/usr/share/perl5/Math/PlanePath/UlamWarburton.pm is in libmath-planepath-perl 113-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 | # Copyright 2011, 2012, 2013 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
#------------------------------------------------------------------------------
# cf
# Ulam/Warburton with cells turning off too
# A079315 cells OFF -> ON
# A079317 cells ON at stage n
# A079316 cells ON at stage n, in first quadrant
# A151921 net gain ON cells
#------------------------------------------------------------------------------
package Math::PlanePath::UlamWarburton;
use 5.004;
use strict;
use Carp;
use List::Util 'sum';
use vars '$VERSION', '@ISA';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem = \&Math::PlanePath::_divrem;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'digit_split_lowtohigh';
use Math::PlanePath::UlamWarburtonQuarter;
# uncomment this to run the ### lines
# use Smart::Comments;
use constant parameter_info_array =>
[
{ name => 'parts',
share_key => 'parts_ulamwarburton',
display => 'Parts',
type => 'enum',
default => '4',
choices => ['4','2','1',
],
description => 'Which parts of the plane to fill.',
},
Math::PlanePath::Base::Generic::parameter_info_nstart1(),
];
use constant absdx_minimum => 1;
my %x_negative = (4 => 1,
2 => 1,
1 => 0,
);
sub x_negative {
my ($self) = @_;
return $x_negative{$self->{'parts'}};
}
sub y_negative {
my ($self) = @_;
return $self->{'parts'} eq '4';
}
{
my %dir_maximum_dxdy = (4 => [1,-1], # N=4 South-East
2 => [1,-1], # N=44 South-East
1 => [2,-1], # N=3 ESE
);
sub dir_maximum_dxdy {
my ($self) = @_;
return @{$dir_maximum_dxdy{$self->{'parts'}}};
}
}
sub tree_num_children_list {
my ($self) = @_;
return ($self->{'parts'} eq '4'
? (0, 1, 3, 4)
: (0, 1, 2, 3 ));
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
my $parts = ($self->{'parts'} ||= '4');
if (! exists $x_negative{$parts}) {
croak "Unrecognised parts option: ", $parts;
}
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### UlamWarburton n_to_xy(): "$n parts=$self->{'parts'}"
if ($n < $self->{'n_start'}) { return; }
if (is_infinite($n)) { return ($n,$n); }
{
my $int = int($n);
### $int
### $n
if ($n != $int) {
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $frac = $n - $int; # inherit possible BigFloat
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int; # BigFloat int() gives BigInt, use that
}
$n = $n - $self->{'n_start'}; # N=0 basis
if ($n == 0) { return (0,0); }
my $parts = $self->{'parts'};
my ($depthsum, $factor, $nrem) = _n0_to_depthsum_factor_rem($n, $parts)
or return $n; # N=nan or +inf
### depthsum: join(',',@$depthsum)
### $factor
### n rem within row: $nrem
$factor /= $parts;
if ($parts ne '4') {
$nrem += ($factor-1)/2;
}
(my $quad, $nrem) = _divrem ($nrem, $factor);
### factor modulus: $factor
### $quad
### n rem within quad: $nrem
### assert: $quad >= 0
### assert: $quad <= 3
my $dhigh = shift @$depthsum; # highest term
my @ndigits = digit_split_lowtohigh($nrem,3);
### $dhigh
### ndigits low to high: join(',',@ndigits)
my $x = 0;
my $y = 0;
foreach my $depthterm (reverse @$depthsum) { # depth terms low to high
my $ndigit = shift @ndigits; # N digits low to high
### $depthterm
### $ndigit
$x += $depthterm;
### bit to x: "$x,$y"
if ($ndigit) {
if ($ndigit == 2) {
($x,$y) = (-$y,$x); # rotate +90
}
} else {
# $ndigit==0 (or undef when @ndigits shorter than @$depthsum)
($x,$y) = ($y,-$x); # rotate -90
}
### rotate to: "$x,$y"
}
$x += $dhigh;
### xy before quad: "$x,$y"
if ($quad & 2) {
$x = -$x;
$y = -$y;
}
if ($quad & 1) {
($x,$y) = (-$y,$x); # rotate +90
}
### final: "$x,$y"
return $x,$y;
}
# no Smart::Comments;
sub xy_to_n {
my ($self, $x, $y) = @_;
### UlamWarburton xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x == 0 && $y == 0) {
return $self->{'n_start'};
}
my $parts = $self->{'parts'};
if ($parts ne '4'
&& ($y < 0
|| ($parts eq '1' && $x < 0))) {
return undef;
}
my $quad;
