/usr/share/perl5/Tree/Fast.pm is in libtree-perl 1.01-0ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 | package Tree::Fast;
use 5.006;
use strict;
use warnings FATAL => 'all';
our $VERSION = '1.01';
use Scalar::Util qw( blessed weaken );
sub new {
my $class = shift;
return $class->clone( @_ )
if blessed $class;
my $self = bless {}, $class;
$self->_init( @_ );
return $self;
}
sub _init {
my $self = shift;
my ($value) = @_;
$self->{_parent} = $self->_null,
$self->{_children} = [];
$self->{_value} = $value,
$self->{_meta} = {};
return $self;
}
sub _clone_self {
my $self = shift;
my $value = @_ ? shift : $self->value;
my $clone = blessed($self)->new( $value );
return blessed($self)->new( $value );
}
sub _clone_children {
my ($self, $clone) = @_;
if ( my @children = @{$self->{_children}} ) {
$clone->add_child({}, map { $_->clone } @children );
}
}
sub clone {
my $self = shift;
return $self->new(@_) unless blessed $self;
my $clone = $self->_clone_self(@_);
$self->_clone_children($clone);
return $clone;
}
sub add_child {
my $self = shift;
my ( $options, @nodes ) = @_;
for my $node ( @nodes ) {
$node->_set_parent( $self );
}
if ( defined $options->{at} ) {
if ( $options->{at} ) {
splice @{$self->{_children}}, $options->{at}, 0, @nodes;
}
else {
unshift @{$self->{_children}}, @nodes;
}
}
else {
push @{$self->{_children}}, @nodes;
}
return $self;
}
sub remove_child {
my $self = shift;
my ($options, @indices) = @_;
my @return;
for my $idx (sort { $b <=> $a } @indices) {
my $node = splice @{$self->{_children}}, $idx, 1;
$node->_set_parent( $node->_null );
push @return, $node;
}
return @return;
}
sub parent {
my $self = shift;
return $self->{_parent};
}
sub _set_parent {
my $self = shift;
$self->{_parent} = shift;
weaken( $self->{_parent} );
return $self;
}
sub children {
my $self = shift;
if ( @_ ) {
my @idx = @_;
return @{$self->{_children}}[@idx];
}
else {
if ( caller->isa( __PACKAGE__ ) || $self->isa( scalar(caller) ) ) {
return wantarray ? @{$self->{_children}} : $self->{_children};
}
else {
return @{$self->{_children}};
}
}
}
sub value {
my $self = shift;
return $self->{_value};
}
sub set_value {
my $self = shift;
$self->{_value} = $_[0];
return $self;
}
sub meta {
my $self = shift;
return $self->{_meta};
}
sub mirror {
my $self = shift;
@{$self->{_children}} = reverse @{$self->{_children}};
$_->mirror for @{$self->{_children}};
return $self;
}
use constant PRE_ORDER => 1;
use constant POST_ORDER => 2;
use constant LEVEL_ORDER => 3;
sub traverse {
my $self = shift;
my $order = shift;
$order = $self->PRE_ORDER unless $order;
if ( wantarray ) {
my @list;
if ( $order eq $self->PRE_ORDER ) {
@list = ($self);
push @list, map { $_->traverse( $order ) } @{$self->{_children}};
}
elsif ( $order eq $self->POST_ORDER ) {
@list = map { $_->traverse( $order ) } @{$self->{_children}};
push @list, $self;
}
elsif ( $order eq $self->LEVEL_ORDER ) {
my @queue = ($self);
while ( my $node = shift @queue ) {
push @list, $node;
push @queue, @{$node->{_children}};
}
}
else {
return $self->error( "traverse(): '$order' is an illegal traversal order" );
}
return @list;
}
else {
my $closure;
if ( $order eq $self->PRE_ORDER ) {
my $next_node = $self;
my @stack = ( $self );
my @next_idx = ( 0 );
$closure = sub {
my $node = $next_node;
return unless $node;
$next_node = undef;
while ( @stack && !$next_node ) {
while ( @stack && !exists $stack[0]->{_children}[ $next_idx[0] ] ) {
shift @stack;
shift @next_idx;
}
if ( @stack ) {
$next_node = $stack[0]->{_children}[ $next_idx[0]++ ];
unshift @stack, $next_node;
