This file is indexed.

/usr/share/perl5/Tree/RB.pm is in libtree-rb-perl 0.500004-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
package Tree::RB;

use strict;
use Carp;

use Tree::RB::Node qw[set_color color_of parent_of left_of right_of];
use Tree::RB::Node::_Constants;
use vars qw( $VERSION @EXPORT_OK );
$VERSION = 0.500_004;

require Exporter;
*import    = \&Exporter::import;
@EXPORT_OK = qw[LUEQUAL LUGTEQ LULTEQ LUGREAT LULESS LUNEXT LUPREV];

use enum qw{
    LUEQUAL
    LUGTEQ 
    LULTEQ 
    LUGREAT
    LULESS 
    LUNEXT 
    LUPREV 
};

# object slots
use enum qw{
    ROOT
    CMP 
    SIZE
    HASH_ITER
    HASH_SEEK_ARG
};

# Node and hash Iteration

sub _mk_iter {
    my $start_fn = shift || 'min';
    my $next_fn  = shift || 'successor';
    return sub {
        my $self = shift;
        my $key  = shift;
        my $node;
        my $iter = sub {
            if($node) {
                $node = $node->$next_fn;
            }
            else {
                if(defined $key) {
                    # seek to $key
                    (undef, $node) = $self->lookup(
                        $key, 
                        $next_fn eq 'successor' ? LUGTEQ : LULTEQ
                    );
                } 
                else {
                    $node = $self->$start_fn;
                }
            }
            return $node;
        };
        return bless($iter => 'Tree::RB::Iterator');
    };
}

*Tree::RB::Iterator::next = sub { $_[0]->() };

*iter     = _mk_iter(qw/min successor/);
*rev_iter = _mk_iter(qw/max predecessor/);

sub hseek {
    my $self = shift; 
    my $arg  = shift;
    defined $arg or croak("Can't seek to an undefined key");
    my %args;
    if(ref $arg eq 'HASH') {
        %args = %$arg;
    } 
    else {
        $args{-key} = $arg;
    }
    
    if(@_ && exists $args{-key}) {
        my $arg = shift;
        if(ref $arg eq 'HASH') {
            %args = (%$arg, %args);
        } 
    } 
    if(! exists $args{-key}) {
        defined $args{'-reverse'} or croak("Expected option '-reverse' is undefined");
    }
    $self->[HASH_SEEK_ARG] = \%args;
    if($self->[HASH_ITER]) {
        $self->_reset_hash_iter;
    } 
} 

sub _reset_hash_iter {
    my $self = shift; 
    if($self->[HASH_SEEK_ARG]) {
        my $iter = ($self->[HASH_SEEK_ARG]{'-reverse'} ? 'rev_iter' : 'iter');
        $self->[HASH_ITER] = $self->$iter($self->[HASH_SEEK_ARG]{'-key'});
    } 
    else {
        $self->[HASH_ITER] = $self->iter;
    }
} 

sub FIRSTKEY {
    my $self = shift; 
    $self->_reset_hash_iter;

    my $node = $self->[HASH_ITER]->next
      or return;
    return $node->[_KEY];
}

sub NEXTKEY {
    my $self = shift; 

    my $node = $self->[HASH_ITER]->next
      or return;
    return $node->[_KEY];
}

sub new {
    my ($class, $cmp) = @_;
    my $obj = [];
    $obj->[SIZE] = 0;
    if($cmp) {
        ref $cmp eq 'CODE'
          or croak('Invalid arg: codref expected');
        $obj->[CMP] = $cmp;
    }
    return bless $obj => $class;
}