if ($y > $x) {
### quad above leading diagonal ...
# /
# above /
# /
if ($y > -$x) {
### quad above opposite diagonal, top quarter ...
# top
# \ /
# \/
$quad = 1;
($x,$y) = ($y,-$x); # rotate -90
} else {
### quad below opposite diagonal, left quarter ...
# \
# left \
# /
# /
$quad = 2;
$x = -$x; # rotate -180
$y = -$y;
}
} else {
### quad below leading diagonal ...
# /
# / below
# /
if ($y > -$x) {
### quad above opposite diagonal, right quarter ...
# /
# / right
# \
# \
$quad = 0;
} else {
### quad below opposite diagonal, bottom quarter ...
# /\
# / \
# bottom
$quad = 3;
($x,$y) = (-$y,$x); # rotate +90
}
}
### $quad
### quad rotated xy: "$x,$y"
### assert: ! ($y > $x)
### assert: ! ($y < -$x)
my ($len, $exp) = round_down_pow ($x + abs($y), 2);
if (is_infinite($exp)) { return ($exp); }
my $depth =
my $ndigits =
my $n = ($x * 0 * $y); # inherit bignum 0
while ($exp-- >= 0) {
### at: "$x,$y n=$n len=$len"
my $abs_y = abs($y);
if ($x && $x == $abs_y) {
return undef;
}
# right quarter diamond
### assert: $x >= 0
### assert: $x >= abs($y)
### assert: $x+abs($y) < 2*$len || $x==abs($y)
if ($x + $abs_y >= $len) {
# one of the three quarter diamonds away from the origin
$x -= $len;
### shift to: "$x,$y"
$depth += $len;
if ($x || $y) {
$n *= 3;
$ndigits++;
if ($y < -$x) {
### bottom, digit 0 ...
($x,$y) = (-$y,$x); # rotate +90
} elsif ($y > $x) {
### top, digit 2 ...
($x,$y) = ($y,-$x); # rotate -90
$n += 2;
} else {
### right, digit 1 ...
$n += 1;
}
}
}
$len /= 2;
}
### $n
### $depth
### $ndigits
### npower: 3**$ndigits
### $quad
### quad powered: $quad*3**$ndigits
my $npower = 3**$ndigits;
if ($parts ne '4') {
$n -= ($npower-1)/2;
}
return $n + $quad*$npower + $self->tree_depth_to_n($depth);
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### UlamWarburton rect_to_n_range(): "$x1,$y1 $x2,$y2"
my ($dlo, $dhi)
= _rect_to_diamond_range (round_nearest($x1), round_nearest($y1),
round_nearest($x2), round_nearest($y2));
### $dlo
### $dhi
if ($dlo) {
($dlo) = round_down_pow ($dlo,2);
}
($dhi) = round_down_pow ($dhi,2);
### rounded to pow2: "$dlo ".(2*$dhi)
return ($self->tree_depth_to_n($dlo),
$self->tree_depth_to_n(2*$dhi) - 1);
}
# x1 | x2
# +--------|-------+ y2 xzero true, yzero false
# | | | diamond min is y1
# +--------|-------+ y1
# |
# ----------O-------------
#
# | x1 x2
# | +--------+ y2 xzero false, yzero true
# | | | diamond min is x1
# -O--------------------
# | | |
# | +--------+ y1
# |
#
sub _rect_to_diamond_range {
my ($x1,$y1, $x2,$y2) = @_;
my $xzero = ($x1 < 0) != ($x2 < 0); # x range covers x=0
my $yzero = ($y1 < 0) != ($y2 < 0); # y range covers y=0
$x1 = abs($x1);
$y1 = abs($y1);
$x2 = abs($x2);
$y2 = abs($y2);
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1) }
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1) }
return (($yzero ? 0 : $y1) + ($xzero ? 0 : $x1),
$x2+$y2);
}
#------------------------------------------------------------------------------
use constant tree_num_roots => 1;
# ENHANCE-ME: step by the bits, not by X,Y
# ENHANCE-ME: tree_n_to_depth() by probe
sub tree_n_children {
my ($self, $n) = @_;
### UlamWarburton tree_n_children(): $n
if ($n < $self->{'n_start'}) {
return;
}
my ($x,$y) = $self->n_to_xy($n);
my @ret;
my $dx = 1;
my $dy = 0;
foreach (1 .. 4) {
if (defined (my $n_child = $self->xy_to_n($x+$dx,$y+$dy))) {
if ($n_child > $n) {
push @ret, $n_child;
}
}
($dx,$dy) = (-$dy,$dx); # rotate +90
}
return sort {$a<=>$b} @ret;
}
sub tree_n_parent {
my ($self, $n) = @_;
### UlamWarburton tree_n_parent(): $n
if ($n <= $self->{'n_start'}) {
return undef;
}
my ($x,$y) = $self->n_to_xy($n);
my $dx = 1;
my $dy = 0;
foreach (1 .. 4) {
if (defined (my $n_parent = $self->xy_to_n($x+$dx,$y+$dy))) {
if ($n_parent < $n) {
return $n_parent;
}
}
($dx,$dy) = (-$dy,$dx); # rotate +90
}
return undef;
