       ((null (symbol-package y)) nil)
			       (t (string<
				   (package-name (symbol-package x))
				   (package-name (symbol-package y))))))
			(t nil))))
	       ((consp y) t)))
	((listp x)
	 (cond ((or (numberp y) (stringp y)(symbolp y )) nil)
	       ((listp y)
		(or (alphalessp (car x) (car y))
		    (and (equal (car x) (car y))
			 (alphalessp (cdr x) (cdr y)))))
	       (t nil)))
	((or (numberp y) (stringp y) (symbolp y)(consp y))
	 nil)
	(t				;neither is of known type:
	 (alphalessp (format nil "~s" x)(format nil "~s" y)))))

(defmacro symbol-array (sym)
  `(get ,sym 'array))

(defun arraydims (ar)
  (when (symbolp ar)
    (setq ar (symbol-array ar)))
  (cons (array-element-type ar) (array-dimensions ar)))

(defun firstn (n lis)
  (subseq lis 0 n))

(declaim (inline fixnump))
(defun fixnump (n)
  (typep n 'fixnum))

(defun  bignump (x)
  (typep x 'bignum))

;;actually this was for lists too.

(defun putprop (sym val  indic)
  (if (consp sym)
      (setf (getf (cdr sym) indic) val)
      (setf (get sym indic) val)))

(defmacro defprop (sym val indic)
  (if (eq indic 'expr)
      `(setf (symbol-function ',sym) #',val)
      `(setf (get ',sym ',indic) ',val)))

;; Find the N most significant or least significant bits of the
;; absolute value of X.  If N is positive, take the most significant;
;; otherwise, the least significant.
(defun haipart (x n)
  (let ((x (abs x)))
    (if (< n 0)
	;; If the desired number of bits is larger than the actual
	;; number, just return the number.  (Prevents gratuitously
	;; generating a huge bignum if n is very large, as can happen
	;; with bigfloats.)
	(if (< (integer-length x) (- n))
	    x
	    (logand x (1- (ash 1 (- n)))))
	(ash x (min (- n (integer-length x)) 0)))))

;; also correct but slower.
;;(defun haipart (integer count)
;;  (let ((x (abs integer)))
;;    (if (minusp count)
;;      (ldb (byte (- count) 0) x)
;;      (ldb (byte count (max 0 (- (integer-length x) count))) x))))

;;used in translation
(defun fset (sym val)
  (setf (symbol-function sym) val))

(defun oldget (plist indic)
  (cond ((symbolp plist)
	 (setq plist (symbol-plist plist)))
	((consp plist) (setq plist (cdr plist)))
	(t (return-from oldget nil)))
  (loop for tail on plist by #'cddr
	 when (eq (car tail) indic)
	 do (return (second tail))))

(defun safe-get (sym prop)
  (and (symbolp sym) (get sym prop)))

(defmacro safe-getl (sym prop)
  `(and (symbolp ,sym) (getl ,sym ,prop)))

(defun getl (plist indicator-list )
  (cond ((symbolp plist)
	 (setq plist (symbol-plist plist)))
	((consp plist) (setq plist (cdr plist)))
	(t (return-from getl nil)))
  (loop for tail on plist by #'cddr
	 when (member (car tail) indicator-list :test #'eq)
	 do (return tail)))

(defmacro ncons (x)
  `(cons ,x nil)) ;;can one optimize this??

(defvar *acursor* (make-array 11 :element-type 'fixnum :initial-element 0))

;; Format of *acursor*.
;; 0                 1  2  3  4  5    6  7  8  9  10
;; dim               i1 i2 i3 i4 i5   d1 d2 d3 d4 d5
;; array dimension   current index    maximal index

(defun set-up-cursor (ar)
  (let ((lis (array-dimensions ar)))
    (setf (aref *acursor* 0) (length lis))
    (loop for v in lis for i from 6 do (setf (aref *acursor* i) (1- v)))
    (loop for i from 1 to (length lis) do (setf (aref *acursor* i) 0))))

(defun aset-by-cursor (ar  val)
  (let ((curs  *acursor*))
    (declare (type (simple-array fixnum (11)) curs))
    (ecase (aref curs 0)
      (1 (setf (aref ar (aref curs 1)) val))
      (2 (setf (aref ar (aref curs 1) (aref curs 2)) val))
      (3 (setf (aref ar (aref curs 1) (aref curs 2) (aref curs 3)) val))
      (4 (setf (aref ar (aref curs 1) (aref curs 2) (aref curs 3)
		     (aref curs 4)) val))
      (5 (setf (aref ar (aref curs 1) (aref curs 2) (aref curs 3)
		     (aref curs 4) (aref curs 5)) val)))
    ;; set the index (`cursor') for the next call to ASET-BY-CURSOR
    (loop for j downfrom (aref curs 0)
	   do (cond ((< (aref curs j) (aref curs (+ 5 j)))
		     (setf (aref curs j) (+  (aref curs j) 1))
		     (return-from aset-by-cursor t))
		    (t (setf (aref curs j) 0)))
	   (cond ((eql j 0) (return-from aset-by-cursor nil))))))

