/usr/share/maxima/5.32.1/src/algfac.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module algfac)
;; this is the alg factor package
;;; Toplevel functions are: CPBGZASS CPTOM
(load-macsyma-macros ratmac)
(declare-top (special tra* trl* *xn var intbs* plim many* split* alc ind p l))
(defun ziredup (p)
(let ((modulus nil) (alpha nil) (minpoly* nil) (algfac* nil)
(gauss nil) (tellratlist nil) (many* nil)
(mm* 1)
($gcd '$ez))
(null (cddr(pfactor p)))))
(defun intbasehk (p)
(prog (modulus)
(setq modulus plim)
(setq p (pctimes intbs* p))
(setq modulus nil)
(return (car (ratreduce p intbs*)))))
(defun findibase (p)
(prog (mainvar)
(setq mainvar (car p))
(setq p (redresult p (pderivative p mainvar)))
(setq p (cfactorw p))
(setq mainvar 1)
loop (when (null p) (return mainvar))
(setq mainvar (* mainvar (expt (car p) (quotient (cadr p) 2))))
(setq p (cddr p))
(go loop)))
(defun cpbgzass (qlist v m)
(prog (f y vj factors u w lc j p2 fnj fnq oldfac)
(cond ((equal m 1)
(return (list v)))
((equal m (cadr v))
(return (let ((var (list var 1 1)))
(gfsplit v)))))
(setq f (pmod v))
(setq lc (caddr f))
(setq f (monize f))
(setq p2 1
qlist (cdr (nreverse qlist)))
(setq oldfac (list nil f))
nextq(setq v (car qlist))
(setq qlist (cdr qlist))
(setq j (findses v f))
(setq oldfac (nconc oldfac fnq))
(setq fnq nil)
incrj(setq factors (nconc oldfac fnj))
(setq fnj nil)
(setq vj (pplus v (car j))
j (cdr j))
tag2 (setq u (cadr factors))
(setq w (pgcdu vj u))
(when (or (numberp w) (and alpha (alg w))(= (cadr u) (cadr w)))
(go nextfac))
(setq y (car (pmodquo u w)))
(setq fnq (cons w fnq))
(setq fnj (cons y fnj))
(incf p2)
(rplacd factors (cddr factors))
(if (equal p2 m)
(go out)
(go tag1))
nextfac
(setq factors (cdr factors))
tag1 (cond ((cdr factors)
(go tag2))
(j (go incrj))
(qlist (go nextq)))
out (setq fnq (nconc fnq fnj (cdr oldfac)))
(return (cons (ptimes lc (car fnq)) (cdr fnq)))))
;; The function PMONZ used to be defined here. It is also defined in
;; RAT;RAT3A and BMT claims the definitions are equivalent.
(defun findses (g f)
(prog (var tra* trl*)
(setq g (zassg (cdr g) (cdr f) (car g)))
(setq var (list (car f) 1 1))
(setq f (gfsplit g))
(return (mapcar #'(lambda (a) (car (last a))) f))))
(defun coefvec (p n vec)
(prog nil
loop (when (zerop n) (return vec))
(decf n)
(push (ptterm p n) vec)
(go loop)))
(defun zassg (g f var)
(prog (i mat gn ans n)
(setq n (car f))
(setq gn g)
(setq i 1
mat (list (coefvec '(0 1) n (list 1))))
(go on)
loop (incf i)
(setq gn (pgcd1 (ptimes1 gn g) f))
on (setq ans (lindep mat (coefvec gn n (list (list var i 1)))))
(cond (ans (return ans)))
(go loop)))
(defun divl (j a)
(mapcar #'(lambda (l) (car (pmodquo l a))) j))
;; (DEFUN PADDROWS (A B) (MAPCAR (FUNCTION PPLUS) A B))
(defun pdifrows (a b)
(mapcar #'pdifference a b))
(defun ptimesrow (var row)
(mapcar #'(lambda (a) (ptimes var a)) row))
(defun ddiv (j)
(prog (a b)
(setq b j)
ag (setq a (car b))
(cond ((zerop a)
(setq b (cdr b))
(go ag)))
(return (divl j a))))
(defun lindep (mat vec)
(prog (e d m row rowd vecd)
(setq m mat)
(cond ((equal 0. (car vec)) (setq vec (cdr vec)))
(t (setq vec (pdifrows (cdr vec) (ptimesrow (car vec) (cdar mat))))))
loop (cond ((null (cdr m))
(cond ((zerolp (cdr (reverse vec)))
(return (car (last vec))))
(t (rplacd m (cons (ddiv vec) (cdr m)))
(return nil)))))
(setq row (cadr m))
(setq rowd row vecd vec)
loop1(setq d (car rowd))
(setq e (car vecd))
(cond ((equal 0 e)
(cond ((equal 0 d)
(setq vecd (cdr vecd) rowd (cdr rowd))
(go loop1))
(t (setq vec (cdr vec)) (setq m (cdr m)) (go loop))))
((equal 0 d)
(rplacd m
(cons (divl vec e) (mapcar (function cdr) (cdr m))))
(return nil)))
(setq vec (pdifrows (cdr vec) (ptimesrow e (cdr row))))
(setq m (cdr m))
(go loop)))
(defun gfsplit (f)
(prog (tr fl (n 0) ans tra* (i 0) nfl)
(setq fl (list f) n (cadr f))
loop (cond ((null fl)
(cond ((null nfl)
(cond ((= n (length ans))
(setq trl* nil)
(return ans))
(t (merror (intl:gettext "GFSPLIT: unknown error.")))))