}
# sub tree_n_children {
# my ($self, $n) = @_;
# my ($power, $exp) = _round_down_pow (3*$n-2, 4);
# $exp -= 1;
# $power /= 4;
#
# ### $power
# ### $exp
# ### pow base: 2 + 4*(4**$exp - 1)/3
#
# $n -= ($power - 1)/3 * 4 + 2;
# ### n less pow base: $n
#
# my @$depthsum = (2**$exp);
# $power = 3**$exp;
#
# # find the cumulative levelpoints total <= $n, being the start of the
# # level containing $n
# #
# my $factor = 4;
# while (--$exp >= 0) {
# $power /= 3;
# my $sub = 4**$exp * $factor;
# ### $sub
# # $power*$factor;
# my $rem = $n - $sub;
#
# ### $n
# ### $power
# ### $factor
# ### consider subtract: $sub
# ### $rem
#
# if ($rem >= 0) {
# $n = $rem;
# push @$depthsum, 2**$exp;
# $factor *= 3;
# }
# }
#
# $n += $factor;
# if (1) {
# return ($n,$n+1,$n+2);
# } else {
# return $n,$n+1,$n+2;
# }
# }
# Converting quarter ...
# (N-start)*4+1+start = 4*N-4*start+1+start
# = 4*N-3*start+1
#
sub tree_depth_to_n {
my ($self, $depth) = @_;
if ($depth == 0) {
return $self->{'n_start'};
}
my $n = $self->Math::PlanePath::UlamWarburtonQuarter::tree_depth_to_n($depth-1);
if (! defined $n) {
return undef;
}
my $parts = $self->{'parts'};
if ($parts eq '2') {
return 2*$n - $self->{'n_start'} + $depth;
}
if ($parts eq '1') {
return $n + $depth;
}
if ($parts eq 'octant' || $parts eq 'octant_up') {
return ($n + $depth + 1) / 2;
}
### assert: $parts eq '4'
return 4*$n - 3*$self->{'n_start'} + 1;
}
# sub _NOTWORKING__tree_depth_to_n_range {
# my ($self, $depth) = @_;
# my ($nstart, $nend) = $self->Math::PlanePath::UlamWarburtonQuarter::tree_depth_to_n_range($self, $depth)
# or return;
# return (4*$nstart-3 + $self->{'n_start'}-1,
# 4*$nend-3 + $self->{'n_start'}-1);
# }
sub tree_n_to_depth {
my ($self, $n) = @_;
$n = $n - $self->{'n_start'}; # N=0 basis
if ($n < 0) {
return undef;
}
$n = int($n);
if ($n == 0) {
return 0;
}
my ($depthsum) = _n0_to_depthsum_factor_rem($n, $self->{'parts'})
or return $n; # N=nan or +inf
return sum(@$depthsum);