(defun fillarray (ar x)
  (when (symbolp ar)
    (setq ar (get ar 'array)))
  (when (/= (array-rank ar) 1)
    (setq ar (make-array (array-total-size ar) :displaced-to ar)))
  (setq x (cond ((null x)
		 (ecase (array-element-type ar)
		   (fixnum '(0))
		   (float '(0.0))
		   ((t) '(nil))))
		((arrayp x)(listarray x))
		((atom x) (list x))
		(t x)))
  (when (> (length ar) 0)
    (set-up-cursor ar)
    (loop while (aset-by-cursor ar (car x))
       do (and (cdr x) (setq x (cdr x))))))

(defun listarray (x)
  (when (symbolp x)
    (setq x (get x 'array)))
  (if (eql (array-rank x) 1)
      (coerce x 'list)
      (coerce (make-array (apply '* (array-dimensions x)) :displaced-to x
			  :element-type (array-element-type x))
	      'list)))

(defmacro check-arg (place pred &rest res)
  (when (atom pred)
    (setq pred (list pred place)))
  `(assert ,pred (,place) ,@res))

(defmacro deff (fun val)
  `(setf (symbol-function ',fun) ,val))

(defmacro xcons (x y)
  (cond ((atom x) `(cons ,y,x))
	(t (let ((g (gensym)))
	     `(let ((,g ,x))
	       (cons ,y ,g))))))

(defun make-equal-hash-table (not-dim1)
  (let ((table (make-hash-table :test 'equal)))
    (or not-dim1 (setf (gethash 'dim1 table) t))
    table))

;;; Range of atan should be [0,2*pi]
(defun atan (y x)
  (let ((tem (cl:atan y x)))
    (if (>= tem 0)
	tem
	(+ tem (* 2 pi)))))

;;; Range of atan2 should be (-pi,pi]
;;; CL manual says that's what lisp::atan is supposed to have.
(deff atan2 #'cl:atan)

;;; exp is shadowed to save trouble for other packages--its declared special
(deff exp #'cl:exp)

#+clisp
(progn
  ;; This used to be enabled, but
  ;; http://clisp.cons.org/impnotes/num-dict.html seems to indicate
  ;; that the result of float, coerce, sqrt, etc., on a rational will
  ;; return a float of the specified type.  But ANSI CL says we must
  ;; return a single-float.  I (rtoy) am commenting this out for now.

  ;; (setq custom:*default-float-format* 'double-float)

  ;; We currently don't want any warnings about floating-point contagion.
  (setq custom::*warn-on-floating-point-contagion* nil)

  ;; We definitely want ANSI-style floating-point contagion.
  (setq custom:*floating-point-contagion-ansi* t)

  ;; Set custom:*floating-point-rational-contagion-ansi* so that
  ;; contagion is done as per the ANSI CL standard. Has an effect only
  ;; in those few cases when the mathematical result is exact although
  ;; one of the arguments is a floating-point number, such as (* 0
  ;; 1.618), (/ 0 1.618), (atan 0 1.0), (expt 2.0 0)
  (setq custom:*floating-point-rational-contagion-ansi* t)

  ;; When building maxima using with 'flonum being a 'long-float it may be
  ;; useful to adjust the number of bits of precision that CLISP uses for
  ;; long-floats.
  #+nil
  (setf (ext:long-float-digits) 128)

  ;; We want underflows not to signal errors.
  (ext:without-package-lock ()
    (setq sys::*inhibit-floating-point-underflow* t))
  )

#+abcl
(progn
  ;; We want underflows not to signal errors
  (when (fboundp (find-symbol "FLOAT-UNDERFLOW-MODE" "SYS"))
    (funcall (find-symbol "FLOAT-UNDERFLOW-MODE" "SYS") nil))
  )

;; Make the maximum exponent larger for CMUCL.  Without this, cmucl
;; will generate a continuable error when raising an integer to a
;; power greater than this.
#+cmu
(setf ext::*intexp-maximum-exponent* 100000)
;;;; Setup the mapping from the Maxima 'flonum float type to a CL float type.
;;;;
;;;; Add :flonum-long to *features* if you want flonum to be a
;;;; long-float.  Or add :flonum-double-double if you want flonum to
;;;; be a double-double (currently only for CMUCL).  Otherwise, you
;;;; get double-float as the flonum type.
;;;;
;;;; Default double-float flonum.
(eval-when (:compile-toplevel :load-toplevel :execute)
  (setq *read-default-float-format* 'double-float))

