/usr/share/perl5/Math/Polygon/Calc.pm is in libmath-polygon-perl 1.02-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | # Copyrights 2004,2006-2011 by Mark Overmeer.
# For other contributors see ChangeLog.
# See the manual pages for details on the licensing terms.
# Pod stripped from pm file by OODoc 2.00.
use strict;
use warnings;
package Math::Polygon::Calc;
use vars '$VERSION';
$VERSION = '1.02';
use base 'Exporter';
our @EXPORT = qw/
polygon_area
polygon_bbox
polygon_beautify
polygon_equal
polygon_is_clockwise
polygon_is_closed
polygon_clockwise
polygon_counter_clockwise
polygon_perimeter
polygon_same
polygon_start_minxy
polygon_string
polygon_contains_point
polygon_centroid
/;
use List::Util qw/min max/;
use Carp qw/croak/;
sub polygon_string(@) { join ', ', map { "[$_->[0],$_->[1]]" } @_ }
sub polygon_bbox(@)
{
( min( map {$_->[0]} @_ )
, min( map {$_->[1]} @_ )
, max( map {$_->[0]} @_ )
, max( map {$_->[1]} @_ )
);
}
sub polygon_area(@)
{ my $area = 0;
while(@_ >= 2)
{ $area += $_[0][0]*$_[1][1] - $_[0][1]*$_[1][0];
shift;
}
abs($area)/2;
}
sub polygon_is_clockwise(@)
{ my $area = 0;
polygon_is_closed(@_)
or croak "ERROR: polygon must be closed: begin==end";
while(@_ >= 2)
{ $area += $_[0][0]*$_[1][1] - $_[0][1]*$_[1][0];
shift;
}
$area < 0;
}
sub polygon_clockwise(@)
{ polygon_is_clockwise(@_) ? @_ : reverse @_;
}
sub polygon_counter_clockwise(@)
{ polygon_is_clockwise(@_) ? reverse(@_) : @_;
}
sub polygon_perimeter(@)
{ my $l = 0;
while(@_ >= 2)
{ $l += sqrt(($_[0][0]-$_[1][0])**2 + ($_[0][1]-$_[1][1])**2);
shift;
}
$l;
}
sub polygon_start_minxy(@)
{ return @_ if @_ <= 1;
my $ring = $_[0][0]==$_[-1][0] && $_[0][1]==$_[-1][1];
pop @_ if $ring;
my ($xmin, $ymin) = polygon_bbox @_;
my $rot = 0;
my $dmin_sq = ($_[0][0]-$xmin)**2 + ($_[0][1]-$ymin)**2;
for(my $i=1; $i<@_; $i++)
{ next if $_[$i][0] - $xmin > $dmin_sq;
my $d_sq = ($_[$i][0]-$xmin)**2 + ($_[$i][1]-$ymin)**2;
if($d_sq < $dmin_sq)
{ $dmin_sq = $d_sq;
$rot = $i;
}
}
$rot==0 ? (@_, ($ring ? $_[0] : ()))
: (@_[$rot..$#_], @_[0..$rot-1], ($ring ? $_[$rot] : ()));
}
sub polygon_beautify(@)
{ my %opts = ref $_[0] eq 'HASH' ? %{ (shift) } : ();
return () unless @_;
my $despike = exists $opts{remove_spikes} ? $opts{remove_spikes} : 0;
# my $interpol = exists $opts{remove_between} ? $opts{remove_between} : 0;
my @res = @_;
return () if @res < 4; # closed triangle = 4 points
pop @res; # cyclic: last is first
my $unchanged= 0;
while($unchanged < 2*@res)
{ return () if @res < 3; # closed triangle = 4 points
my $this = shift @res;
push @res, $this; # recycle
$unchanged++;
# remove doubles
my ($x, $y) = @$this;
while(@res && $res[0][0]==$x && $res[0][1]==$y)
{ $unchanged = 0;
shift @res;
}
# remove spike
if($despike && @res >= 2)
{ # any spike
if($res[1][0]==$x && $res[1][1]==$y)
{ $unchanged = 0;
shift @res;
}
# x-spike
if( $y==$res[0][1] && $y==$res[1][1]
&& ( ($res[0][0] < $x && $x < $res[1][0])
|| ($res[0][0] > $x && $x > $res[1][0])))
{ $unchanged = 0;
shift @res;
}
# y-spike
if( $x==$res[0][0] && $x==$res[1][0]
&& ( ($res[0][1] < $y && $y < $res[1][1])