}
# 1+3+3+9=16
#
# 0 +1
# 1 +4 <- 0
# 5 +4 <- 1
# 9 +12
# 21 +4 <- 5 + 4+12 = 21 = 5 + 4*(1+3)
# 25 +12
# 37 +12
# 49 +36
# 85 +4 <- 21 + 4+12+12+36 = 21 + 4*(1+3+3+9)
# 89 +12 <- 8 +64
# 101 +12
# 113 +36
# 149
# 161
# 197
# 233
# 341
# 345 <- 16 +256
# 357
# 369
# 1+3 = 4 power 2
# 1+3+3+9 = 16 power 3
# 1+3+3+9+3+9+9+27 = 64 power 4
#
# 4*(1+4+...+4^(l-1)) = 4*(4^l-1)/3
# l=1 total=4*(4-1)/3 = 4
# l=2 total=4*(16-1)/3=4*5 = 20
# l=3 total=4*(64-1)/3=4*63/3 = 4*21 = 84
#
# n = 2 + 4*(4^l-1)/3
# (n-2) = 4*(4^l-1)/3
# 3*(n-2) = 4*(4^l-1)
# 3n-6 = 4^(l+1)-4
# 3n-2 = 4^(l+1)
#
# 3^0+3^1+3^1+3^2 = 1+3+3+9=16
# x+3x+3x+9x = 16x = 256
# 4 quads is 4*16=64
#
# 1+1+3 = 5
# 1+1+3 +1+1+3 +3+3+9 = 25
# 1+4 = 5
# 1+4+4+12 = 21 = 1 + 4*(1+1+3)
# 2 +1
# 3 +3
# 6 +1
# 7 +1
# 10 +3
# 13
# parts=1
# 1+4+...+4^(l-1) + 2^l
# = (4^l-1)/3 + 2^l
# = (4^l-1 + 3*2^l)/3
# = (2^l*(2^l + 3) - 1)/3
# l=1 total= 3
# l=2 total= 9
# l=3 total= 29
# l=4 total= 101
#
# N = (4^l-1)/3 + 2^l
# 3*(N-2^l)+1 = 4^l
# 12*(N-2^l)+1 = 4 * 4^l
#
# parts=2
# N = 2*(4^l-1)/3 + 2^l
# 3/2*(N-2^l)+1 = 4^l
# 6*(N-2^l)+1 = 4 * 4^l
#
# parts=4
# N = (4^l-1)/3
# 3*N+1 = 4 * 4^l
# use Smart::Comments;
# Return ($aref, $factor, $remaining_n).
# sum(@$aref) = depth starting depth=1
#
sub _n0_to_depthsum_factor_rem {
my ($n, $parts) = @_;
### _n0_to_depthsum_factor_rem(): "$n parts=$parts"
if ($n == 0) {
return ([], $parts, 0);
}
my $n3 = 3*$n+1;
my $ndepth = 0;
my $power = $n3;
my $exp;
if ($parts eq '4') {
$power /= 4;
} elsif ($parts eq '2') {
$power /= 2;
$ndepth = -1;
}
($power, $exp) = round_down_pow ($power, 4);
### $n3
### $power
### $exp
if (is_infinite($exp)) {
return;
}
# ### pow base: ($power - 1)/3 * $factor + 1 + ($parts ne '4' && $exp)
# $n -= ($power - 1)/3 * $factor + 1;
# if ($parts ne '4') { $n -= $exp; }
# ### n less pow base: $n
my $factor = $parts;
my $twopow = 2**$exp;
my @depthsum;
for (;
$exp-- >= 0;
$power /= 4, $twopow /= 2) {
### at: "power=$power twopow=$twopow factor=$factor n3=$n3 ndepth=$ndepth depthsum=".join(',',@depthsum)
my $nmore = $power * $factor;
if ($parts ne '4') { $nmore += 3*$twopow; }
my $ncmp = $ndepth + $nmore;
### $nmore
### $ncmp
if ($n3 >= $ncmp) {
### go to ncmp, remainder: $n3-$ncmp
$factor *= 3;
$ndepth = $ncmp;
push @depthsum, $twopow;
}
}
if ($parts eq '2') {
$n3 += 1;
}
