/usr/share/perl5/Statistics/Test/Sequence.pm is in libstatistics-test-sequence-perl 0.01-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 | package Statistics::Test::Sequence;
use 5.006;
use strict;
use warnings;
our $VERSION = '0.01';
use Carp qw/croak/;
use Params::Util qw/_POSINT _ARRAY _CODE/;
use Math::BigFloat;
use Memoize;
=head1 NAME
Statistics::Test::Sequence - Sequence correlation test for random numbers
=head1 SYNOPSIS
use Statistics::Test::Sequence;
my $tester = Statistics::Test::Sequence->new();
$tester->set_data( [map {rand()} 1..1000000] );
my ($metric, $actual_freq, $expected_freq) = $tester->test();
use Data::Dumper;
print "$metric\n";
print "Frequencies:\n";
print Dumper $actual_freq;
print "Expected frequencies:\n";
print Dumper $expected_freq;
=head1 DESCRIPTION
This module implements a sequence correlation test for random number
generators. It shows pairwise correlation between subsequent
random numbers.
The algorithm is as follows: (Following Blobel. Citation in SEE ALSO section.)
=over 2
=item *
Given C<N+1> random numbers C<u_j>.
=item *
For all C<j>, compare C<u_j> with C<u_j+1>. If C<u_j> is greater
then C<u_j+1>, assign a 0-Bit to the number. Otherwise, assign a
1-Bit.
=item *
Find all sequences of equal Bits. For every sequence, increment
a counter for the length C<k> of that sequence. (Regardless of whether it's
a sequence of 1's or 0's.)
=item *
For uncorrelated random numbers, the number of sequences C<N(k)>
of length C<k> in the set of C<N+1> random numbers is expected to be:
N(k) = 2*((k^2+3*k+1)*N - (k^3+3*k^2-k-4)) / (k+3)!
=back
=head1 METHODS
=cut
=head2 new
Creates a new random number tester.
=cut
sub new {
my $proto = shift;
my $class = ref($proto)||$proto;
my $self = {
data => undef,
};
bless $self => $class;
return $self;
}
=head2 set_data
Sets the random numbers to operate on. First argument
must be either an array reference to an array of random
numbers or a code reference.
If the first argument is a code reference, the second
argument must be an integer C<n>. The code reference is
called C<n>-times and its return values are used as
random numbers.
The code reference semantics are particularily useful if
you do not want to store all random numbers in memory at
the same time. You can write a subroutine that, for example,
generates and returns batches of 100 random numbers so no
more than 101 of these numbers will be in memory at the
same time. Note that if you return 100 numbers at once and
pass in C<n=50>, you will have a sequence of 5000 random
numbers.
=cut
sub set_data {
my $self = shift;
my $data = shift;
if (_ARRAY($data)) {
$self->{data} = $data;
return 1;
}
elsif (_CODE($data)) {
$self->{data} = $data;
my $n = shift;
if (not _POSINT($n)) {
croak("'set_data' needs an integer as second argument if the first argument is a code reference.");
}
$self->{n} = $n;
return 1;
}
else {
croak("Invalid arguments to 'set_data'.");
}
}
=head2 test
Runs the sequence test on the data that was previously set using
C<set_data>.
Returns three items: The first is the root mean square of the bin
residuals divided by the number of random numbers. It I<could> be
used as a measure for the quality of the random number generator
and should be as close to zero as possible. A better metric is to
compare the following two return values.
The second return value is a reference to the array of frequencies.
An example is in order here. Generating one million random numbers,
I get:
[0, 416765, 181078, 56318, 11486, 1056, 150]
This means there were no sequences of length 0 (obvious), 416765
sequences of length 1, etc. There were no sequences of length 7 or
greater. This example is a bad random number generator! (It's a
linear congruent generator with C<(a*x_i+c)%m> and C<a=421>,
C<c=64773>, C<m=259200>, and C<x_0=4711>).
The third return value is similar in nature to the second in that it
is a reference to an array containing sequence length frequencies.
This one, however, contains the frequencies that would be expected for
the given number of random numbers, were they uncorrelated.