*TIEHASH = \&new;

sub DESTROY { $_[0]->[ROOT]->DESTROY if $_[0]->[ROOT] }

sub CLEAR {
    my $self = shift; 
    if($self->[ROOT]) {
        $self->[ROOT]->DESTROY;
        undef $self->[ROOT];
        undef $self->[HASH_ITER];
        $self->[SIZE] = 0;
    }
}

sub UNTIE {
    my $self = shift; 
    $self->DESTROY;
    undef @$self;
}

sub resort {
    my $self = $_[0];
    my $cmp  = $_[1];
    ref $cmp eq 'CODE'
      or croak sprintf(q[Arg of type coderef required; got %s], ref $cmp || 'undef');

    my $new_tree = __PACKAGE__->new($cmp);
    $self->[ROOT]->strip(sub { $new_tree->put($_[0]) });
    $new_tree->put(delete $self->[ROOT]);
    $_[0] = $new_tree;
}

sub root { $_[0]->[ROOT] }
sub size { $_[0]->[SIZE] }

*SCALAR = \&size;

sub min {
    my $self = shift;
    return undef unless $self->[ROOT];
    return $self->[ROOT]->min;
}

sub max {
    my $self = shift;
    return undef unless $self->[ROOT];
    return $self->[ROOT]->max;
}

sub lookup {
    my $self = shift;
    my $key  = shift;
    defined $key
      or croak("Can't use undefined value as key");
    my $mode = shift || LUEQUAL;
    my $cmp = $self->[CMP];

    my $y;
    my $x = $self->[ROOT]
      or return;
    my $next_child;
    while($x) {
        $y = $x;
        if($cmp ? $cmp->($key, $x->[_KEY]) == 0
                : $key eq $x->[_KEY]) {
            # found it!
            if($mode == LUGREAT || $mode == LUNEXT) {
                $x = $x->successor;
            }
            elsif($mode == LULESS || $mode == LUPREV) {
                $x = $x->predecessor;
            }
            return wantarray
              ? ($x->[_VAL], $x)
              : $x->[_VAL];
        }
        if($cmp ? $cmp->($key, $x->[_KEY]) < 0
                : $key lt $x->[_KEY]) {
            $next_child = _LEFT;
        }
        else {
            $next_child = _RIGHT;
        }
        $x = $x->[$next_child];
    }
    # Didn't find it :(
    if($mode == LUGTEQ || $mode == LUGREAT) {
        if($next_child == _LEFT) {
            return wantarray ? ($y->[_VAL], $y) : $y->[_VAL];
        }
        else {
            my $next = $y->successor
              or return;
            return wantarray ? ($next->[_VAL], $next) : $next->[_VAL];
        }
    }
    elsif($mode == LULTEQ || $mode == LULESS) {
        if($next_child == _RIGHT) {
            return wantarray ? ($y->[_VAL], $y) : $y->[_VAL];
        }
        else {
            my $next = $y->predecessor
              or return;
            return wantarray ? ($next->[_VAL], $next) : $next->[_VAL];
        }
    }
    return;
}

*FETCH = \&lookup;
*get   = \&lookup;

sub EXISTS {
    my $self = shift;
    my $key  = shift;
    return defined $self->lookup($key);
}

sub put {
    my $self = shift;
    my $key_or_node = shift;
    defined $key_or_node
      or croak("Can't use undefined value as key or node");
    my $val = shift;

    my $cmp = $self->[CMP];
    my $z = (ref $key_or_node eq 'Tree::RB::Node')
              ? $key_or_node
              : Tree::RB::Node->new($key_or_node => $val);

    my $y;
    my $x = $self->[ROOT];
    while($x) {
        $y = $x;
        # Handle case of inserting node with duplicate key.
        if($cmp ? $cmp->($z->[_KEY], $x->[_KEY]) == 0
                : $z->[_KEY] eq $x->[_KEY])
        {
            my $old_val = $x->[_VAL];
            $x->[_VAL] = $z->[_VAL];
            return $old_val;
        }

        if($cmp ? $cmp->($z->[_KEY], $x->[_KEY]) < 0
                : $z->[_KEY] lt $x->[_KEY])
        {
            $x = $x->[_LEFT];
        }
        else {
            $x = $x->[_RIGHT];
        }
    }
    # insert new node
    $z->[_PARENT] = $y;
    if(not defined $y) {
        $self->[ROOT] = $z;
    }
    else {
        if($cmp ? $cmp->($z->[_KEY], $y->[_KEY]) < 0
                : $z->[_KEY] lt $y->[_KEY])
        {
            $y->[_LEFT] = $z;
        }
        else {
            $y->[_RIGHT] = $z;
        }
    }
    $self->_fix_after_insertion($z);
    $self->[SIZE]++;
}