### assert: ($n3 - $ndepth)%3 == 0
$n = ($n3 - $ndepth) / 3;
$factor /= 3;
### $ndepth
### @depthsum
### remaining n: $n
### assert: $n >= 0
### assert: $n < $factor + ($parts ne '4')
return \@depthsum, $factor, $n;
}
sub tree_n_to_subheight {
my ($self, $n) = @_;
### tree_n_to_subheight(): $n
$n = int($n - $self->{'n_start'}); # N=0 basis
if ($n < 0) {
return undef;
}
my ($depthsum, $factor, $nrem) = _n0_to_depthsum_factor_rem($n, $self->{'parts'})
or return $n; # N=nan or +inf
### $depthsum
### $factor
### $nrem
my $parts = $self->{'parts'};
$factor /= $parts;
if ($parts ne '4') {
$nrem += ($factor-1)/2;
}
(my $quad, $nrem) = _divrem ($nrem, $factor);
my $sub = pop @$depthsum;
while (_divrem_mutate($nrem,3) == 1) { # low "1" ternary digits of Nrem
$sub += pop @$depthsum;
}
if (@$depthsum) {
return $depthsum->[-1] - 1 - $sub;
} else {
return undef; # N all 1-digits, on central infinite spine
}
}
1;
__END__
=for stopwords eg Ryde Math-PlanePath Ulam Warburton Ndepth OEIS ie
=head1 NAME
Math::PlanePath::UlamWarburton -- growth of a 2-D cellular automaton
=head1 SYNOPSIS
use Math::PlanePath::UlamWarburton;
my $path = Math::PlanePath::UlamWarburton->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Ulam, Stanislaw>X<Warburton>This is the pattern of a cellular automaton
studied by Ulam and Warburton, numbering cells by growth level and
anti-clockwise within their level.
=cut
# math-image --path=UlamWarburton --expression='i<100?i:0' --output=numbers
# and add N=100,N=101 manually
=pod
94 9
95 87 93 8
63 7
64 42 62 6
65 30 61 5
66 43 31 23 29 41 60 4
69 67 14 59 57 3
70 44 68 15 7 13 58 40 56 2
96 71 32 16 3 12 28 55 92 1
97 88 72 45 33 24 17 8 4 1 2 6 11 22 27 39 54 86 91 <- Y=0
98 73 34 18 5 10 26 53 90 -1
74 46 76 19 9 21 50 38 52 ... -2
75 77 20 85 51 -3
78 47 35 25 37 49 84 -4
79 36 83 -5
80 48 82 -6
81 -7
99 89 101 -8
100 -9
^
-9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8 9
The rule is that a given cell grows up, down, left and right, but only if
the new cell has no neighbours (up, down, left or right). So the initial
cell "a" is N=1,
a initial level 0 cell
The next level "b" cells are numbered N=2 to N=5 anti-clockwise from the
right,
b
b a b level 1
b
Likewise the next level "c" cells N=6 to N=9. The "b" cells only grow
outwards as 4 "c"s since the other positions would have neighbours in the
existing "b"s.
