/usr/share/perl5/Math/Quaternion.pm is in libmath-quaternion-perl 0.07-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 | package Math::Quaternion;
use 5.004;
use strict;
use warnings;
use Carp;
use Math::Trig; # What?!? Where's acos()? You can't have cos and not acos!
require Exporter;
use overload
'+' => \&plus,
'-' => \&minus,
'bool' => sub { 1; }, # So we can do if ($foo=Math::Quaternion->new) { .. }
'""' => \&stringify,
'*' => \&multiply,
'~' => \&conjugate,
'abs' => \&modulus,
'neg' => \&negate,
'**' => \&power,
'exp' => \&exp,
'log' => \&log,
;
our @ISA = qw(Exporter);
# Items to export into callers namespace by default. Note: do not export
# names by default without a very good reason. Use EXPORT_OK instead.
# Do not simply export all your public functions/methods/constants.
# This allows declaration use Math::Quaternion ':all';
# If you do not need this, moving things directly into @EXPORT or @EXPORT_OK
# will save memory.
our %EXPORT_TAGS = ( 'all' => [ qw(
unit
conjugate
inverse
normalize
modulus
isreal
multiply
dot
plus
minus
power
negate
squarednorm
scale
rotation
rotation_angle
rotation_axis
rotate_vector
matrix4x4
matrix3x3
matrix4x4andinverse
stringify
slerp
exp
log
) ],
);
our @EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } );
our @EXPORT = qw(
);
our $VERSION = '0.07';
# Preloaded methods go here.
# Below is stub documentation for your module. You'd better edit it!
=head1 NAME
Math::Quaternion - Perl class to represent quaternions
=head1 SYNOPSIS
use Math::Quaternion qw(slerp);
my $q = Math::Quaternion->new; # Make a new unit quaternion
# Make a rotation about the axis (0,1,0)
my $q2 = Math::Quaternion->new({axis=>[0,1,0],angle=>0.1});
my @v = (1,2,3); # A vector.
my @vrotated = $q2->rotate_vector(@v); # Rotate @v about (0,1,0).
my $q3 = Math::Quaternion::rotation(0.7,2,1,4); # A different rotation.
my $q4 = slerp($q2,$q3,0.5); # Interpolated rotation.
my @vinterp = $q4->rotate_vector(@v);
=head1 DESCRIPTION
This package lets you create and manipulate quaternions. A
quaternion is a mathematical object developed as a kind of
generalization of complex numbers, usually represented by an array
of four real numbers, and is often used to represent rotations in
three-dimensional space.
See, for example, L<http://mathworld.wolfram.com/Quaternion.html> for
more details on the mathematics of quaternions.
Quaternions can be added, subtracted, and scaled just like complex
numbers or vectors -- they can also be multiplied, but quaternion
multiplication DOES NOT COMMUTE. That is to say, if you have
quaternions $q1 and $q2, then in general $q1*$q2 != $q2*$q1. This is
related to their use in representing rotations, which also do not
commute.
If you just want to represent rotations and don't care about the
internal mathematical details, this should be all you need to know:
All quaternions have a quantity called the "norm", similar to the
length of a vector. A quaternion with norm equal to 1 is called a
"unit quaternion". All quaternions which represent rotations are
unit quaternions.
If you call new() without any arguments, it will give you a unit
quaternion which represents no rotation:
$q = Math::Quaternion->new;
You can make a quaternion which represents a rotation of a given
angle (in radians) about a given axis:
$qrot = Math::Quaternion->new({ angle => 0.1, axis => [ 2,3,4]});
Say you have two rotations, $q1 and $q2, and you want to make a
quaternion representing a rotation of $q1 followed by $q2. Then, you
do:
$q3 = $q2 * $q1; # Rotate by $q1, followed by $q2.
Remember that this is NOT the same as $q1 * $q2, which will reverse
the order of the rotations.