*STORE = \&put;

sub _fix_after_insertion {
    my $self = shift;
    my $x = shift or croak('Missing arg: node');

    $x->[_COLOR] = RED;
    while($x != $self->[ROOT] && $x->[_PARENT][_COLOR] == RED) {
        my ($child, $rotate1, $rotate2);
        if(($x->[_PARENT] || 0) == ($x->[_PARENT][_PARENT][_LEFT] || 0)) {
            ($child, $rotate1, $rotate2) = (_RIGHT, '_left_rotate', '_right_rotate');
        }
        else {
            ($child, $rotate1, $rotate2) = (_LEFT, '_right_rotate', '_left_rotate');
        }
        my $y = $x->[_PARENT][_PARENT][$child];

        if($y && $y->[_COLOR] == RED) {
            $x->[_PARENT][_COLOR] = BLACK;
            $y->[_COLOR] = BLACK;
            $x->[_PARENT][_PARENT][_COLOR] = RED;
            $x = $x->[_PARENT][_PARENT];
        }
        else {
            if($x == ($x->[_PARENT][$child] || 0)) {
                $x = $x->[_PARENT];
                $self->$rotate1($x);
            }
            $x->[_PARENT][_COLOR] = BLACK;
            $x->[_PARENT][_PARENT][_COLOR] = RED;
            $self->$rotate2($x->[_PARENT][_PARENT]);
        }
    }
    $self->[ROOT][_COLOR] = BLACK;
}

sub delete {
    my ($self, $key_or_node) = @_;
    defined $key_or_node
      or croak("Can't use undefined value as key or node");

    my $z = (ref $key_or_node eq 'Tree::RB::Node')
              ? $key_or_node
              : ($self->lookup($key_or_node))[1];
    return unless $z;

    my $y;
    if($z->[_LEFT] && $z->[_RIGHT]) {
        # (Notes kindly provided by Christopher Gurnee)
        # When deleting a node 'z' which has two children from a binary search tree, the
        # typical algorithm is to delete the successor node 'y' instead (which is
        # guaranteed to have at most one child), and then to overwrite the key/values of
        # node 'z' (which is still in the tree) with the key/values (which we don't want
        # to lose) from the now-deleted successor node 'y'.

        # Since we need to return the deleted item, it's not good enough to overwrite the
        # key/values of node 'z' with those of node 'y'. Instead we swap them so we can
        # return the deleted values.

        $y = $z->successor;
        ($z->[_KEY], $y->[_KEY]) = ($y->[_KEY], $z->[_KEY]);
        ($z->[_VAL], $y->[_VAL]) = ($y->[_VAL], $z->[_VAL]);
    }
    else {
        $y = $z;
    }

    # splice out $y
    my $x = $y->[_LEFT] || $y->[_RIGHT];
    if(defined $x) {
        $x->[_PARENT] = $y->[_PARENT];
        if(! defined $y->[_PARENT]) {
            $self->[ROOT] = $x;
        }
        elsif($y == $y->[_PARENT][_LEFT]) {
            $y->[_PARENT][_LEFT] = $x;
        }
        else {
            $y->[_PARENT][_RIGHT] = $x;
        }
        # Null out links so they are OK to use by _fix_after_deletion
        delete @{$y}[_PARENT, _LEFT, _RIGHT];

        # Fix replacement
        if($y->[_COLOR] == BLACK) {
            $self->_fix_after_deletion($x);
        }
    }
    elsif(! defined $y->[_PARENT]) {
        # return if we are the only node
        delete $self->[ROOT];
    }
    else {
        # No children. Use self as phantom replacement and unlink
        if($y->[_COLOR] == BLACK) {
            $self->_fix_after_deletion($y);
        }
        if(defined $y->[_PARENT]) {
            no warnings 'uninitialized';
            if($y == $y->[_PARENT][_LEFT]) {
                delete $y->[_PARENT][_LEFT];
            }
            elsif($y == $y->[_PARENT][_RIGHT]) {
                delete $y->[_PARENT][_RIGHT];
            }
            delete $y->[_PARENT];
        }
    }
    $self->[SIZE]--;
    return $y;
}

