/usr/share/perl5/Tree/RB.pm is in libtree-rb-perl 0.500004-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 | package Tree::RB;
use strict;
use Carp;
use Tree::RB::Node qw[set_color color_of parent_of left_of right_of];
use Tree::RB::Node::_Constants;
use vars qw( $VERSION @EXPORT_OK );
$VERSION = 0.500_004;
require Exporter;
*import = \&Exporter::import;
@EXPORT_OK = qw[LUEQUAL LUGTEQ LULTEQ LUGREAT LULESS LUNEXT LUPREV];
use enum qw{
LUEQUAL
LUGTEQ
LULTEQ
LUGREAT
LULESS
LUNEXT
LUPREV
};
# object slots
use enum qw{
ROOT
CMP
SIZE
HASH_ITER
HASH_SEEK_ARG
};
# Node and hash Iteration
sub _mk_iter {
my $start_fn = shift || 'min';
my $next_fn = shift || 'successor';
return sub {
my $self = shift;
my $key = shift;
my $node;
my $iter = sub {
if($node) {
$node = $node->$next_fn;
}
else {
if(defined $key) {
# seek to $key
(undef, $node) = $self->lookup(
$key,
$next_fn eq 'successor' ? LUGTEQ : LULTEQ
);
}
else {
$node = $self->$start_fn;
}
}
return $node;
};
return bless($iter => 'Tree::RB::Iterator');
};
}
*Tree::RB::Iterator::next = sub { $_[0]->() };
*iter = _mk_iter(qw/min successor/);
*rev_iter = _mk_iter(qw/max predecessor/);
sub hseek {
my $self = shift;
my $arg = shift;
defined $arg or croak("Can't seek to an undefined key");
my %args;
if(ref $arg eq 'HASH') {
%args = %$arg;
}
else {
$args{-key} = $arg;
}
if(@_ && exists $args{-key}) {
my $arg = shift;
if(ref $arg eq 'HASH') {
%args = (%$arg, %args);
}
}
if(! exists $args{-key}) {
defined $args{'-reverse'} or croak("Expected option '-reverse' is undefined");
}
$self->[HASH_SEEK_ARG] = \%args;
if($self->[HASH_ITER]) {
$self->_reset_hash_iter;
}
}
sub _reset_hash_iter {
my $self = shift;
if($self->[HASH_SEEK_ARG]) {
my $iter = ($self->[HASH_SEEK_ARG]{'-reverse'} ? 'rev_iter' : 'iter');
$self->[HASH_ITER] = $self->$iter($self->[HASH_SEEK_ARG]{'-key'});
}
else {
$self->[HASH_ITER] = $self->iter;
}
}
sub FIRSTKEY {
my $self = shift;
$self->_reset_hash_iter;
my $node = $self->[HASH_ITER]->next
or return;
return $node->[_KEY];
}
sub NEXTKEY {
my $self = shift;
my $node = $self->[HASH_ITER]->next
or return;
return $node->[_KEY];
}
sub new {
my ($class, $cmp) = @_;
my $obj = [];
$obj->[SIZE] = 0;
if($cmp) {
ref $cmp eq 'CODE'
or croak('Invalid arg: codref expected');
$obj->[CMP] = $cmp;
}
return bless $obj => $class;
}
*TIEHASH = \&new;
sub DESTROY { $_[0]->[ROOT]->DESTROY if $_[0]->[ROOT] }
sub CLEAR {
my $self = shift;
if($self->[ROOT]) {
$self->[ROOT]->DESTROY;
undef $self->[ROOT];
undef $self->[HASH_ITER];
$self->[SIZE] = 0;
}
}
sub UNTIE {
my $self = shift;
$self->DESTROY;
undef @$self;
}
sub resort {
my $self = $_[0];
my $cmp = $_[1];
ref $cmp eq 'CODE'
or croak sprintf(q[Arg of type coderef required; got %s], ref $cmp || 'undef');
my $new_tree = __PACKAGE__->new($cmp);
$self->[ROOT]->strip(sub { $new_tree->put($_[0]) });
$new_tree->put(delete $self->[ROOT]);
$_[0] = $new_tree;
}
sub root { $_[0]->[ROOT] }
sub size { $_[0]->[SIZE] }
*SCALAR = \&size;
sub min {
my $self = shift;
return undef unless $self->[ROOT];
return $self->[ROOT]->min;
}
sub max {
my $self = shift;
return undef unless $self->[ROOT];
return $self->[ROOT]->max;
}
sub lookup {
my $self = shift;
my $key = shift;
defined $key
or croak("Can't use undefined value as key");
my $mode = shift || LUEQUAL;
my $cmp = $self->[CMP];
my $y;
my $x = $self->[ROOT]
or return;
my $next_child;
while($x) {
$y = $x;
