This file is indexed.

/usr/include/viennacl/generator/generate.hpp is in libviennacl-dev 1.5.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#ifndef VIENNACL_GENERATOR_GENERATE_HPP
#define VIENNACL_GENERATOR_GENERATE_HPP

/* =========================================================================
   Copyright (c) 2010-2014, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the PDF manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */


/** @file viennacl/generator/generate.hpp
    @brief the user interface for the code generator
*/

#include <cstring>
#include <vector>
#include <typeinfo>

#include "viennacl/scheduler/forwards.h"
#include "viennacl/generator/forwards.h"

#include "viennacl/generator/profiles.hpp"
#include "viennacl/generator/statement_representation_functor.hpp"
#include "viennacl/generator/set_arguments_functor.hpp"
#include "viennacl/generator/map_functor.hpp"

#include "viennacl/tools/tools.hpp"

namespace viennacl{

  namespace generator{

    /** @brief Class for handling code generation
     *
     *  It is meant to be only used along with the scheduler.*/
    class code_generator{
      public:
        /** @brief typedef of the key used in the forced profiles. Contains the expression type and the size of the scalartype */
        typedef std::pair<expression_type, vcl_size_t> forced_profile_key_type;
      private:
        typedef std::pair<expression_descriptor, generator::profile_base::statements_type> representation_node_type;
        typedef std::vector<representation_node_type> statements_type;
        typedef std::map<forced_profile_key_type, tools::shared_ptr<profile_base> > forced_profiles_type;

        /** @brief Check for the data access flow of a node.
        *
        * Row-major + Trans and Col-Major + NoTrans are equal in this regard. This prevents too much code duplication in the kernel templates.
        */
        static bool is_flow_transposed(viennacl::scheduler::statement const & statement, viennacl::scheduler::statement_node const & root_node){
          viennacl::scheduler::statement::container_type const & expr = statement.array();
          if(root_node.op.type==viennacl::scheduler::OPERATION_UNARY_TRANS_TYPE)
            return root_node.lhs.subtype==viennacl::scheduler::DENSE_ROW_MATRIX_TYPE;
          else{
            bool res = root_node.lhs.subtype==viennacl::scheduler::DENSE_COL_MATRIX_TYPE || root_node.rhs.subtype==viennacl::scheduler::DENSE_COL_MATRIX_TYPE;
            if(root_node.lhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
              res = res || is_lhs_flow_transposed(statement, expr[root_node.lhs.node_index]);
            if(root_node.rhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
              res = res || is_lhs_flow_transposed(statement, expr[root_node.rhs.node_index]);
            return res;
          }
        }

        /** @brief Checks for the data access flow of the LHS of a node */
        static bool is_lhs_flow_transposed(viennacl::scheduler::statement const & statement, viennacl::scheduler::statement_node const & root_node){
          scheduler::statement::container_type const & expr = statement.array();
          if(root_node.lhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
            return is_flow_transposed(statement, expr[root_node.lhs.node_index]);
          else
            return root_node.lhs.subtype==viennacl::scheduler::DENSE_COL_MATRIX_TYPE;
        }

        /** @brief Checks for the data access flow of the RHS of a node */
        static bool is_rhs_flow_transposed(viennacl::scheduler::statement const & statement, viennacl::scheduler::statement_node const & root_node){
          viennacl::scheduler::statement::container_type const & expr = statement.array();
          if(root_node.rhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
            return is_flow_transposed(statement, expr[root_node.rhs.node_index]);
          else
            return root_node.rhs.subtype==viennacl::scheduler::DENSE_COL_MATRIX_TYPE;
        }