*DELETE = \&delete;

sub _fix_after_deletion {
    my $self = shift;
    my $x = shift or croak('Missing arg: node');

    while($x != $self->[ROOT] && color_of($x) == BLACK) {
        my ($child1, $child2, $rotate1, $rotate2);
        no warnings 'uninitialized';
        if($x == left_of(parent_of($x))) {
            ($child1,    $child2,   $rotate1,       $rotate2) =
            (\&right_of, \&left_of, '_left_rotate', '_right_rotate');
        }
        else {
            ($child1,   $child2,    $rotate1,        $rotate2) =
            (\&left_of, \&right_of, '_right_rotate', '_left_rotate');
        }
        use warnings;

        my $w = $child1->(parent_of($x));
        if(color_of($w) == RED) {
            set_color($w, BLACK);
            set_color(parent_of($x), RED);
            $self->$rotate1(parent_of($x));
            $w = right_of(parent_of($x));
        }
        if(color_of($child2->($w)) == BLACK &&
           color_of($child1->($w)) == BLACK) {
            set_color($w, RED);
            $x = parent_of($x);
        }
        else {
            if(color_of($child1->($w)) == BLACK) {
                set_color($child2->($w), BLACK);
                set_color($w, RED);
                $self->$rotate2($w);
                $w = $child1->(parent_of($x));
            }
            set_color($w, color_of(parent_of($x)));
            set_color(parent_of($x), BLACK);
            set_color($child1->($w), BLACK);
            $self->$rotate1(parent_of($x));
            $x = $self->[ROOT];
        }
    }
    set_color($x, BLACK);
}

sub _left_rotate {
    my $self = shift;
    my $x = shift or croak('Missing arg: node');

    my $y = $x->[_RIGHT]
      or return;
    $x->[_RIGHT] = $y->[_LEFT];
    if($y->[_LEFT]) {
        $y->[_LEFT]->[_PARENT] = $x;
    }
    $y->[_PARENT] = $x->[_PARENT];
    if(not defined $x->[_PARENT]) {
        $self->[ROOT] = $y;
    }
    else {
        $x == $x->[_PARENT]->[_LEFT]
          ? $x->[_PARENT]->[_LEFT]  = $y
          : $x->[_PARENT]->[_RIGHT] = $y;
    }
    $y->[_LEFT]   = $x;
    $x->[_PARENT] = $y;
}

sub _right_rotate {
    my $self = shift;
    my $y = shift or croak('Missing arg: node');

    my $x = $y->[_LEFT]
      or return;
    $y->[_LEFT] = $x->[_RIGHT];
    if($x->[_RIGHT]) {
        $x->[_RIGHT]->[_PARENT] = $y
    }
    $x->[_PARENT] = $y->[_PARENT];
    if(not defined $y->[_PARENT]) {
        $self->[ROOT] = $x;
    }
    else {
        $y == $y->[_PARENT]->[_RIGHT]
          ? $y->[_PARENT]->[_RIGHT] = $x
          : $y->[_PARENT]->[_LEFT]  = $x;
    }
    $x->[_RIGHT] = $y;
    $y->[_PARENT] = $x;
}

1; # Magic true value required at end of module
__END__

=head1 NAME

Tree::RB - Perl implementation of the Red/Black tree, a type of balanced binary search tree. 