If you perform many iterated quaternion operations, the result may
not quite be a unit quaternion due to numerical inaccuracies. You
can make sure any quaternion has unit length, by doing:
$unitquat = $anyquat->normalize;
If you have a rotation quaternion, and you want to find the 3x3
matrix which represents the corresponding rotation, then:
@matrix = $q->matrix3x3;
Similarly, you can generate a 4x4 matrix of the sort you'd pass to
OpenGL:
@glmatrix = $q->matrix4x4;
If you have a vector representing a direction, and you want to
rotate the vector by a quaternion $q:
my @vector = (0,0,1); # Vector pointing in the Z direction.
my @newvec = $q->rotate_vector(@vector); # New direction.
Say you're using quaternions to represent the orientation of a
camera, and you have two quaternions: one to represent a
starting orientation, and another to represent a finishing
position. If you want to find all the quaternions representing
the orientations in between, allowing your camera to move
smoothly from start to finish, use the slerp() routine:
use Math::Quaternion qw(slerp);
my ($qstart, $qend) = ... ;
# Set $tween to 9 points between start and end, exclusive.
for my $t (1..9) {
my $tween = slerp($qstart,$qend,0.1*$t);
...
}
=head1 METHODS
=over 1
=item B<new>
my $q = Math::Quaternion->new; # Make a new unit quaternion.
my $q2 = Math::Quaternion->new(1,2,3,4);# Make a specific quaternion.
my $q3 = Math::Quaternion->new($q2); # Copy an existing quaternion.
my $q4 = Math::Quaternion->new(5.6); # Make the quaternion (5.6,0,0,0)
my $q5 = Math::Quaternion->new(7,8,9); # Make the quaternion (0,7,8,9)
my $q6 = Math::Quaternion->new({ # Make a quaternion corresponding
axis => [ 1,2,3], # to a rotation of 0.2 radians
angle => 0.2, # about the vector (1,2,3).
});
my $q7 = Math::Quaternion->new({ # Make a quaternion which would
'v1' => [ 0,1,2], # rotate the vector (0,1,2) onto
'v2' => [ -1,2,0], # the vector (-1,2,0).
});
If no parameters are given, a unit quaternion is returned. If one
non-reference parameter is given, a "scalar" quaternion is returned.
If one parameter is given and it is a reference to a quaternion or
an array of four numbers, the corresponding quaternion object is
returned. If three parameters are given, a "vector" quaternion is
returned. If four parameters are given, the corresponding
quaternion is returned.
Rotation quaternions may also be created by passing a hashref with
the axis and angle of rotation, or by specifying two vectors
specifying start and finish directions. Bear in mind that the latter
method will take the shortest path between the two vectors, ignoring
the "roll" angle.
=cut
sub new {
my $class = shift;
my $arr=undef;
if (0==@_) {
# No arguments, default to unit quaternion.
$arr = [ 1,0,0,0];
} elsif (1==@_) {
# One argument: if it's not a reference, construct
# a "scalar quaternion" (x 0 0 0).
my $arg = $_[0];
my $reftype = ref($arg);
if (!$reftype) {
$arr = [ $arg,0,0,0];
} else {
# We've been passed a reference. If it's an array
# ref, then construct a quaternion out of the
# corresponding array.
if ("ARRAY" eq $reftype) {
return Math::Quaternion->new(@$arg);
} elsif ("Math::Quaternion" eq $reftype) {
# If it's a reference to another quaternion,
# copy it.
return Math::Quaternion->new(@$arg);
} elsif ("HASH" eq $reftype) {
# Hashref.
my %hash = %$arg;
if (defined($hash{'axis'})) {
# Construct a rotation.
return rotation(
$hash{'angle'},
@{$hash{'axis'}}
);
} elsif (defined($hash{'v2'})) {
return rotation(
$hash{'v1'},$hash{'v2'}
);
}
}
croak("Don't understand arguments to new()");
}
} elsif (3==@_) {
# Three arguments: construct a quaternion to represent
# the corresponding vector.
$arr = [ 0, @_[0,1,2] ];
} elsif (4==@_) {
# Four arguments: just slot the numbers right in.
$arr = [ @_[0,1,2,3] ];
} else {
croak("Don't understand arguments passed to new()");
}
bless $arr, $class;
}
=item B<unit>
Returns a unit quaternion.
my $u = Math::Quaternion->unit; # Returns the quaternion (1,0,0,0).