        /** @brief Fills the expression descriptor for an operation of the type scalar = RHS */
        static void fill_expression_descriptor_scalar(viennacl::scheduler::statement const & statement, viennacl::scheduler::statement_node const & root_node, expression_descriptor & descriptor){
          viennacl::scheduler::statement::container_type const & expr = statement.array();
          bool is_invalid = (root_node.op.type == viennacl::scheduler::OPERATION_BINARY_MAT_VEC_PROD_TYPE)
                          || (descriptor.type_family==SCALAR_REDUCE_FAMILY && root_node.op.type == viennacl::scheduler::OPERATION_BINARY_INNER_PROD_TYPE);
          if(is_invalid){
            descriptor.type_family = INVALID_EXPRESSION_FAMILY;
            descriptor.type = INVALID_EXPRESSION_TYPE;
          }
          else if(root_node.op.type==viennacl::scheduler::OPERATION_BINARY_INNER_PROD_TYPE){
            descriptor.type_family = SCALAR_REDUCE_FAMILY;
            descriptor.type = SCALAR_REDUCE_TYPE;
          }
          if(descriptor.type_family!=INVALID_EXPRESSION_FAMILY && root_node.lhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
            fill_expression_descriptor_scalar(statement, expr[root_node.lhs.node_index],descriptor);
          if(descriptor.type_family!=INVALID_EXPRESSION_FAMILY && root_node.rhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
            fill_expression_descriptor_scalar(statement, expr[root_node.rhs.node_index],descriptor);
        }

        /** @brief Fills the expression descriptor for an operation of the type vector = RHS */
        static void fill_expression_descriptor_vector(viennacl::scheduler::statement const & statement, viennacl::scheduler::statement_node const & root_node, expression_descriptor & descriptor){
          viennacl::scheduler::statement::container_type const & expr = statement.array();
          bool is_invalid =  (root_node.op.type == viennacl::scheduler::OPERATION_BINARY_INNER_PROD_TYPE)
                          || (root_node.op.type == viennacl::scheduler::OPERATION_BINARY_MAT_MAT_PROD_TYPE)
                          || (descriptor.type_family==VECTOR_REDUCE_FAMILY && root_node.op.type == viennacl::scheduler::OPERATION_BINARY_MAT_VEC_PROD_TYPE);
          if(is_invalid){
            descriptor.type_family=INVALID_EXPRESSION_FAMILY;
            descriptor.type=INVALID_EXPRESSION_TYPE;
          }
          else if(root_node.op.type==viennacl::scheduler::OPERATION_BINARY_MAT_VEC_PROD_TYPE){
            descriptor.type_family=VECTOR_REDUCE_FAMILY;
            if(is_lhs_flow_transposed(statement,root_node))
              descriptor.type=VECTOR_REDUCE_Tx_TYPE;
            else
              descriptor.type=VECTOR_REDUCE_Nx_TYPE;
          }
          if(descriptor.type_family!=INVALID_EXPRESSION_FAMILY && root_node.lhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
            fill_expression_descriptor_vector(statement, expr[root_node.lhs.node_index],descriptor);
          if(descriptor.type_family!=INVALID_EXPRESSION_FAMILY && root_node.rhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
            fill_expression_descriptor_vector(statement, expr[root_node.rhs.node_index],descriptor);
        }

        /** @brief Fills the expression descriptor for an operation of the type matrix = RHS */
        static void fill_expression_descriptor_matrix(viennacl::scheduler::statement const & statement, viennacl::scheduler::statement_node const & root_node, expression_descriptor & descriptor){
          viennacl::scheduler::statement::container_type const & expr = statement.array();
          bool is_invalid =  (root_node.op.type == viennacl::scheduler::OPERATION_BINARY_INNER_PROD_TYPE)
                          || (root_node.op.type == viennacl::scheduler::OPERATION_BINARY_MAT_VEC_PROD_TYPE)
                          || (descriptor.type_family==MATRIX_PRODUCT_FAMILY && root_node.op.type == viennacl::scheduler::OPERATION_BINARY_MAT_MAT_PROD_TYPE);
          if(is_invalid){
            descriptor.type_family=INVALID_EXPRESSION_FAMILY;
            descriptor.type=INVALID_EXPRESSION_TYPE;
          }
          else if(root_node.op.type==viennacl::scheduler::OPERATION_BINARY_MAT_MAT_PROD_TYPE){
            descriptor.type_family=MATRIX_PRODUCT_FAMILY;
            bool lhs_trans = is_lhs_flow_transposed(statement,root_node);
            bool rhs_trans = is_rhs_flow_transposed(statement,root_node);
            if(!lhs_trans && !rhs_trans)
              descriptor.type=MATRIX_PRODUCT_NN_TYPE;
            else if(lhs_trans && !rhs_trans)
              descriptor.type=MATRIX_PRODUCT_TN_TYPE;
            else if(!lhs_trans && rhs_trans)
              descriptor.type=MATRIX_PRODUCT_NT_TYPE;
            else if(lhs_trans && rhs_trans)
              descriptor.type=MATRIX_PRODUCT_TT_TYPE;