The number of bins has the maximum
length of an occurring sequence as an upper limit. In the given example,
you would get: (Dumped with Data::Dumper)
$VAR1 = [
'0',
'416666.75',
'183333.1',
'52777.64722222222222222222222222222222222',
'11507.89523809523809523809523809523809524',
'2033.72068452380952380952380952380952381',
'303.1287808641975308641975308641975308642',
# ...
];
Note that where I put in a C<# ...>, you would really see a couple
more lines of numbers until the numbers go below an expected
frequency of C<0.1>.
For C<n=1000000> and C<k=7>, you get about
39 sequences, C<k=8> is expected to be found 4-5 times, etc.
=cut
sub test {
my $self = shift;
my $data = $self->{data};
if (not defined $data) {
croak("Set data using 'set_data' first.");
}
# bin counters
my @bins;
# current sequence type (> or <)
my $current = undef;
# current sequence length
my $length = 0;
# total number of random numbers
my $numbers;
if (_ARRAY($data)) {
$current = ($data->[0] <=> $data->[1]) || 1;
$length++;
$numbers = @$data;
foreach my $i (1 .. $#$data-1) {
my $cmp = ($data->[$i] <=> $data->[$i+1]) || 1;
if ($current == $cmp) {
$length++;
}
else {
$current = $cmp;
$bins[$length]++;
$length = 1;
}
}
$bins[$length]++;
}
else { # CODE
my @cache;
my $calls = $self->{n};
my $first_run = 1;
foreach (1..$calls) {
# get new data
push @cache, $data->();
# first run => initialize with first comparison
if ($first_run and @cache > 1) {
$current = ($cache[0] <=> $cache[1]) || 1;
shift @cache;
$length++; # == 1
$numbers++; # == 1
$first_run = 0;
}
while (@cache > 1) {
$numbers++;
my $this = shift @cache;
my $cmp = ($this <=> $cache[0]) || 1;
if ($current == $cmp) {
$length++;
}
else {
$current = $cmp;
$bins[$length]++;
$length = 1;
}
}
}
$bins[$length]++;
}
my @expected = (0); # 0-bin is empty
foreach my $bin (1..$#bins) {
$expected[$bin] = expected_frequency($bin, $numbers-1);
}
my $last_bin = $#bins;
while ($expected[$last_bin] > 0.1) {
$last_bin++;
$expected[$last_bin] = expected_frequency($last_bin, $numbers-1);
}
foreach my $bin (0..$last_bin) {
$bins[$bin] = 0 if not defined $bins[$bin];
}
my @diff = map { abs($bins[$_] - $expected[$_]) } 0..$#bins;
my $residual = 0;
$residual += $_**2 for @diff;
$residual = sqrt($residual);
$residual = "$residual"; # de-bigfloatize
@expected = map {"$_"} @expected; # de-bigfloatize
return(
$residual / ($numbers-1),
\@bins,
\@expected,
);
}
=head1 SUBROUTINES
=head2 expected_frequency
Returns the expected frequency of the sequence length C<k>
in a set of C<n> random numbers assuming uncorrelated random
numbers.
Returns this as a L<Math::BigFloat>.
Expects C<k> and C<n> as arguments.
This subroutine is memoized. (See L<Memoize>.)
=cut
memoize('expected_frequency');
sub expected_frequency {
my $k = Math::BigFloat->new(shift);
my $n = Math::BigFloat->new(shift);
return(
2 * ( ($k**2 + 3*$k + 1)*$n - ($k**3 + 3*$k**2 - $k - 4) )
/ faculty($k+3)
);
}
=head2 faculty
Computes the factulty of the first argument recursively as a
L<Math::BigFloat>. This subroutine is memoized. (See L<Memoize>.)
=cut
memoize('faculty');
sub faculty {
my $n = shift;
return Math::BigFloat->bone() if $n <= 1;
return $n * faculty($n-1);
}
1;
__END__
=head1 SEE ALSO
L<Math::BigFloat>, L<Memoize>, L<Params::Util>
Random number generators:
L<Math::Random::MT>, L<Math::Random>, L<Math::Random::OO>,
L<Math::TrulyRandom>, C</dev/random> where available
The algorithm was taken from: (German)
Blobel, V., and Lohrmann, E. I<Statistische und numerische Methoden
der Datenanalyse>. Stuttgart, Leipzig: Teubner, 1998
=head1 AUTHOR
Steffen Mueller, E<lt>smueller@cpan.orgE<gt>
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2007 by Steffen Mueller
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself, either Perl version 5.6 or,
at your option, any later version of Perl 5 you may have available.
=cut
|