c
b
c b a b c level 2
b
c
The "d" cells are then N=10 to N=21, numbered following the previous level
"c" cell order and then anti-clockwise around each.
d
d c d
d b d
d c b a b c d level 3
d b d
d c d
d
There's only 4 "e" cells since among the "d"s only the X,Y axes won't have
existing neighbours (the "b"s and "d"s).
e
d
d c d
d b d
e d c b a b c d e level 4
d b d
d c d
d
e
In general each level always grows by 1 along the X and Y axes and travels
into the quarter planes between with a sort of diamond shaped tree pattern
which fills 11 cells of each 4x4 square block.
=head2 Level Ranges
Counting level 0 as the N=1 at the origin and level 1 as the next N=2,3,4,5
generation, the number of new cells added in a growth level is
levelcells(0) = 1
then
levelcells(level) = 4 * 3^((count 1 bits in level) - 1)
So level 1 has 4*3^0=4 cells, as does level 2 N=6,7,8,9. Then level 3 has
4*3^1=12 cells N=10 to N=21 because 3=0b11 has two 1-bits in binary. The N
start and end for a level is the cumulative total of those before it,
Ndepth(level) = 1 + (levelcells(0) + ... + levelcells(level-1))
Nend(level) = levelcells(0) + ... + levelcells(level)
For example level 3 ends at N=(1+4+4)=9.
level Ndepth levelcells Nend
0 1 1 1
1 2 4 5
2 6 4 9
3 10 12 21
4 22 4 25
5 26 12 37
6 38 12 49
7 50 36 85
8 86 4 89
9 90 12 101
For a power-of-2 level the Ndepth is
Ndepth(2^a) = 2 + 4*(4^a-1)/3
For example level=4=2^2 starts at N=2+4*(4^2-1)/3=22, or level=8=2^3 starts
N=2+4*(4^3-1)/3=86.
Further bits in the level value contribute powers-of-4 with a tripling for
each bit above. So if the level number has bits a,b,c,d,etc in descending
order,
level = 2^a + 2^b + 2^c + 2^d ... a>b>c>d...
Ndepth = 2 + 4*(-1
+ 4^a
+ 3 * 4^b
+ 3^2 * 4^c
+ 3^3 * 4^d + ... ) / 3
For example level=6 = 2^2+2^1 is Ndepth = 2 + (1+4*(4^2-1)/3) + 4^(1+1) =
38. Or level=7 = 2^2+2^1+2^0 is Ndepth = 1 + (1+4*(4^2-1)/3) + 4^(1+1) +
3*4^(0+1) = 50.
=head2 Self-Similar Replication
The diamond shape growth up to a level 2^a repeats three times. For example
an "a" part going to the right,
d
d d d
a d c
a a a * c c c ...
a b c
b b b
b
The 2x2 diamond shaped "a" repeats pointing up, down and right as "b", "c"
and "d". This resulting 4x4 diamond then likewise repeats up, down and
right. The points in the path here are numbered by growth level rather than
in this sort of replication, but the replication helps to see the structure
of the pattern.
=head2 Half Plane
Option C<parts =E<gt> '2'> confines the pattern to the upper half plane
C<YE<gt>=0>,
=cut
# math-image --path=UlamWarburton,parts=2 --expression='i<32?i:0' --output=numbers --size=99x16
=pod
parts => "2"
28 6
21 5
29 22 16 20 27 4
11 3
30 12 6 10 26 2
23 13 3 9 19 1
31 24 17 14 7 4 1 2 5 8 15 18 25 <- Y=0
--------------------------------------
-6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6
Points are still numbered anti-clockwise around so X axis N=1,2,5,8,15,etc
is the first of each level and X negative axis N=1,4,7,14,etc is the last.