          }
          if(descriptor.type_family!=INVALID_EXPRESSION_FAMILY && root_node.lhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
            fill_expression_descriptor_matrix(statement, expr[root_node.lhs.node_index],descriptor);
          if(descriptor.type_family!=INVALID_EXPRESSION_FAMILY && root_node.rhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
            fill_expression_descriptor_matrix(statement, expr[root_node.rhs.node_index],descriptor);
        }

        /** @brief Fills the expression descriptor for a statement */
        void fill_descriptor(viennacl::scheduler::statement const & statement, viennacl::scheduler::statement_node const & root_node, expression_descriptor & descriptor){
          viennacl::scheduler::statement_node_type_family lhs_family = root_node.lhs.type_family;
          descriptor.scalartype_size = utils::call_on_element(root_node.lhs, utils::scalartype_size_fun());
          if(lhs_family==viennacl::scheduler::VECTOR_TYPE_FAMILY){
            descriptor.type_family = VECTOR_SAXPY_FAMILY;
            descriptor.type = VECTOR_SAXPY_TYPE;
            fill_expression_descriptor_vector(statement,root_node,descriptor);
          }
          else if(lhs_family==viennacl::scheduler::MATRIX_TYPE_FAMILY){
            descriptor.type_family = MATRIX_SAXPY_FAMILY;
            descriptor.type = MATRIX_SAXPY_TYPE;
            fill_expression_descriptor_matrix(statement,root_node,descriptor);
          }
          else if(lhs_family==viennacl::scheduler::SCALAR_TYPE_FAMILY){
            descriptor.type_family = SCALAR_SAXPY_FAMILY;
            descriptor.type = SCALAR_SAXPY_TYPE;
            fill_expression_descriptor_scalar(statement,root_node,descriptor);
          }
        }

        /** @brief Sets the kernel arguments and enqueue the kernels associated with a list of statements.
        *
        *   The kernels are named 'kernel_'index of device in context'_'index of kernel in program'
        */
        template<class StatementsType>
        void set_expression_arguments(profile_base const & profile, unsigned int device_offset, StatementsType const & statements, unsigned int & kernel_id, viennacl::ocl::program & p, std::list<viennacl::ocl::kernel *> & kernels) const {
          for(vcl_size_t i = 0 ; i < profile.num_kernels() ; ++i){
            //add kernel name
            char str[32];
            std::sprintf(str,"kernel_%d_%d",device_offset,kernel_id);
            viennacl::ocl::kernel & kernel = p.get_kernel(str);
            kernels.push_back(&kernel);
            unsigned int current_arg = 0;
            //Configure ND Range and enqueue arguments
            profile.configure_range_enqueue_arguments(i, statements, kernel, current_arg);
            std::set<void *> memory;
            for(typename StatementsType::const_iterator it = statements.begin() ; it != statements.end() ; ++it){
              detail::traverse(it->first, it->second, detail::set_arguments_functor(memory,current_arg,kernel));
            }
            ++kernel_id;
          }
        }

        /** @brief Gets the profile associated with a device and an expression descriptor */
        profile_base const & get_profile(viennacl::ocl::device const & device, expression_descriptor const & descriptor) const {
          forced_profiles_type::const_iterator it = forced_profiles_.find(std::make_pair(descriptor.type, descriptor.scalartype_size));
          if(it != forced_profiles_.end())
            return *it->second;
          return *profiles::get(device,descriptor);
        }

      public:

        /** @brief The constructor */
        code_generator(viennacl::ocl::context const & ctx = viennacl::ocl::current_context()) : ctx_(ctx){
          statements_.reserve(16);
        }

        /** @brief Force the generator to use a specific profile for an operation */
        template<class T>
        void force_profile(forced_profile_key_type key, T const & t){
          forced_profiles_.insert(std::pair<forced_profile_key_type, tools::shared_ptr<profile_base> >(key, tools::shared_ptr<profile_base>(new T(t))));
        }