(t
(setq fl nfl
nfl nil
i (1+ i))))))
(setq f (car fl)
fl (cdr fl))
(cond ((> i mm*)
(merror (intl:gettext "GFSPLIT: unknown error."))))
(setq tr (tracemod0 f i))
(cond ((or (pcoefp tr) (and algfac* (alg tr)))
(setq nfl (cons f nfl))
(go loop)))
(setq f (cpbg0 tr f))
(setq ans (nconc ans (car f)))
(when (null (cdr f)) (go loop))
(setq nfl (nconc nfl (cdr f)))
(go loop)))
(defun cpbg0 (tr f)
(prog (m f1 f2 g alc trm)
(setq m 0)
(cond ((and (not (numberp (caddr tr))) (alg (caddr tr)))
(setq alc (painvmod (caddr tr)) tr (ptimes alc tr)))
(t (setq alc 1.)))
bk (cond ((pcoefp f)
(return (cond ((and (null f1) (null f2))
;; NOTE TO TRANSLATORS: MEANING OF NEXT MESSAGE IS OBSCURE
(merror (intl:gettext "CPBG0: wrong trace.")))
(t
(cons f1 f2)))))
((equal (cadr f) 1)
(return (cons (cons f f1) f2)))
((equal m modulus)
(return (cons f1 (cons f f2)))))
(setq trm (pdifference tr (ptimes m alc)))
(setq g (pgcdu trm f))
(cond ((or (numberp g) (and alpha (alg g)))
(incf m)
(go bk)))
(setq f (car (pmodquo f g)))
(cond ((equal (cadr g) 1) (setq f1 (cons g f1)))
(t (setq f2 (cons g f2))))
(go bk)))
(defun cpol2p (p var)
(prog((i 0) ans)
(setq p (nreverse p))
loop (cond ((null p) (return (cons var ans)))
((equal 0 (car p)) nil)
(t (setq ans (cons i (cons (car p) ans)))))
(setq p (cdr p)
i (1+ i))
(go loop)))
(defun tracemod (v)
(prog (ans tr qlarge term)
(setq ans 0
tr (nreverse trl*)
trl* nil)
(cond ((and (atom (caar tr)) (not (numberp (caar tr))))
(setq qlarge t)))
loop (when (null tr) (return ans))
(setq term (if qlarge
(car tr)
(cpol2p (car tr) v))
tr (cdr tr))
(setq ans (pplus ans term))
(setq trl* (cons term trl*))
(go loop)))
(defun otracemod (term q m prime)
(prog (ans i)
(setq ans term
i 1
trl* (list term))
loop (when (equal i m) (return ans))
(setq ans (pplus ans (setq term (pexptmod term prime q))))
(setq trl* (cons term trl*))
(incf i)
(go loop)))
(defun tracemod0 (q i)
(prog (l ans a dl)
(cond ((= i 0) (return (if trl*
(tracemod (car q))
(otracemod var q mm* modulus))))
(trl* (setq dl trl*
trl* (mapcar #'(lambda(x)
(cons (car x) (pgcd1 (cdr x) (cdr q)))) trl*))))
(cond (tra* (go tag))
(t (setq l (cdr trl*)
tra* (list alpha)
a alpha)))
loop (when (null l) (go tag))
(setq l (cdr l)
a (pexpt a modulus)
tra* (cons a tra*))
(go loop)
tag
(setq ans (tracemod1 i tra* trl*))
(when dl (setq trl* dl))
(return ans)))
(defun tracemod1 (n a l)
(prog (ans)
(setq ans 0)
loop (when (null l) (return ans))
(setq ans (pplus ans (ptimes (pexpt (car a) n) (car l))))
(setq l (cdr l)
a (cdr a))
(go loop)))
;; The way arrays are manipulated has been changed to make this code reentrant.
;; Previously, arrays were kept on the array properties of symbols. Now, the
;; symbols are bound to the arrays, so they can be rebound on re-entry.