=cut
sub unit {
my $class = shift;
bless [ 1,0,0,0 ], $class;
}
=item B<conjugate>
Returns the conjugate of its argument.
my $q = Math::Quaternion->new(1,2,3,4);
my $p = $q->conjugate; # (1,-2,-3,-4)
=cut
sub conjugate {
my $q=shift;
return Math::Quaternion->new(
$q->[0],
- $q->[1],
- $q->[2],
- $q->[3],
);
}
=item B<inverse>
Returns the inverse of its argument.
my $q = Math::Quaternion->new(1,2,3,4);
my $qi = $q->inverse;
=cut
sub inverse {
my $q = shift;
return scale(conjugate($q),1.0/squarednorm($q));
}
=item B<normalize>
Returns its argument, normalized to unit norm.
my $q = Math::Quaternion->new(1,2,3,4);
my $qn = $q->normalize;
=cut
sub normalize {
my $q = shift;
return scale($q,1.0/sqrt(squarednorm($q)));
}
=item B<modulus>
Returns the modulus of its argument, defined as the
square root of the scalar obtained by multiplying the quaternion
by its conjugate.
my $q = Math::Quaternion->new(1,2,3,4);
print $q->modulus;
=cut
sub modulus {
my $q = shift;
return sqrt(squarednorm($q));
}
=item B<isreal>
Returns 1 if the given quaternion is real ,ie has no quaternion
part, or else 0.
my $q1 = Math::Quaternion->new(1,2,3,4);
my $q2 = Math::Quaternion->new(5,0,0,0);
print $q1->isreal; # 0;
print $q2->isreal; # 1;
=cut
sub isreal {
my $q = shift;
my ($q0,$q1,$q2,$q3)=@$q;
if ( (0.0==$q1) && (0.0==$q2) && (0.0==$q3) ) {
return 1;
} else {
return 0;
}
}
=item B<multiply>
Performs a quaternion multiplication of its two arguments.
If one of the arguments is a scalar, then performs a scalar
multiplication instead.
my $q1 = Math::Quaternion->new(1,2,3,4);
my $q2 = Math::Quaternion->new(5,6,7,8);
my $q3 = Math::Quaternion::multiply($q1,$q2); # (-60 12 30 24)
my $q4 = Math::Quaternion::multiply($q1,$q1->inverse); # (1 0 0 0)
=cut
sub multiply {
my ($a,$b,$reversed) = @_;
($a,$b) = ($b,$a) if $reversed;
if (!ref $a) { return scale($b,$a); }
if (!ref $b) { return scale($a,$b); }
my $q = new Math::Quaternion;
$q->[0] = $a->[0] * $b->[0]
- $a->[1]*$b->[1]
- $a->[2]*$b->[2]
- $a->[3]*$b->[3];
$q->[1] = $a->[0] * $b->[1]
+ $b->[0] * $a->[1]
+ $a->[2] * $b->[3] - $a->[3] * $b->[2];
$q->[2] = $a->[0] * $b->[2]
+ $b->[0] * $a->[2]
+ $a->[3] * $b->[1] - $a->[1] * $b->[3];
$q->[3] = $a->[0] * $b->[3]
+ $b->[0] * $a->[3]
+ $a->[1] * $b->[2] - $a->[2] * $b->[1];
return $q;
}
=item B<dot>
Returns the dot product of two quaternions.
my $q1=Math::Quaternion->new(1,2,3,4);
my $q2=Math::Quaternion->new(2,4,5,6);
my $q3 = Math::Quaternion::dot($q1,$q2);
=cut
sub dot {
my ($q1,$q2) = @_;
my ($a0,$a1,$a2,$a3) = @$q1;
my ($b0,$b1,$b2,$b3) = @$q2;
return $a0*$b0 + $a1*$b1 + $a2*$b2 + $a3*$b3 ;
}
=item B<plus>
Performs a quaternion addition of its two arguments.