#-(or flonum-long flonum-double-double)
(progn
;; Tell Lisp the float type for a 'flonum.
#-clisp
(deftype flonum (&optional low high)
  (cond (high
	 `(double-float ,low ,high))
	(low
	 `(double-float ,low))
	(t
	 'double-float)))

;; Some versions of clisp appear to be buggy: (coerce 1 'flonum)
;; signals an error.  So does (coerce 1 '(double-float 0d0)).  But
;; (coerce 1 'double-float) returns 1d0 as expected.  So for now, make
;; flonum be exactly the same as double-float, without bounds.
#+clisp
(deftype flonum (&optional low high)
  (declare (ignorable low high))
  'double-float)

(defconstant most-positive-flonum most-positive-double-float)
(defconstant most-negative-flonum most-negative-double-float)
(defconstant least-positive-flonum least-positive-double-float)
(defconstant least-negative-flonum least-negative-double-float)
(defconstant flonum-epsilon double-float-epsilon)
(defconstant least-positive-normalized-flonum least-positive-normalized-double-float)

(defconstant flonum-exponent-marker #\D)
)

#+flonum-long
(progn
;;;; The Maxima 'flonum can be a CL 'long-float on the Scieneer CL or CLISP,
;;;; but should be the same as 'double-float on other CL implementations.

  (eval-when (:compile-toplevel :load-toplevel :execute)
    (setq *read-default-float-format* 'long-float))

;; Tell Lisp the float type for a 'flonum.
(deftype flonum (&optional low high)
  (cond (high
	 `(long-float ,low ,high))
	(low
	 `(long-float ,low))
	(t
	 'long-float)))

(defconstant most-positive-flonum most-positive-long-float)
(defconstant most-negative-flonum most-negative-long-float)
(defconstant least-positive-flonum least-positive-long-float)
(defconstant least-negative-flonum least-negative-long-float)
(defconstant flonum-epsilon long-float-epsilon)
(defconstant least-positive-normalized-flonum least-positive-normalized-long-float)

(defconstant flonum-exponent-marker #\L)

)

#+flonum-double-double
(progn

;;;; The Maxima 'flonum can be a 'kernel:double-double-float on the CMU CL.

  (eval-when (:compile-toplevel :load-toplevel :execute)
    (setq *read-default-float-format* 'kernel:double-double-float))

;; Tell Lisp the float type for a 'flonum.
(deftype flonum (&optional low high)
  (cond (high
	 `(kernel:double-double-float ,low ,high))
	(low
	 `(kernel:double-double-float ,low))
	(t
	 'kernel:double-double-float)))

;; While double-double can represent number as up to
;; most-positive-double-float, it can't really do operations on them
;; due to the way multiplication and division are implemented.  (I
;; don't think there's any workaround for that.)
;;
;; So, the largest number that can be used is the float just less than
;; 2^1024/(1+2^27).  This is the number given here.
(defconstant most-positive-double-double-hi
  (scale-float (cl:float (1- 9007199187632128) 1d0) 944))

(defconstant most-positive-flonum (cl:float most-positive-double-double-hi 1w0))
(defconstant most-negative-flonum (cl:float (- most-positive-double-double-hi 1w0)))
(defconstant least-positive-flonum (cl:float least-positive-double-float 1w0))
(defconstant least-negative-flonum (cl:float least-negative-double-float 1w0))
;; This is an approximation to a double-double epsilon.  Due to the
;; way double-doubles are represented, epsilon is actually zero
;; because 1+x = 1 only when x is zero.  But double-doubles only have
;; 106 bits of precision, so we use that as epsilon.
(defconstant flonum-epsilon (scale-float 1w0 -106))
(defconstant least-positive-normalized-flonum (cl:float least-positive-normalized-double-float 1w0))

(defconstant flonum-exponent-marker #\W)

)

;;;;
(defmacro float (x &optional (y 1e0))
  `(cl:float ,x ,y))

(defmacro with-collector (collector-sym &body forms)
  (let ((acc (gensym)))
    `(let ((,acc))
       (flet ((,collector-sym (x) (push x ,acc)))
         ,@forms
         (nreverse ,acc)))))

;; DO-MERGE-ASYM moved here from nset.lisp so that it is defined before
;; it is referenced in compar.lisp.
(defmacro do-merge-symm (list1 list2 eqfun lessfun bothfun onefun)
  ;; Like do-merge-asym, but calls onefun if an element appears in one but
  ;; not the other list, regardless of which list it appears in.
  `(do-merge-asym ,list1 ,list2 ,eqfun ,lessfun ,bothfun ,onefun ,onefun))