|| ($res[0][1] > $y && $y > $res[1][1])))
{ $unchanged = 0;
shift @res;
}
}
# remove intermediate
if( @res >= 2
&& $res[0][0]==$x && $res[1][0]==$x
&& ( ($y < $res[0][1] && $res[0][1] < $res[1][1])
|| ($y > $res[0][1] && $res[0][1] > $res[1][1])))
{ $unchanged = 0;
shift @res;
}
if( @res >= 2
&& $res[0][1]==$y && $res[1][1]==$y
&& ( ($x < $res[0][0] && $res[0][0] < $res[1][0])
|| ($x > $res[0][0] && $res[0][0] > $res[1][0])))
{ $unchanged = 0;
shift @res;
}
# remove 2 out-of order between two which stay
if(@res >= 3
&& $x==$res[0][0] && $x==$res[1][0] && $x==$res[2][0]
&& ($y < $res[0][1] && $y < $res[1][1]
&& $res[0][1] < $res[2][1] && $res[1][1] < $res[2][1]))
{ $unchanged = 0;
splice @res, 0, 2;
}
if(@res >= 3
&& $y==$res[0][1] && $y==$res[1][1] && $y==$res[2][1]
&& ($x < $res[0][0] && $x < $res[1][0]
&& $res[0][0] < $res[2][0] && $res[1][0] < $res[2][0]))
{ $unchanged = 0;
splice @res, 0, 2;
}
}
@res ? (@res, $res[0]) : ();
}
sub polygon_equal($$;$)
{ my ($f,$s, $tolerance) = @_;
return 0 if @$f != @$s;
my @f = @$f;
my @s = @$s;
if(defined $tolerance)
{ while(@f)
{ return 0 if abs($f[0][0]-$s[0][0]) > $tolerance
|| abs($f[0][1]-$s[0][1]) > $tolerance;
shift @f; shift @s;
}
return 1;
}
while(@f)
{ return 0 if $f[0][0] != $s[0][0] || $f[0][1] != $s[0][1];
shift @f; shift @s;
}
1;
}
sub polygon_same($$;$)
{ return 0 if @{$_[0]} != @{$_[1]};
my @f = polygon_start_minxy @{ (shift) };
my @s = polygon_start_minxy @{ (shift) };
polygon_equal \@f, \@s, @_;
}
# Algorithms can be found at
# http://astronomy.swin.edu.au/~pbourke/geometry/insidepoly/
# p1 = polygon[0];
# for (i=1;i<=N;i++) {
# p2 = polygon[i % N];
# if (p.y > MIN(p1.y,p2.y)) {
# if (p.y <= MAX(p1.y,p2.y)) {
# if (p.x <= MAX(p1.x,p2.x)) {
# if (p1.y != p2.y) {
# xinters = (p.y-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x;
# if (p1.x == p2.x || p.x <= xinters)
# counter++;
# }
# }
# }
# }
# p1 = p2;
# }
# inside = counter % 2;
sub polygon_contains_point($@)
{ my $point = shift;
return 0 if @_ < 3;
my ($x, $y) = @$point;
my $inside = 0;
polygon_is_closed(@_)
or croak "ERROR: polygon must be closed: begin==end";
my ($px, $py) = @{ (shift) };
while(@_)
{ my ($nx, $ny) = @{ (shift) };
return 1 if $y==$py && $py==$ny
&& ($x >= $px || $x >= $nx)
&& ($x <= $px || $x <= $nx);
if( $py == $ny
|| ($y <= $py && $y <= $ny)
|| ($y > $py && $y > $ny)
|| ($x > $px && $x > $nx)
)
{
($px, $py) = ($nx, $ny);
next;
}
$inside = !$inside
if $px==$nx || $x <= ($y-$py)*($nx-$px)/($ny-$py)+$px;
($px, $py) = ($nx, $ny);
}
$inside;
}
sub polygon_centroid(@)
{
polygon_is_closed(@_)
or croak "ERROR: polygon must be closed: begin==end";
my ($cx, $cy, $a) = (0, 0, 0);
foreach my $i (0..@_-2)
{ my $ap = $_[$i][0]*$_[$i+1][1] - $_[$i+1][0]*$_[$i][1];
$cx += ($_[$i][0]+$_[$i+1][0]) * $ap;
$cy += ($_[$i][1]+$_[$i+1][1]) * $ap;
$a += $ap;
}
my $c = 3*$a; # 6*$a/2;
[ $cx/$c, $cy/$c ];
}
sub polygon_is_closed(@)
{ @_ or croak "ERROR: empty polygon is neither closed nor open";
my ($first, $last) = @_[0,-1];
$first->[0]==$last->[0] && $first->[1]==$last->[1];
}
1;
|