my $q1 = Math::Quaternion->new(1,2,3,4);
my $q2 = Math::Quaternion->new(5,6,7,8);
my $q3 = Math::Quaternion::plus($q1,$q2); # (6 8 10 12)
=cut
sub plus {
my ($a,$b,$reversed)=@_;
my $q = Math::Quaternion->new(
$a->[0] + $b->[0],
$a->[1] + $b->[1],
$a->[2] + $b->[2],
$a->[3] + $b->[3],
);
return $q;
}
=item B<minus>
Performs a quaternion subtraction of its two arguments.
my $q1 = Math::Quaternion->new(1,2,3,4);
my $q2 = Math::Quaternion->new(5,6,7,8);
my $q3 = Math::Quaternion::minus($q1,$q2); # (-4 -4 -4 -4)
=cut
sub minus {
my ($a,$b,$reversed)=@_;
($a,$b) = ($b,$a) if $reversed;
my $q = Math::Quaternion->new(
$a->[0] - $b->[0],
$a->[1] - $b->[1],
$a->[2] - $b->[2],
$a->[3] - $b->[3],
);
return $q;
}
=item B<power>
Raise a quaternion to a scalar or quaternion power.
my $q1 = Math::Quaternion->new(1,2,3,4);
my $q2 = Math::Quaternion::power($q1,4); # ( 668 -224 -336 -448 )
my $q3 = $q1->power(4); # ( 668 -224 -336 -448 )
my $q4 = $q1**(-1); # Same as $q1->inverse
use Math::Trig;
my $q5 = exp(1)**( Math::Quaternion->new(pi,0,0) ); # approx (-1 0 0 0)
=cut
sub power {
my ($a,$b,$reversed)=@_;
($a,$b) = ($b,$a) if $reversed;
if (ref $a) {
$a = Math::Quaternion->new($a);
}
if (ref $b) {
# For quaternion^quaternion, use exp and log.
return Math::Quaternion::exp(Math::Quaternion::multiply($b,Math::Quaternion::log($a)));
}
# For real_quaternion^real_number, use built-in power.
if ($a->isreal) {
return Math::Quaternion->new( $a->[0] ** $b, 0, 0, 0 ) ;
}
# For quat raised to a scalar power, do it manually.
my ($a0,$a1,$a2,$a3) = @$a;
my $s = sqrt($a->squarednorm);
my $theta = Math::Trig::acos($a0/$s);
my $vecmod = sqrt($a1*$a1+$a2*$a2+$a3*$a3);
my $stob = ($s**$b);
my $coeff = $stob/$vecmod*sin($b*$theta);
my $u1 = $a1*$coeff;
my $u2 = $a2*$coeff;
my $u3 = $a3*$coeff;
return Math::Quaternion->new(
$stob * cos($b*$theta), $u1,$u2,$u3
);
}
=item B<negate>
Negates the given quaternion.
my $q = Math::Quaternion->new(1,2,3,4);
my $q1 = $q->negate; # (-1,-2,-3,-4)
=cut
sub negate {
my $q = shift;
return Math::Quaternion->new(
-($q->[0]),
-($q->[1]),
-($q->[2]),
-($q->[3]),
);
}
=item B<squarednorm>
Returns the squared norm of its argument.
my $q1 = Math::Quaternion->new(1,2,3,4);
my $sn = $q1->squarednorm; # 30
=cut
sub squarednorm {
my $q = shift;
return $q->[0]*$q->[0]
+ $q->[1]*$q->[1]
+ $q->[2]*$q->[2]
+ $q->[3]*$q->[3];
}
=item B<scale>
Performs a scalar multiplication of its two arguments.
my $q = Math::Quaternion->new(1,2,3,4);
my $qq = Math::Quaternion::scale($q,2); # ( 2 4 6 8)
my $qqq= $q->scale(3); # ( 3 6 9 12 )
=cut
sub scale {
my ($q,$s)=@_;
return Math::Quaternion->new(
$q->[0] * $s,
$q->[1] * $s,
$q->[2] * $s,
$q->[3] * $s
);
}
=item B<rotation>
Generates a quaternion corresponding to a rotation.