;; The ANOTYPE, INVC, and FCTC arrays are set up in RAT;FACTOR.
(declare-top (special anotype invc fctc))
(defmacro a (row col)
`(aref anotype ,row ,col))
(defmacro invc (ind)
`(aref invc ,ind))
(defmacro fctc (ind)
`(aref fctc ,ind))
(defun cptomexp (p m u n)
(prog (b1 b2 j n-1 i l)
(setq b1 (x**q1 (list (car u) 1 1) u m p))
(cond ((equal (cdr b1) '(1 1))
(setq split* t)
(return nil)))
(setq b2 b1 j 1 n-1 (1- n))
(go tag1)
tag (incf j)
(when (= j n) (return nil))
(setq b1 (pmodrem(ptimes b1 b2) u))
tag1 (setq l (p2cpol b1 n-1) i n-1)
sharp2 (when (null l) (go on))
(setf (a j i) (car l))
(setq l (cdr l))
(setq i (1- i))
(go sharp2)
on (setf (a j j) (pdifference (a j j) 1))
(go tag)))
(defvar thr* 100)
(defun cptom (p m u n)
(prog (( q (expt p m)) l s *xn (j 0) (i 0) ind n-1)
(declare (special q i j))
(setq n-1 (1- n))
(when (> q thr*) (return (cptomexp p m u n)))
loop (incf j)
(cond ((= j n) (return nil))
(ind (go sa))
(t
(setq *xn (mapcar #'pminus (p2cpol (cddr u) n-1))
s (x**q (p2cpol(list var 1 1) n-1) p m)
ind t)))
(go st)
sa (cptimesxa s q)
st (cond ((and (= j 1)
(equal '(1 0) (last s 2))
(= 1 (length (delete 0 (copy-tree s) :test #'equal))))
(return (setq split* t))))
(setq l s)
(setq i n-1)
sharp2 (when (null l) (go on))
(setf (a j i) (car l))
(setq l (cdr l))
(decf i)
(go sharp2)
on (setf (a j j) (pdifference (a j j) 1))
(go loop)))
(defun cptimesxa (p i)
(prog (xn q lc)
ag (when (= i 0) (return p))
(setq xn *xn
q p
lc (car p))
loop (cond ((cdr q)
(rplaca q (pplus (cadr q) (ptimes lc (car xn))))
(setq q (cdr q) xn (cdr xn)))
(t (rplaca q (ptimes lc (car xn)))
(decf i)
(go ag)))
(go loop)))
(defun x**q (x p m)
(prog ((i 1) (pp 1) (d 0))
(setq i 1 trl* (list x) pp 1)
loop (when (= i m) (return (cptimesxa x (- (* pp p) pp))))
(setq d pp)
(cptimesxa x (- (setq pp (* pp p)) d))
(setq trl* (cons (copy-tree x) trl*))
(incf i)
(go loop)))
(defun cmnull (n)
(prog (nullsp (sub1n (1- n)) mone (k 1) (j 0) (s 0) nullv (i 0) vj m aks)
(setq mone (cmod -1))
sharp (when (> i sub1n) (go on))
(setf (fctc i) -1)
(setf (invc i) -1)
(incf i)
(go sharp)
on (setq k 1 nullsp (list 1))
n2 (when (> k sub1n) (return nullsp))
(setq j 0)
n3a (cond ((> j sub1n) (go null))
((or (equal (a k j) 0) (> (fctc j) -1))
(incf j)
(go n3a)))
(setf (invc k) j)
(setf (fctc j) k)
(setq m (a k j))
(setq m (ptimes mone (painvmod m)))
(setq s k)
sharp1 (when (> s sub1n) (go on1))
(setf (a s j) (ptimes m (a s j)))
(incf s)
(go sharp1)
on1
(setq s 0)
sharp2 (when (> s sub1n) (go nextk))
(cond ((= s j) nil)
(t (prog (i)
(setq aks (a k s))
(setq i k)
sharp3 (when (> i sub1n) (return nil))
(setf (a i s) (pplus (a i s) (ptimes (a i j) aks)))
(incf i)
(go sharp3))))
(incf s)
(go sharp2)
null (setq nullv nil)
(setq s 0)
sharp4 (cond ((> s sub1n) (go on4))
((= s k) (setq nullv (cons s (cons 1 nullv))))
((> (invc s) -1)
(setq vj (a k (invc s)))
(cond ((equal vj 0) nil)
(t (setq nullv (cons s (cons vj nullv)))))))
(incf s)
(go sharp4)
on4 (cond ((equal (car nullv) 0) (setq nullv (cadr nullv)))
((setq nullv (cons var nullv))))
(setq nullsp (cons nullv nullsp))
nextk (incf k)
(go n2)))
|