unshift @next_idx, 0;
}
}
return $node;
};
}
elsif ( $order eq $self->POST_ORDER ) {
my @stack = ( $self );
my @next_idx = ( 0 );
while ( @{ $stack[0]->{_children} } ) {
unshift @stack, $stack[0]->{_children}[0];
unshift @next_idx, 0;
}
$closure = sub {
my $node = $stack[0];
return unless $node;
shift @stack; shift @next_idx;
$next_idx[0]++;
while ( @stack && exists $stack[0]->{_children}[ $next_idx[0] ] ) {
unshift @stack, $stack[0]->{_children}[ $next_idx[0] ];
unshift @next_idx, 0;
}
return $node;
};
}
elsif ( $order eq $self->LEVEL_ORDER ) {
my @nodes = ($self);
$closure = sub {
my $node = shift @nodes;
return unless $node;
push @nodes, @{$node->{_children}};
return $node;
};
}
else {
return $self->error( "traverse(): '$order' is an illegal traversal order" );
}
return $closure;
}
}
sub _null {
return Tree::Null->new;
}
package Tree::Null;
#XXX Add this in once it's been thought out
#our @ISA = qw( Tree );
# You want to be able to interrogate the null object as to
# its class, so we don't override isa() as we do can()
use overload
'""' => sub { return "" },
'0+' => sub { return 0 },
'bool' => sub { return },
fallback => 1,
;
{
my $singleton = bless \my($x), __PACKAGE__;
sub new { return $singleton }
sub AUTOLOAD { return $singleton }
sub can { return sub { return $singleton } }
}
# The null object can do anything
sub isa {
my ($proto, $class) = @_;
if ( $class =~ /^Tree(?:::.*)?$/ ) {
return 1;
}
return $proto->SUPER::isa( $class );
}
1;
__END__
=head1 NAME
Tree::Fast - the fastest possible implementation of a tree in pure Perl
=head1 SYNOPSIS
my $tree = Tree->new( 'root' );
my $child = Tree->new( 'child' );
$tree->add_child( {}, $child );
$tree->add_child( { at => 0 }, Tree->new( 'first child' ) );
$tree->add_child( { at => -1 }, Tree->new( 'last child' ) );
my @children = $tree->children;
my @some_children = $tree->children( 0, 2 );
$tree->remove_child( 0 );
my @nodes = $tree->traverse( $tree->POST_ORDER );
my $traversal = $tree->traverse( $tree->POST_ORDER );
while ( my $node = $traversal->() ) {
# Do something with $node here
}
my $clone = $tree->clone;
my $mirror = $tree->clone->mirror;
=head1 DESCRIPTION
This is meant to be the core implementation for L<Tree>, stripped down as much
as possible. There is no error-checking, bounds-checking, event-handling,
convenience methods, or anything else of the sort. If you want something fuller-
featured, please look at L<Tree>, which is a wrapper around Tree::Fast.
=head1 METHODS
=head2 Constructor
=over 4
=item B<new([$value])>
This will return a Tree object. It will accept one parameter which, if passed,
will become the value (accessible by L<value()>). All other parameters will be
ignored.
If you call C<$tree-E<gt>new([$value])>, it will instead call C<clone()>, then set
the value of the clone to $value.
=item B<clone()>
This will return a clone of C<$tree>. The clone will be a root tree, but all
children will be cloned.
If you call C<Tree-E<gt>clone([$value])>, it will instead call C<new()>.
B<NOTE:> the value is merely a shallow copy. This means that all references
will be kept.
=back
=head2 Behaviors
=over 4
=item B<add_child($options, @nodes)>
This will add all the @nodes as children of C<$tree>. $options is a required
hashref that specifies options for add_child(). The optional parameters are:
=over 4
=item * at
This specifies the index to add @nodes at. If specified, this will be passed
into splice(). The only exceptions are if this is 0, it will act as an
unshift(). If it is unset or undefined, it will act as a push().