If given three arguments, interprets them as an angle and the
three components of an axis vector.
use Math::Trig; # Define pi. my $theta = pi/2;
# Angle of rotation my $rotquat =
Math::Quaternion::rotation($theta,0,0,1);
# $rotquat now represents a rotation of 90 degrees about Z axis.
my ($x,$y,$z) = (1,0,0); # Unit vector in the X direction.
my ($xx,$yy,$zz) = $rotquat->rotate_vector($x,$y,$z);
# ($xx,$yy,$zz) is now ( 0, 1, 0), to within floating-point error.
rotation() can also be passed a scalar angle and a reference to
a vector (in either order), and will generate the corresponding
rotation quaternion.
my @axis = (0,0,1); # Rotate about Z axis
$theta = pi/2;
$rotquat = Math::Quaternion::rotation($theta,\@axis);
If the arguments to rotation() are both references, they are
interpreted as two vectors, and a quaternion is returned which
rotates the first vector onto the second.
my @startvec = (0,1,0); # Vector pointing north
my @endvec = (-1,0,0); # Vector pointing west
$rotquat = Math::Quaternion::rotation(\@startvec,\@endvec);
my @newvec = $rotquat->rotate_vector(@startvec); # Same as @endvec
=cut
sub rotation {
my ($theta,$x,$y,$z);
if (2==@_) {
if (ref($_[0])) {
if (ref($_[1])) {
# Both args references to vectors
my ($ax,$ay,$az)=@{$_[0]};
my ($bx,$by,$bz)=@{$_[1]};
if ( (($ax == 0) and ($ay == 0) and ($az == 0)) or
(($bx == 0) and ($by == 0) and ($bz == 0)) ) {
croak("Math::Quaternion::rotation() passed zero-length vector");
}
# Find cross product. This is a vector perpendicular to both
# argument vectors, and is therefore the axis of rotation.
$x = $ay*$bz-$az*$by;
$y = $az*$bx-$ax*$bz;
$z = $ax*$by-$ay*$bx;
# find the dot product.
my $dotprod = $ax*$bx+$ay*$by+$az*$bz;
my $mod1 = sqrt($ax*$ax+$ay*$ay+$az*$az);
my $mod2 = sqrt($bx*$bx+$by*$by+$bz*$bz);
# Find the angle of rotation.
$theta=Math::Trig::acos($dotprod/($mod1*$mod2));
# Check for parallel vectors (cross product is zero)
if (($x == 0) and ($y == 0) and ($z == 0)) {
# Vectors a and b are parallel, such that rotation
# vector is the zero-length vector (0,0,0), with
# theta either 0 or pi (if vectors are opposite).
# To remove round-off errors in theta, explicitly
# set it.
$theta = $dotprod > 0 ? 0 : pi;
# Such a zero-length rotation vector is annoying (e.g.
# division by 0 on normalization, and problems combining
# rotations). To solve this, select a random rotation
# vector that is also perpendicular to both parallel
# vectors a and b. This satisfies the rotation requirement,
# and helps programs relying on the logic that the rotation
# vector has to be perpendicular to both vectors given
# (even if there are an infinite amount of rotation vectors
# that would satisfy that condition). Algorithm: Find a
# random vector b at any non-zero angle to vector a. One of
# the main axis will do. To reduce round-off errors, make b
# as perpendicular as possible to a by selecting one of the
# smallest components of vector a as the main component of
# b. This also avoid accidentally selecting a vector
# parallel to a
if ( (abs($ax) <= abs($ay)) and (abs($ax) <= abs($az)) ) {
($bx,$by,$bz)=(1,0,0);
} elsif ( (abs($ay) <= abs($ax)) and (abs($ay) <= abs($az)) ) {
($bx,$by,$bz)=(0,1,0);
} else {
($bx,$by,$bz)=(0,0,1);
}
# Then, take the cross product between vector a and the new
# vector b, to generate some vector exactly perpendicular
# to vector a and hence also perpendicular to the original
# vector b (i.e. @{$_[1]})
$x = $ay*$bz-$az*$by;
$y = $az*$bx-$ax*$bz;
$z = $ax*$by-$ay*$bx;