if($cmp ? $cmp->($key, $x->[_KEY]) == 0
: $key eq $x->[_KEY]) {
# found it!
if($mode == LUGREAT || $mode == LUNEXT) {
$x = $x->successor;
}
elsif($mode == LULESS || $mode == LUPREV) {
$x = $x->predecessor;
}
return wantarray
? ($x->[_VAL], $x)
: $x->[_VAL];
}
if($cmp ? $cmp->($key, $x->[_KEY]) < 0
: $key lt $x->[_KEY]) {
$next_child = _LEFT;
}
else {
$next_child = _RIGHT;
}
$x = $x->[$next_child];
}
# Didn't find it :(
if($mode == LUGTEQ || $mode == LUGREAT) {
if($next_child == _LEFT) {
return wantarray ? ($y->[_VAL], $y) : $y->[_VAL];
}
else {
my $next = $y->successor
or return;
return wantarray ? ($next->[_VAL], $next) : $next->[_VAL];
}
}
elsif($mode == LULTEQ || $mode == LULESS) {
if($next_child == _RIGHT) {
return wantarray ? ($y->[_VAL], $y) : $y->[_VAL];
}
else {
my $next = $y->predecessor
or return;
return wantarray ? ($next->[_VAL], $next) : $next->[_VAL];
}
}
return;
}
*FETCH = \&lookup;
*get = \&lookup;
sub EXISTS {
my $self = shift;
my $key = shift;
return defined $self->lookup($key);
}
sub put {
my $self = shift;
my $key_or_node = shift;
defined $key_or_node
or croak("Can't use undefined value as key or node");
my $val = shift;
my $cmp = $self->[CMP];
my $z = (ref $key_or_node eq 'Tree::RB::Node')
? $key_or_node
: Tree::RB::Node->new($key_or_node => $val);
my $y;
my $x = $self->[ROOT];
while($x) {
$y = $x;
# Handle case of inserting node with duplicate key.
if($cmp ? $cmp->($z->[_KEY], $x->[_KEY]) == 0
: $z->[_KEY] eq $x->[_KEY])
{
my $old_val = $x->[_VAL];
$x->[_VAL] = $z->[_VAL];
return $old_val;
}
if($cmp ? $cmp->($z->[_KEY], $x->[_KEY]) < 0
: $z->[_KEY] lt $x->[_KEY])
{
$x = $x->[_LEFT];
}
else {
$x = $x->[_RIGHT];
}
}
# insert new node
$z->[_PARENT] = $y;
if(not defined $y) {
$self->[ROOT] = $z;
}
else {
if($cmp ? $cmp->($z->[_KEY], $y->[_KEY]) < 0
: $z->[_KEY] lt $y->[_KEY])
{
$y->[_LEFT] = $z;
}
else {
$y->[_RIGHT] = $z;
}
}
$self->_fix_after_insertion($z);
$self->[SIZE]++;
}
*STORE = \&put;
sub _fix_after_insertion {
my $self = shift;
my $x = shift or croak('Missing arg: node');
$x->[_COLOR] = RED;
while($x != $self->[ROOT] && $x->[_PARENT][_COLOR] == RED) {
my ($child, $rotate1, $rotate2);
if(($x->[_PARENT] || 0) == ($x->[_PARENT][_PARENT][_LEFT] || 0)) {
($child, $rotate1, $rotate2) = (_RIGHT, '_left_rotate', '_right_rotate');
}
else {
($child, $rotate1, $rotate2) = (_LEFT, '_right_rotate', '_left_rotate');
}
my $y = $x->[_PARENT][_PARENT][$child];
if($y && $y->[_COLOR] == RED) {
$x->[_PARENT][_COLOR] = BLACK;
$y->[_COLOR] = BLACK;
$x->[_PARENT][_PARENT][_COLOR] = RED;
$x = $x->[_PARENT][_PARENT];
}
else {
if($x == ($x->[_PARENT][$child] || 0)) {
$x = $x->[_PARENT];
$self->$rotate1($x);
}
$x->[_PARENT][_COLOR] = BLACK;
$x->[_PARENT][_PARENT][_COLOR] = RED;
$self->$rotate2($x->[_PARENT][_PARENT]);
}
}
$self->[ROOT][_COLOR] = BLACK;
}
sub delete {
my ($self, $key_or_node) = @_;
defined $key_or_node
or croak("Can't use undefined value as key or node");
my $z = (ref $key_or_node eq 'Tree::RB::Node')
? $key_or_node
: ($self->lookup($key_or_node))[1];
return unless $z;
my $y;