        /** @brief Add a statement and the root node to the expression list
        *   @return Whether or not the operation could be handled by the generator
        */
        bool add(scheduler::statement const & statement, scheduler::statement_node const & root_node) {
          expression_descriptor descriptor;
          fill_descriptor(statement, root_node, descriptor);
          if(descriptor.type_family==INVALID_EXPRESSION_FAMILY)
            return false;
          if(statements_.empty())
            statements_.push_back(std::make_pair(descriptor,profile_base::statements_type(1,std::make_pair(statement, root_node))));
          else
            if(statements_.back().first == descriptor)
              statements_.back().second.push_back(std::make_pair(statement, root_node));
            else
              statements_.push_back(std::make_pair(descriptor,profile_base::statements_type(1,std::make_pair(statement, root_node))));
          return true;
        }

        /** @brief Set the arguments for a program previously generated by the generator and fills the kernels */
        void configure_program(viennacl::ocl::program & p, std::list<viennacl::ocl::kernel *> & kernels) const {
          unsigned int kernel_id = 0;
          std::vector<viennacl::ocl::device>::const_iterator found = std::find(ctx_.devices().begin(),ctx_.devices().end(),ctx_.current_device());
          for(statements_type::const_iterator it = statements_.begin() ; it != statements_.end() ; ++it)
            set_expression_arguments(get_profile(ctx_.current_device(), it->first), static_cast<unsigned int>(std::distance(ctx_.devices().begin(), found)), it->second, kernel_id, p, kernels);
        }

        /** @brief Creates an identifier string for the set of expressions in the object */
        void make_program_name(char * program_name) const {
          unsigned int current_arg = 0;
          void* memory[64] = {NULL};
          for(statements_type::const_iterator it = statements_.begin() ; it != statements_.end() ; ++it){
            for(profile_base::statements_type::const_iterator iit = it->second.begin() ; iit != it->second.end() ; ++iit){
              detail::traverse(iit->first, iit->second, detail::statement_representation_functor(memory, current_arg, program_name));
            }
          }
          *program_name='\0';
        }

        /** @brief Creates the OpenCL program string from the set of expressions in the object */
        std::string make_opencl_program_string() const {
          utils::kernel_generation_stream stream;

          //Headers generation
          stream << "#if defined(cl_khr_fp64)\n";
          stream <<  "#  pragma OPENCL EXTENSION cl_khr_fp64: enable\n";
          stream <<  "#elif defined(cl_amd_fp64)\n";
          stream <<  "#  pragma OPENCL EXTENSION cl_amd_fp64: enable\n";
          stream <<  "#endif\n";
          stream << std::endl;

          vcl_size_t device_offset =0;
          for(std::vector<viennacl::ocl::device>::const_iterator it = ctx_.devices().begin() ; it != ctx_.devices().end() ; ++it)
            for(statements_type::const_iterator iit = statements_.begin() ; iit != statements_.end() ; ++iit)
              get_profile(*it,iit->first)(stream,device_offset++,iit->second);

          return stream.str();
        }

        /** @brief Creates the CUDA device code from the set of expressions in the object
        *
        *   Performs just a direct translation...
        */
        std::string make_cuda_program_string() const {
          //Creates OpenCL string with #ifdef and attributes
          utils::kernel_generation_stream stream;
          vcl_size_t device_offset =0;
          for(std::vector<viennacl::ocl::device>::const_iterator it = ctx_.devices().begin() ; it != ctx_.devices().end() ; ++it)
            for(statements_type::const_iterator iit = statements_.begin() ; iit != statements_.end() ; ++iit)
              get_profile(*it,iit->first)(stream,device_offset++,iit->second);
          std::string res = stream.str();

          viennacl::tools::find_and_replace(res,"__attribute__","//__attribute__");

          //Pointer
          viennacl::tools::find_and_replace(res, "__global float*", "float*");
          viennacl::tools::find_and_replace(res, "__local float*", "float*");

          viennacl::tools::find_and_replace(res, "__global double*", "double*");
          viennacl::tools::find_and_replace(res, "__local double*", "double*");

          //Qualifiers
          viennacl::tools::find_and_replace(res,"__global","__device__");
          viennacl::tools::find_and_replace(res,"__kernel","__global__");
          viennacl::tools::find_and_replace(res,"__constant","__constant__");
          viennacl::tools::find_and_replace(res,"__local","__shared__");