(defmacro do-merge-asym
  (list1 list2 eqfun lessfun bothfun only1fun only2fun)
  ;; Takes two lists.
  ;; The element equality function is eqfun, and they must be sorted by lessfun.
  ;; Calls bothfun on each element that is shared by the two lists;
  ;; calls only1fun on each element that appears only in the first list;
  ;; calls only2fun on each element that appears only in the second list.
  ;; If both/only1/only2 fun are nil, treat as no-op.
  (let ((l1var (gensym))
	(l2var (gensym)))
    `(do ((,l1var ,list1)
	  (,l2var ,list2))
	 ((cond ((null ,l1var)
		 (if ,only2fun
		     (while ,l2var
		       (funcall ,only2fun (car ,l2var))
		       (setq ,l2var (cdr ,l2var))))
		 t)
		((null ,l2var)
		 (if ,only1fun
		     (while ,l1var
		       (funcall ,only1fun (car ,l1var))
		       (setq ,l1var (cdr ,l1var))))
		 t)
		((funcall ,eqfun (car ,l1var) (car ,l2var))
		 (if ,bothfun (funcall ,bothfun (car ,l1var)))
		 (setq ,l1var (cdr ,l1var) ,l2var (cdr ,l2var))
		 nil)
		((funcall ,lessfun (car ,l1var) (car ,l2var))
		 (if ,only1fun (funcall ,only1fun (car ,l1var)))
		 (setq ,l1var (cdr ,l1var))
		 nil)
		(t
		 (if ,only2fun (funcall ,only2fun (car ,l2var)))
		 (setq ,l2var (cdr ,l2var))
		 nil))))))

;;; Test
; (do-merge-asym '(a a a b c g h k l)
; 	       '(a b b c c h i j k k)
; 	       'eq
; 	       'string<
; 	       '(lambda (x) (prin0 'both x))
; 	       '(lambda (x) (prin0 'one1 x))
; 	       '(lambda (x) (prin0 'one2 x)))
; both a
; one1 a
; one1 a
; both b
; one2 b
; both c
; one2 c
; one1 g
; both h
; one2 i
; one2 j
; both k
; one2 k
; one1 l
; nil

;; Defines a function named NAME that checks that the number of
;; arguments is correct.  If the number of actual arguments is
;; incorrect, a maxima error is signaled.
;;
;; The required arguments is given by REQUIRED-ARG-LIST.  Allowed
;; (maxima) keyword arguments is given by KEYWORD-ARG-LIST.
;;
;; The body of the function can refer to KEYLIST which is the list of
;; maxima keyword arguments converted to lisp keyword arguments.

(defmacro defun-checked (name ((&rest required-arg-list)
			       &rest keyword-arg-list)
			 &body body)
  (let ((number-of-required-args (length required-arg-list))
	(number-of-keyword-args (length keyword-arg-list))
	(arg-list (gensym "ARG-LIST-"))
	(helper-fun (gensym "REAL-FUN-"))
	(options (gensym "OPTIONS-ARG-")))
    `(defun ,name (&rest ,arg-list)
       ;; Check that the required number of arguments is given and
       ;; that we don't supply too many arguments.
       ;;
       ;; NOTE: The check when keyword args are given is a little too
       ;; tight.  It's valid to have duplicate keyword args, but we
       ;; disallow that if the number of arguments exceed the limit.
       (when (or (> (length ,arg-list) ,(+ number-of-required-args number-of-keyword-args))
		 (< (length ,arg-list) ,number-of-required-args))
	 (merror (intl:gettext "~M arguments supplied to ~M: found ~M")
		 (if (< (length ,arg-list) ,number-of-required-args)
		     (intl:gettext "Too few")
		     (if (> (length ,arg-list) ,(+ number-of-required-args
						   number-of-keyword-args))
			 (intl:gettext "Too many")
			 (intl:gettext "Incorrect number of")))
		 ',(if keyword-arg-list
		       `((,name) ,@required-arg-list ((mlist simp) ,@keyword-arg-list))
		       `((,name) ,@required-arg-list))
		 (cons '(mlist) ,arg-list)))
       (flet ((,helper-fun (,@required-arg-list
			    ,@(when keyword-arg-list
				`(&rest ,options)))
		(let ,(when keyword-arg-list
			`((keylist (lispify-maxima-keyword-options ,options
								   ',keyword-arg-list))))
	      ,@body)))
	 (apply #',helper-fun ,arg-list)))))