if($z->[_LEFT] && $z->[_RIGHT]) {
# (Notes kindly provided by Christopher Gurnee)
# When deleting a node 'z' which has two children from a binary search tree, the
# typical algorithm is to delete the successor node 'y' instead (which is
# guaranteed to have at most one child), and then to overwrite the key/values of
# node 'z' (which is still in the tree) with the key/values (which we don't want
# to lose) from the now-deleted successor node 'y'.
# Since we need to return the deleted item, it's not good enough to overwrite the
# key/values of node 'z' with those of node 'y'. Instead we swap them so we can
# return the deleted values.
$y = $z->successor;
($z->[_KEY], $y->[_KEY]) = ($y->[_KEY], $z->[_KEY]);
($z->[_VAL], $y->[_VAL]) = ($y->[_VAL], $z->[_VAL]);
}
else {
$y = $z;
}
# splice out $y
my $x = $y->[_LEFT] || $y->[_RIGHT];
if(defined $x) {
$x->[_PARENT] = $y->[_PARENT];
if(! defined $y->[_PARENT]) {
$self->[ROOT] = $x;
}
elsif($y == $y->[_PARENT][_LEFT]) {
$y->[_PARENT][_LEFT] = $x;
}
else {
$y->[_PARENT][_RIGHT] = $x;
}
# Null out links so they are OK to use by _fix_after_deletion
delete @{$y}[_PARENT, _LEFT, _RIGHT];
# Fix replacement
if($y->[_COLOR] == BLACK) {
$self->_fix_after_deletion($x);
}
}
elsif(! defined $y->[_PARENT]) {
# return if we are the only node
delete $self->[ROOT];
}
else {
# No children. Use self as phantom replacement and unlink
if($y->[_COLOR] == BLACK) {
$self->_fix_after_deletion($y);
}
if(defined $y->[_PARENT]) {
no warnings 'uninitialized';
if($y == $y->[_PARENT][_LEFT]) {
delete $y->[_PARENT][_LEFT];
}
elsif($y == $y->[_PARENT][_RIGHT]) {
delete $y->[_PARENT][_RIGHT];
}
delete $y->[_PARENT];
}
}
$self->[SIZE]--;
return $y;
}
*DELETE = \&delete;
sub _fix_after_deletion {
my $self = shift;
my $x = shift or croak('Missing arg: node');
while($x != $self->[ROOT] && color_of($x) == BLACK) {
my ($child1, $child2, $rotate1, $rotate2);
no warnings 'uninitialized';
if($x == left_of(parent_of($x))) {
($child1, $child2, $rotate1, $rotate2) =
(\&right_of, \&left_of, '_left_rotate', '_right_rotate');
}
else {
($child1, $child2, $rotate1, $rotate2) =
(\&left_of, \&right_of, '_right_rotate', '_left_rotate');
}
use warnings;
my $w = $child1->(parent_of($x));
if(color_of($w) == RED) {
set_color($w, BLACK);
set_color(parent_of($x), RED);
$self->$rotate1(parent_of($x));
$w = right_of(parent_of($x));
}
if(color_of($child2->($w)) == BLACK &&
color_of($child1->($w)) == BLACK) {
set_color($w, RED);
$x = parent_of($x);
}
else {
if(color_of($child1->($w)) == BLACK) {
set_color($child2->($w), BLACK);
set_color($w, RED);
$self->$rotate2($w);
$w = $child1->(parent_of($x));
}
set_color($w, color_of(parent_of($x)));
set_color(parent_of($x), BLACK);
set_color($child1->($w), BLACK);
$self->$rotate1(parent_of($x));
$x = $self->[ROOT];
}
}
set_color($x, BLACK);
}
sub _left_rotate {
my $self = shift;
my $x = shift or croak('Missing arg: node');
my $y = $x->[_RIGHT]
or return;
$x->[_RIGHT] = $y->[_LEFT];
if($y->[_LEFT]) {
$y->[_LEFT]->[_PARENT] = $x;
}
$y->[_PARENT] = $x->[_PARENT];
if(not defined $x->[_PARENT]) {
$self->[ROOT] = $y;
}
else {
$x == $x->[_PARENT]->[_LEFT]
? $x->[_PARENT]->[_LEFT] = $y
: $x->[_PARENT]->[_RIGHT] = $y;
}
$y->[_LEFT] = $x;
$x->[_PARENT] = $y;
}
sub _right_rotate {
my $self = shift;
my $y = shift or croak('Missing arg: node');
my $x = $y->[_LEFT]
or return;
$y->[_LEFT] = $x->[_RIGHT];
if($x->[_RIGHT]) {
$x->[_RIGHT]->[_PARENT] = $y
}
$x->[_PARENT] = $y->[_PARENT];
if(not defined $y->[_PARENT]) {
$self->[ROOT] = $x;
}
else {
$y == $y->[_PARENT]->[_RIGHT]
? $y->[_PARENT]->[_RIGHT] = $x
: $y->[_PARENT]->[_LEFT] = $x;
}
$x->[_RIGHT] = $y;
$y->[_PARENT] = $x;
}
1; # Magic true value required at end of module
__END__
=head1 NAME
Tree::RB - Perl implementation of the Red/Black tree, a type of balanced binary search tree.