# ($x,$y,$z) is now a random yet valid rotation vector
# perpendicular to the two original vectors.
}
} else {
# 0 is a ref, 1 is not.
$theta = $_[1]; ($x,$y,$z)=@{$_[0]};
}
} else {
if (ref($_[1])) {
# 1 is a ref, 0 is not
$theta = $_[0]; ($x,$y,$z)=@{$_[1]};
} else {
croak("Math::Quaternion::rotation() passed 2 nonref args");
}
}
} elsif (4==@_) {
($theta,$x,$y,$z) = @_;
} else {
croak("Math::Quaternion::rotation() passed wrong no of arguments");
}
my $modulus = sqrt($x*$x+$y*$y+$z*$z); # Make it a unit vector
if ($modulus == 0) {
croak("Math::Quaternion::rotation() passed zero-length rotation vector");
}
$x /= $modulus;
$y /= $modulus;
$z /= $modulus;
my $st = sin(0.5 * $theta);
my $ct = cos(0.5 * $theta);
return Math::Quaternion->new(
$ct, $x * $st, $y * $st, $z * $st
);
}
=item B<rotation_angle>
Returns the angle of rotation represented by the quaternion
argument.
my $q = Math::Quaternion::rotation(0.1,2,3,4);
my $theta = $q->rotation_angle; # Returns 0.1 .
=cut
sub rotation_angle {
my $q = shift;
return 2.0 * Math::Trig::acos($q->[0]);
}
=item B<rotation_axis>
Returns the unit vector representing the axis about which
rotations will be performed, for the rotation represented by the
quaternion argument.
my $q = Math::Quaternion::rotation(0.1,1,1,0);
my @v = $q->rotation_axis; # Returns (0.5*sqrt(2),0.5*sqrt(2),0)
=cut
sub rotation_axis {
my $q = shift;
my $theta = Math::Trig::acos($q->[0]);
my $st = sin($theta);
if (0==$st) { return (0,0,1); } # Rotation of angle zero about Z axis
my ($x,$y,$z) = @{$q}[1,2,3];
return ( $x/$st, $y/$st, $z/$st );
}
=item B<rotate_vector>
When called as a method on a rotation quaternion, uses this
quaternion to perform the corresponding rotation on the vector
argument.
use Math::Trig; # Define pi.
my $theta = pi/2; # Rotate 90 degrees
my $rotquat = Math::Quaternion::rotation($theta,0,0,1); # about Z axis
my ($x,$y,$z) = (1,0,0); # Unit vector in the X direction.
my ($xx,$yy,$zz) = $rotquat->rotate_vector($x,$y,$z)
# ($xx,$yy,$zz) is now ( 0, 1, 0), to within floating-point error.
=cut
sub rotate_vector {
my ($q,$x,$y,$z) = @_;
my $p = Math::Quaternion->new($x,$y,$z);
my $qq = multiply($q,multiply($p,inverse($q)));
return @{$qq}[1,2,3];
}
=item B<matrix4x4>
Takes one argument: a rotation quaternion.