=back
=item B<remove_child($options, @nodes)>
This will remove all the @nodes from the children of C<$tree>. You can either
pass in the actual child object you wish to remove, the index of the child you
wish to remove, or a combination of both.
$options is a required hashref that specifies parameters for remove_child().
Currently, no parameters are used.
=item B<mirror()>
This will modify the tree such that it is a mirror of what it was before. This
means that the order of all children is reversed.
B<NOTE>: This is a destructive action. It I<will> modify the tree's internal
structure. If you wish to get a mirror, yet keep the original tree intact, use
C<my $mirror = $tree-E<gt>clone-E<gt>mirror;>
=item B<traverse( [$order] )>
When called in list context (C<my @traversal = $tree-E<gt>traverse()>), this will
return a list of the nodes in the given traversal order. When called in scalar
context (C<my $traversal = $tree-E<gt>traverse()>), this will return a closure
that will, over successive calls, iterate over the nodes in the given
traversal order. When finished it will return false.
The default traversal order is pre-order.
The various traversal orders do the following steps:
=over 4
=item * Pre-order (aka Prefix traversal)
This will return the node, then the first sub tree in pre-order traversal,
then the next sub tree, etc.
Use C<$tree-E<gt>PRE_ORDER> as the C<$order>.
=item * Post-order (aka Prefix traversal)
This will return the each sub-tree in post-order traversal, then the node.
Use C<$tree-E<gt>POST_ORDER> as the C<$order>.
=item * Level-order (aka Prefix traversal)
This will return the node, then the all children of the node, then all
grandchildren of the node, etc.
Use C<$tree-E<gt>LEVEL_ORDER> as the C<$order>.
=back
=back
=head2 Accessors
=over 4
=item * B<parent()>
This will return the parent of C<$tree>.
=item * B<children( [ $idx, [$idx, ..] ] )>
This will return the children of C<$tree>. If called in list context, it will
return all the children. If called in scalar context, it will return the
number of children.
You may optionally pass in a list of indices to retrieve. This will return the
children in the order you asked for them. This is very much like an
arrayslice.
=item * B<value()>
This will return the value stored in the node.
=item * B<set_value([$value])>
This will set the value stored in the node to $value, then return $self.
=item * B<meta()>
This will return a hashref that can be used to store whatever metadata the client
wishes to store. For example, L<Tree::Persist::DB> uses this to store database
row ids.
It is recommended that you store your metadata in a subhashref and not in the
top-level metadata hashref, keyed by your package name. L<Tree::Persist> does
this, using a unique key for each persistence layer associated with that tree.
This will help prevent clobbering of metadata.
=back
=head1 NULL TREE
If you call C<$self-E<gt>parent> on a root node, it will return a Tree::Null
object. This is an implementation of the Null Object pattern optimized for
usage with L<Forest>. It will evaluate as false in every case (using
L<overload>) and all methods called on it will return a Tree::Null object.
=head2 Notes
=over 4
=item *
Tree::Null does B<not> inherit from anything. This is so that all the
methods will go through AUTOLOAD vs. the actual method.
=item *
However, calling isa() on a Tree::Null object will report that it is-a
any object that is either Tree or in the Tree:: hierarchy.
=item *
The Tree::Null object is a singleton.
=item *
The Tree::Null object I<is> defined, though. I couldn't find a way to
make it evaluate as undefined. That may be a good thing.
=back
=head1 CODE COVERAGE
Please see the relevant sections of L<Tree>.
=head1 SUPPORT
Please see the relevant sections of L<Tree>.
=head1 ACKNOWLEDGEMENTS
=over 4
=item * Stevan Little for writing L<Tree::Simple>, upon which Tree is based.
=back
=head1 AUTHORS
Rob Kinyon E<lt>rob.kinyon@iinteractive.comE<gt>
Stevan Little E<lt>stevan.little@iinteractive.comE<gt>
Thanks to Infinity Interactive for generously donating our time.
=head1 COPYRIGHT AND LICENSE
Copyright 2004, 2005 by Infinity Interactive, Inc.
L<http://www.iinteractive.com>
This library is free software; you can redistribute it and/or modify it under
the same terms as Perl itself.
=cut
|