=head1 VERSION
This document describes Tree::RB version 0.500004
=head1 SYNOPSIS
use Tree::RB;
my $tree = Tree::RB->new;
$tree->put('France' => 'Paris');
$tree->put('England' => 'London');
$tree->put('Hungary' => 'Budapest');
$tree->put('Ireland' => 'Dublin');
$tree->put('Egypt' => 'Cairo');
$tree->put('Germany' => 'Berlin');
$tree->put('Alaska' => 'Anchorage'); # D'oh! Alaska isn't a Country
$tree->delete('Alaska');
print scalar $tree->get('Ireland'); # 'Dublin'
print $tree->min->key; # 'Egypt'
print $tree->max->key; # 'Ireland'
print $tree->size; # 6
# print items, ordered by key
my $it = $tree->iter;
while(my $node = $it->next) {
printf "key = %s, value = %s\n", $node->key, $node->val;
}
# print items in reverse order
$it = $tree->rev_iter;
while(my $node = $it->next) {
printf "key = %s, value = %s\n", $node->key, $node->val;
}
# Hash interface
tie my %capital, 'Tree::RB';
# or do this to store items in descending order
tie my %capital, 'Tree::RB', sub { $_[1] cmp $_[0] };
$capital{'France'} = 'Paris';
$capital{'England'} = 'London';
$capital{'Hungary'} = 'Budapest';
$capital{'Ireland'} = 'Dublin';
$capital{'Egypt'} = 'Cairo';
$capital{'Germany'} = 'Berlin';
# print items in order
while(my ($key, $val) = each %capital) {
printf "key = $key, value = $val\n";
}
=head1 DESCRIPTION
This is a Perl implementation of the Red/Black tree, a type of balanced binary search tree.
A tied hash interface is also provided to allow ordered hashes to be used.
See the Wikipedia article at L<http://en.wikipedia.org/wiki/Red-black_tree> for more on Red/Black trees.
=head1 INTERFACE
=head2 new([CODEREF])
Creates and returns a new tree. If a reference to a subroutine is passed to
new(), the subroutine will be used to override the tree's default lexical
ordering and provide a user a defined ordering.
This subroutine should be just like a comparator subroutine used with L<sort>,
except that it doesn't do the $a, $b trick.
For example, to get a case insensitive ordering
my $tree = Tree::RB->new(sub { lc $_[0] cmp lc $_[1]});
$tree->put('Wall' => 'Larry');
$tree->put('Smith' => 'Agent');
$tree->put('mouse' => 'micky');
$tree->put('duck' => 'donald');
my $it = $tree->iter;
while(my $node = $it->next) {
printf "key = %s, value = %s\n", $node->key, $node->val;
}
=head2 resort(CODEREF)
Changes the ordering of nodes within the tree. The new ordering is
specified by a comparator subroutine which must be passed to resort().
See L</new> for further information about the comparator.
=head2 size()
Returns the number of nodes in the tree.
=head2 root()
Returns the root node of the tree. This will either be undef
if no nodes have been added to the tree, or a L<Tree::RB::Node> object.
See the L<Tree::RB::Node> manual page for details on the Node object.
=head2 min()
Returns the node with the minimal key.
=head2 max()
Returns the node with the maximal key.
=head2 lookup(KEY, [MODE])
When called in scalar context, lookup(KEY) returns the value
associated with KEY.
When called in list context, lookup(KEY) returns a list whose first
element is the value associated with KEY, and whose second element
is the node containing the key/value.
An optional MODE parameter can be passed to lookup() to influence
which key is returned.
The values of MODE are constants that are exported on demand by
Tree::RB
use Tree::RB qw[LUEQUAL LUGTEQ LULTEQ LUGREAT LULESS LUNEXT LUPREV];
=over
=item LUEQUAL
Returns node exactly matching the key.