Returns a 16-element array, equal to the OpenGL
matrix which represents the corresponding rotation.
my $rotquat = Math::Quaternion::rotation($theta,@axis); # My rotation.
my @m = $rotquat->matrix4x4;
=cut
sub matrix4x4 {
my $q = shift;
my ($w,$x,$y,$z) = @{$q};
return (
1 - 2*$y*$y - 2*$z*$z,
2*$x*$y + 2*$w*$z,
2*$x*$z - 2*$w*$y,
0,
2*$x*$y - 2*$w*$z,
1 - 2*$x*$x - 2*$z*$z,
2*$y*$z + 2*$w*$x,
0,
2*$x*$z + 2*$w*$y,
2*$y*$z - 2*$w*$x,
1 - 2*$x*$x - 2*$y*$y,
0,
0,
0,
0,
1
);
}
=item B<matrix3x3>
Takes one argument: a rotation quaternion.
Returns a 9-element array, equal to the 3x3
matrix which represents the corresponding rotation.
my $rotquat = Math::Quaternion::rotation($theta,@axis); # My rotation.
my @m = $rotquat->matrix3x3;
=cut
sub matrix3x3 {
my $q = shift;
my ($w,$x,$y,$z) = @{$q};
return (
1 - 2*$y*$y - 2*$z*$z,
2*$x*$y + 2*$w*$z,
2*$x*$z - 2*$w*$y,
2*$x*$y - 2*$w*$z,
1 - 2*$x*$x - 2*$z*$z,
2*$y*$z + 2*$w*$x,
2*$x*$z + 2*$w*$y,
2*$y*$z - 2*$w*$x,
1 - 2*$x*$x - 2*$y*$y,
);
}
=item B<matrix4x4andinverse>
Similar to matrix4x4, but returnes a list of two array
references. The first is a reference to the rotation matrix;
the second is a reference to its inverse. This may be useful
when rendering sprites, since you can multiply by the rotation
matrix for the viewer position, perform some translations, and
then multiply by the inverse: any resulting rectangles drawn
will always face the viewer.
my $rotquat = Math::Quaternion::rotation($theta,@axis); # My rotation.
my ($matref,$invref) = $rotquat->matrix4x4andinverse;
=cut
sub matrix4x4andinverse {
my $q = shift;
my ($w,$x,$y,$z) = @{$q};
my (@m,@mi);
$mi[ 0] = $m[ 0] = 1 - 2*$y*$y - 2*$z*$z;
$mi[ 4] = $m[ 1] = 2*$x*$y + 2*$w*$z;
$mi[ 8] = $m[ 2] = 2*$x*$z - 2*$w*$y;
$mi[12] = $m[ 3] = 0;
$mi[ 1] = $m[ 4] = 2*$x*$y - 2*$w*$z;
$mi[ 5] = $m[ 5] = 1 - 2*$x*$x - 2*$z*$z;
$mi[ 9] = $m[ 6] = 2*$y*$z + 2*$w*$x;
$mi[13] = $m[ 7] = 0;
$mi[ 2] = $m[ 8] = 2*$x*$z + 2*$w*$y;
$mi[ 6] = $m[ 9] = 2*$y*$z - 2*$w*$x;
$mi[10] = $m[10] = 1 - 2*$x*$x - 2*$y*$y;
$mi[14] = $m[11] = 0;
$mi[ 3] = $m[12] = 0;
$mi[ 7] = $m[13] = 0;
$mi[11] = $m[14] = 0;
$mi[15] = $m[15] = 1;
return (\@m,\@mi);
}
=item B<stringify>
Returns a string representation of the quaternion. This is used
to overload the '""' operator, so that quaternions may be
freely interpolated in strings.
my $q = Math::Quaternion->new(1,2,3,4);
print $q->stringify; # "( 1 2 3 4 )"
print "$q"; # "( 1 2 3 4 )"
=cut
sub stringify {
my $self = shift;
return "( ".join(" ",@$self)." )";
}
=item B<slerp>
Takes two quaternion arguments and one scalar; performs
spherical linear interpolation between the two quaternions. The
quaternion arguments are assumed to be unit quaternions, and the
scalar is assumed to lie between 0 and 1: a scalar argument of
zero will return the first quaternion argument, and a scalar
argument of one will return the second.