          //Indexing
          viennacl::tools::find_and_replace(res,"get_num_groups(0)","gridDim.x");
          viennacl::tools::find_and_replace(res,"get_num_groups(1)","gridDim.y");

          viennacl::tools::find_and_replace(res,"get_local_size(0)","blockDim.x");
          viennacl::tools::find_and_replace(res,"get_local_size(1)","blockDim.y");

          viennacl::tools::find_and_replace(res,"get_group_id(0)","blockIdx.x");
          viennacl::tools::find_and_replace(res,"get_group_id(1)","blockIdx.y");

          viennacl::tools::find_and_replace(res,"get_local_id(0)","threadIdx.x");
          viennacl::tools::find_and_replace(res,"get_local_id(1)","threadIdx.y");

          viennacl::tools::find_and_replace(res,"get_global_id(0)","(blockIdx.x*blockDim.x + threadIdx.x)");
          viennacl::tools::find_and_replace(res,"get_global_id(1)","(blockIdx.y*blockDim.y + threadIdx.y)");

          //Synchronization
          viennacl::tools::find_and_replace(res,"barrier(CLK_LOCAL_MEM_FENCE)","__syncthreads()");
          viennacl::tools::find_and_replace(res,"barrier(CLK_GLOBAL_MEM_FENCE)","__syncthreads()");


          return res;
        }

      private:
        statements_type statements_;
        viennacl::ocl::context const & ctx_;
        forced_profiles_type forced_profiles_;
    };

    /** @brief Creates the program associated with a generator object and fills the kernels. Checks the context for the program and possibly (re)compile it.
    *
    *   @param generator the generator to work on
    *   @param kernels this list will be filled with the kernels associated with the generator
    *   @param force_recompilation if true, the program will be recompiled
    */
    inline viennacl::ocl::program & get_configured_program(viennacl::generator::code_generator const & generator, std::list<viennacl::ocl::kernel*> & kernels, bool force_recompilation = false){
      char* program_name = new char[256];
      generator.make_program_name(program_name);
      if(force_recompilation)
        viennacl::ocl::current_context().delete_program(program_name);
      if(!viennacl::ocl::current_context().has_program(program_name)){
        std::string source_code = generator.make_opencl_program_string();
    #ifdef VIENNACL_DEBUG_BUILD
        std::cout << "Building " << program_name << "..." << std::endl;
        std::cout << source_code << std::endl;
    #endif
        viennacl::ocl::current_context().add_program(source_code, program_name);
      }
      viennacl::ocl::program & p = viennacl::ocl::current_context().get_program(program_name);
      generator.configure_program(p, kernels);
      delete[] program_name;

      return p;
    }

    /** @brief Set the arguments and enqueue a generator object */
    inline void enqueue(viennacl::generator::code_generator const & generator, bool force_recompilation = false){
      std::list<viennacl::ocl::kernel*> kernels;
      get_configured_program(generator, kernels, force_recompilation);
      for(std::list<viennacl::ocl::kernel*>::iterator it = kernels.begin() ; it != kernels.end() ; ++it){
        viennacl::ocl::enqueue(**it, (*it)->context().get_queue());
      }
    }

    /** @brief Convenience function to get the OpenCL program string for a single statement */
    inline std::string get_opencl_program_string(viennacl::scheduler::statement const & s){
      generator::code_generator gen;
      gen.add(s,s.array()[0]);
      return gen.make_opencl_program_string();
    }

    /** @brief Convenience function to get the CUDA device code for a single statement */
    inline std::string get_cuda_device_code(viennacl::scheduler::statement const & s){
      generator::code_generator gen;
      gen.add(s, s.array()[0]);
      return gen.make_cuda_program_string();
    }

    /** @brief Generate and enqueue a statement plus root_node into the current queue */
    inline void generate_enqueue_statement(viennacl::scheduler::statement const & s, scheduler::statement_node const & root_node){
      generator::code_generator gen;
      gen.add(s,root_node);
      viennacl::generator::enqueue(gen);
    }

    /** @brief Generate and enqueue a statement into the current queue, assumes the root_node is the first node of the statement */
    inline void generate_enqueue_statement(viennacl::scheduler::statement const & s){
      generate_enqueue_statement(s, s.array()[0]);
    }

  }
}
#endif