=item LUGTEQ
Returns the node exactly matching the specified key,
if this is not found then the next node that is greater than the specified key is returned.
=item LULTEQ
Returns the node exactly matching the specified key,
if this is not found then the next node that is less than the specified key is returned.
=item LUGREAT
Returns the node that is just greater than the specified key - not equal to.
This mode is similar to LUNEXT except that the specified key need not exist in the tree.
=item LULESS
Returns the node that is just less than the specified key - not equal to.
This mode is similar to LUPREV except that the specified key need not exist in the tree.
=item LUNEXT
Looks for the key specified, if not found returns C<undef>.
If the node is found returns the next node that is greater than
the one found (or C<undef> if there is no next node).
This can be used to step through the tree in order.
=item LUPREV
Looks for the key specified, if not found returns C<undef>.
If the node is found returns the previous node that is less than
the one found (or C<undef> if there is no previous node).
This can be used to step through the tree in reverse order.
=back
=head2 get(KEY)
get() is an alias for lookup().
=head2 iter([KEY])
Returns an iterator object that can be used to traverse the tree in order.
The iterator object supports a 'next' method that returns the next node in the
tree or undef if all of the nodes have been visited.
See the synopsis for an example.
If a key is supplied, the iterator returned will traverse the tree in order starting from
the node with key greater than or equal to the specified key.
$it = $tree->iter('France');
my $node = $it->next;
print $node->key; # -> 'France'
=head2 rev_iter([KEY])
Returns an iterator object that can be used to traverse the tree in reverse order.
If a key is supplied, the iterator returned will traverse the tree in order starting from
the node with key less than or equal to the specified key.
$it = $tree->rev_iter('France');
my $node = $it->next;
print $node->key; # -> 'France'
$it = $tree->rev_iter('Finland');
my $node = $it->next;
print $node->key; # -> 'England'
=head2 hseek(KEY, [{-reverse => 1|0}])
For tied hashes, determines the next entry to be returned by each.
tie my %capital, 'Tree::RB';
$capital{'France'} = 'Paris';
$capital{'England'} = 'London';
$capital{'Hungary'} = 'Budapest';
$capital{'Ireland'} = 'Dublin';
$capital{'Egypt'} = 'Cairo';
$capital{'Germany'} = 'Berlin';
tied(%capital)->hseek('Germany');
($key, $val) = each %capital;
print "$key, $val"; # -> Germany, Berlin
The direction of iteration can be reversed by passing a hashref with key '-reverse' and value 1
to hseek after or instead of KEY, e.g. to iterate over the hash in reverse order:
tied(%capital)->hseek({-reverse => 1});
$key = each %capital;
print $key; # -> Ireland
The following calls are equivalent
tied(%capital)->hseek('Germany', {-reverse => 1});
tied(%capital)->hseek({-key => 'Germany', -reverse => 1});
=head2 put(KEY, VALUE)
Adds a new node to the tree.
The first argument is the key of the node, the second is its value.
If a node with that key already exists, its value is replaced with
the given value and the old value is returned. Otherwise, undef is returned.
=head2 delete(KEY)
If the tree has a node with the specified key, that node is
deleted from the tree and returned, otherwise C<undef> is returned.
=head1 DEPENDENCIES
L<enum>
=head1 INCOMPATIBILITIES
None reported.
=head1 BUGS AND LIMITATIONS
Please report any bugs or feature requests via the GitHub web interface at
L<https://github.com/arunbear/perl5-scalar-constant/issues>.
=head1 AUTHOR
Arun Prasad C<< <arunbear@cpan.org> >>
Some documentation has been borrowed from Benjamin Holzman's L<Tree::RedBlack>
and Damian Ivereigh's libredblack (L<http://libredblack.sourceforge.net/>).
=head1 ACKNOWLEDGEMENTS
Thanks for bug reports go to Anton Petrusevich, Wes Thompson, Petre Mierlutiu, Tomer Vromen and Christopher Gurnee.
=head1 LICENCE AND COPYRIGHT
Copyright (c) 2007, Arun Prasad C<< <arunbear@cpan.org> >>. All rights reserved.
This module is free software; you can redistribute it and/or
modify it under the same terms as Perl itself. See L<perlartistic>.
=head1 DISCLAIMER OF WARRANTY
BECAUSE THIS SOFTWARE IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE SOFTWARE, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE SOFTWARE "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH
YOU. SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR, OR CORRECTION.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE SOFTWARE AS PERMITTED BY THE ABOVE LICENCE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE SOFTWARE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE SOFTWARE TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
|