use Math::Trig;
my @axis = (0,0,1);
my $rq1 = Math::Quaternion::rotation(pi/2,\@axis); # 90 degs about Z
my $rq2 = Math::Quaternion::rotation(pi,\@axis); # 180 degs about Z
my $interp = Math::Quaternion::slerp($rq1,$rq2,0.5); # 135 degs about Z
=cut
sub slerp {
my ($q0,$q1,$t) = @_;
my $dotprod = dot($q0,$q1);
if ($dotprod<0) {
# Reverse signs so we travel the short way round
$dotprod = -$dotprod;
$q1 = negate($q1);
}
my $theta = Math::Trig::acos($dotprod);
if (abs($theta) < 1e-5) {
# In the limit theta->0 , spherical interpolation is
# approximated by linear interpolation, which also
# avoids division-by-zero problems.
return plus(scale($q0,(1-$t)) ,scale($q1,$t));
}
my $st = sin($theta);
my $ist = 1.0/$st;
my $q = plus(
scale($q0,($ist * sin( (1-$t)*$theta ))),
scale($q1,($ist*sin($t*$theta)))
);
return normalize($q);
}
=item B<exp>
Exponential operator e^q. Any quaternion q can be written as x+uy,
where x is a real number, and u is a unit pure quaternion. Then,
exp(q) == exp(x) * ( cos(y) + u sin(y) ).
my $q = Math::Quaternion->new(1,2,3,4);
print Math::Quaternion::exp($q);
=cut
sub exp {
my $q = shift;
if (isreal($q)) {
return Math::Quaternion->new(CORE::exp($q->[0]),0,0,0);
}
my ($q0,$q1,$q2,$q3)=@$q;
my $y = sqrt($q1*$q1+$q2*$q2+$q3*$q3); # Length of pure-quat part.
my ($ux,$uy,$uz) = ($q1/$y,$q2/$y,$q3/$y); # Unit vector.
my $ex = CORE::exp($q0);
my $exs = $ex*sin($y);
return Math::Quaternion->new($ex*cos($y),$exs*$ux,$exs*$uy,$exs*$uz);
}
=item B<log>
Returns the logarithm of its argument. The logarithm of a negative
real quaternion can take any value of them form (log(-q0),u*pi) for
any unit vector u. In these cases, u is chosen to be (1,0,0).
my $q = Math::Quaternion->new(1,2,3,4);
print Math::Quaternion::log($q);
=cut
sub log {
my $q = shift;
if (ref $q) {
if ("Math::Quaternion" ne ref $q) {
$q = Math::Quaternion->new($q);
}
} else {
$q = Math::Quaternion->new($q);
}
if (isreal($q)) {
if ($q->[0] > 0) {
return Math::Quaternion->new(CORE::log($q->[0]));
} else {
return Math::Quaternion->new(CORE::log(-($q->[0])),pi,0,0);
}
}
my ($q0,$q1,$q2,$q3)=@$q;
my $modq = sqrt($q0*$q0 + $q1*$q1 + $q2*$q2 + $q3*$q3);
my $x = CORE::log($modq);
my $qquatmod = sqrt($q1*$q1+$q2*$q2+$q3*$q3); # mod of quat part
my $y = atan2($qquatmod,$q0);
my $c = $y/$qquatmod;
return Math::Quaternion->new($x,$c*$q1,$c*$q2,$c*$q3);
}
=back
=head1 AUTHOR
Jonathan Chin, E<lt>jon-quaternion.pm@earth.liE<gt>
=head1 ACKNOWLEDGEMENTS
Thanks to Rene Uittenbogaard and Daniel Connelly for useful suggestions, and
Luc Vereecken and Bruce Gray for patches.
=head1 SEE ALSO
=over 4
=item L<http://mathworld.wolfram.com/Quaternion.html>
=item L<http://sjbaker.org/steve/omniv/eulers_are_evil.html>
=item Acts 12:4
=back
=head1 COPYRIGHT AND LICENSE
Copyright 2003 by Jonathan Chin
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.
=cut
1;
__END__
|