=head1 VERSION

This document describes Tree::RB version 0.500004


=head1 SYNOPSIS

    use Tree::RB;

    my $tree = Tree::RB->new;
    $tree->put('France'  => 'Paris');
    $tree->put('England' => 'London');
    $tree->put('Hungary' => 'Budapest');
    $tree->put('Ireland' => 'Dublin');
    $tree->put('Egypt'   => 'Cairo');
    $tree->put('Germany' => 'Berlin');

    $tree->put('Alaska' => 'Anchorage'); # D'oh! Alaska isn't a Country
    $tree->delete('Alaska');

    print scalar $tree->get('Ireland'); # 'Dublin'

    print $tree->min->key; # 'Egypt' 
    print $tree->max->key; # 'Ireland' 
    print $tree->size; # 6

    # print items, ordered by key
    my $it = $tree->iter;

    while(my $node = $it->next) {
        printf "key = %s, value = %s\n", $node->key, $node->val;
    }

    # print items in reverse order
    $it = $tree->rev_iter;

    while(my $node = $it->next) {
        printf "key = %s, value = %s\n", $node->key, $node->val;
    }

    # Hash interface
    tie my %capital, 'Tree::RB';

    # or do this to store items in descending order 
    tie my %capital, 'Tree::RB', sub { $_[1] cmp $_[0] };

    $capital{'France'}  = 'Paris';
    $capital{'England'} = 'London';
    $capital{'Hungary'} = 'Budapest';
    $capital{'Ireland'} = 'Dublin';
    $capital{'Egypt'}   = 'Cairo';
    $capital{'Germany'} = 'Berlin';

    # print items in order
    while(my ($key, $val) = each %capital) {
        printf "key = $key, value = $val\n";
    }

=head1 DESCRIPTION

This is a Perl implementation of the Red/Black tree, a type of balanced binary search tree. 

A tied hash interface is also provided to allow ordered hashes to be used.

See the Wikipedia article at L<http://en.wikipedia.org/wiki/Red-black_tree> for more on Red/Black trees.


=head1 INTERFACE

=head2 new([CODEREF])

Creates and returns a new tree. If a reference to a subroutine is passed to
new(), the subroutine will be used to override the tree's default lexical
ordering and provide a user a defined ordering. 

This subroutine should be just like a comparator subroutine used with L<sort>, 
except that it doesn't do the $a, $b trick.

For example, to get a case insensitive ordering

    my $tree = Tree::RB->new(sub { lc $_[0] cmp lc $_[1]});
    $tree->put('Wall'  => 'Larry');
    $tree->put('Smith' => 'Agent');
    $tree->put('mouse' => 'micky');
    $tree->put('duck'  => 'donald');

    my $it = $tree->iter;

    while(my $node = $it->next) {
        printf "key = %s, value = %s\n", $node->key, $node->val;
    }

=head2 resort(CODEREF)

Changes the ordering of nodes within the tree. The new ordering is
specified by a comparator subroutine which must be passed to resort().

See L</new> for further information about the comparator.

=head2 size()

Returns the number of nodes in the tree.

=head2 root()

Returns the root node of the tree. This will either be undef
if no nodes have been added to the tree, or a L<Tree::RB::Node> object.
See the L<Tree::RB::Node> manual page for details on the Node object.

=head2 min()

Returns the node with the minimal key.

=head2 max()

Returns the node with the maximal key.

=head2 lookup(KEY, [MODE])

When called in scalar context, lookup(KEY) returns the value
associated with KEY.

When called in list context, lookup(KEY) returns a list whose first
element is the value associated with KEY, and whose second element
is the node containing the key/value.

An optional MODE parameter can be passed to lookup() to influence
which key is returned.

The values of MODE are constants that are exported on demand by
Tree::RB

    use Tree::RB qw[LUEQUAL LUGTEQ LULTEQ LUGREAT LULESS LUNEXT LUPREV];

=over

=item LUEQUAL

Returns node exactly matching the key.

=item LUGTEQ

Returns the node exactly matching the specified key, 
if this is not found then the next node that is greater than the specified key is returned.

=item LULTEQ

Returns the node exactly matching the specified key, 
if this is not found then the next node that is less than the specified key is returned.

=item LUGREAT

Returns the node that is just greater than the specified key - not equal to. 
This mode is similar to LUNEXT except that the specified key need not exist in the tree.

=item LULESS

Returns the node that is just less than the specified key - not equal to. 
This mode is similar to LUPREV except that the specified key need not exist in the tree.

=item LUNEXT

Looks for the key specified, if not found returns C<undef>. 
If the node is found returns the next node that is greater than 
the one found (or C<undef> if there is no next node). 

This can be used to step through the tree in order.

=item LUPREV

Looks for the key specified, if not found returns C<undef>. 
If the node is found returns the previous node that is less than 
the one found (or C<undef> if there is no previous node). 

This can be used to step through the tree in reverse order.

=back

=head2 get(KEY)

get() is an alias for lookup().

=head2 iter([KEY])

Returns an iterator object that can be used to traverse the tree in order.

The iterator object supports a 'next' method that returns the next node in the
tree or undef if all of the nodes have been visited.

See the synopsis for an example.

If a key is supplied, the iterator returned will traverse the tree in order starting from
the node with key greater than or equal to the specified key.

    $it = $tree->iter('France');
    my $node = $it->next;
    print $node->key; # -> 'France'

=head2 rev_iter([KEY])

Returns an iterator object that can be used to traverse the tree in reverse order.

If a key is supplied, the iterator returned will traverse the tree in order starting from
the node with key less than or equal to the specified key.

    $it = $tree->rev_iter('France');
    my $node = $it->next;
    print $node->key; # -> 'France'

    $it = $tree->rev_iter('Finland');
    my $node = $it->next;
    print $node->key; # -> 'England'

=head2 hseek(KEY, [{-reverse => 1|0}])

For tied hashes, determines the next entry to be returned by each.

    tie my %capital, 'Tree::RB';

    $capital{'France'}  = 'Paris';
    $capital{'England'} = 'London';
    $capital{'Hungary'} = 'Budapest';
    $capital{'Ireland'} = 'Dublin';
    $capital{'Egypt'}   = 'Cairo';
    $capital{'Germany'} = 'Berlin';
    tied(%capital)->hseek('Germany');

    ($key, $val) = each %capital;
    print "$key, $val"; # -> Germany, Berlin 

The direction of iteration can be reversed by passing a hashref with key '-reverse' and value 1
to hseek after or instead of KEY, e.g. to iterate over the hash in reverse order:

    tied(%capital)->hseek({-reverse => 1});
    $key = each %capital;
    print $key; # -> Ireland 

The following calls are equivalent

    tied(%capital)->hseek('Germany', {-reverse => 1});
    tied(%capital)->hseek({-key => 'Germany', -reverse => 1});

=head2 put(KEY, VALUE)

Adds a new node to the tree. 

The first argument is the key of the node, the second is its value. 

If a node with that key already exists, its value is replaced with 
the given value and the old value is returned. Otherwise, undef is returned.

=head2 delete(KEY)

If the tree has a node with the specified key, that node is
deleted from the tree and returned, otherwise C<undef> is returned.


=head1 DEPENDENCIES

L<enum>


=head1 INCOMPATIBILITIES

None reported.


=head1 BUGS AND LIMITATIONS

Please report any bugs or feature requests via the GitHub web interface at 
L<https://github.com/arunbear/perl5-scalar-constant/issues>.

=head1 AUTHOR

Arun Prasad  C<< <arunbear@cpan.org> >>

Some documentation has been borrowed from Benjamin Holzman's L<Tree::RedBlack>
and Damian Ivereigh's libredblack (L<http://libredblack.sourceforge.net/>).

=head1 ACKNOWLEDGEMENTS

Thanks for bug reports go to Anton Petrusevich, Wes Thompson, Petre Mierlutiu, Tomer Vromen and Christopher Gurnee.

=head1 LICENCE AND COPYRIGHT

Copyright (c) 2007, Arun Prasad C<< <arunbear@cpan.org> >>. All rights reserved.

This module is free software; you can redistribute it and/or
modify it under the same terms as Perl itself. See L<perlartistic>.


=head1 DISCLAIMER OF WARRANTY

BECAUSE THIS SOFTWARE IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE SOFTWARE, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE SOFTWARE "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH
YOU. SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR, OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE SOFTWARE AS PERMITTED BY THE ABOVE LICENCE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE SOFTWARE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE SOFTWARE TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.