Within a row a line from point N to N+1 is always a 45-degree angle. This
is true of each 3 direct children, but also across groups of children by
symmetry. For this parts=2 the lines from the last of one row to the first
of the next are horizontal, making an attractive pattern of diagonals and
then across to the next row horizontally. For parts=4 or parts=1 the last
to first lines are at various different slopes and so upsets the pattern.
=head2 One Quadrant
Option C<parts =E<gt> '1'> confines the pattern to the first quadrant,
=cut
# math-image --path=UlamWarburton,parts=1 --expression='i<20?i:0' --output=numbers --size=99x16
=pod
parts => "1"
14 | 73
13 | 63
12 | 53 62 72
11 | 49
10 | 39 48 71
9 | 35 47 61
8 | 31 34 38 46 52 60 70
7 | 29 45 59
6 | 19 28 69 67
5 | 15 27 57
4 | 11 14 18 26 68 58 51 56 66
3 | 9 25 23 43
2 | 5 8 24 17 22 44 37 42 65
1 | 3 7 13 21 33 41 55
Y=0 | 1 2 4 6 10 12 16 20 30 32 36 40 50 54 64
+-----------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X axis N=1,2,4,6,10,etc is the first of each depth level and Y axis
N=1,3,5,9,11,etc is the last.
In this arrangement horizontal arms have even N and vertical arms have
odd N. For example the vertical at X=8 N=30,33,37,etc has N odd and when it
turns to horizontal at N=42 or N=56 it becomes N even. The children of N=66
are not shown but the verticals from there are N=79 below and N=81 above and
so are odd again.
This odd/even pattern is true of N=2 horizontal and N=3 vertical and
thereafter is true due to each row having an even number of points and the
self-similar replications in the pattern,
|\ replication
| \ block 0 to 1 and 3
|3 \ and block 0 block 2 less sides
|----
|\ 2|\
| \ | \
|0 \|1 \
---------
Block 0 is the base and is replicated as block 1 and in reverse as block 3.
Block 2 is a further copy of block 0, but the two halves of block 0 rotated
inward 90 degrees, so the X axis of block 0 becomes the vertical of block 2,
and the Y axis of block 0 the horizontal of block 2. Those axis parts are
dropped since they're already covered by block 1 and 3 and dropping them
flips the odd/even parity to match the vertical/horizontal flip due to the
90-degree rotation.
=head2 N Start
The default is to number points starting N=1 as shown above. An optional
C<n_start> can give a different start, in the same pattern. For example to
start at 0,
=cut
# math-image --path=UlamWarburton,n_start=0 --expression='i<38?i:0' --output=numbers
=pod
n_start => 0
29 5
30 22 28 4
13 3
14 6 12 2
31 15 2 11 27 1
32 23 16 7 3 0 1 5 10 21 26 <- Y=0
33 17 4 9 25 -1
18 8 20 37 -2
19 -3
34 24 36 -4
35 -5
^
-5 -4 -3 -2 -1 X=0 1 2 3 4 5
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::UlamWarburton-E<gt>new ()>
=item C<$path = Math::PlanePath::UlamWarburton-E<gt>new (parts =E<gt> $str, n_start =E<gt> $n)>
Create and return a new path object. The C<parts> option (a string) can be
"4" the default
"2"
"1"
=back
=head2 Tree Methods
=over
=item C<@n_children = $path-E<gt>tree_n_children($n)>
Return the children of C<$n>, or an empty list if C<$n> has no children
(including when C<$n E<lt> 1>, ie. before the start of the path).
The children are the cells turned on adjacent to C<$n> at the next level.
The way points are numbered means that when there's multiple children
they're consecutive N values, for example at N=6 the children are 10,11,12.
=back
=head2 Tree Descriptive Methods
=over
=item C<@nums = $path-E<gt>tree_num_children_list()>
Return a list of the possible number of children at the nodes of C<$path>.
This is the set of possible return values from C<tree_n_num_children()>.
This list varies with the pattern parts,
parts tree_num_children_list()
----- ------------------------
4 0, 1, 3, 4
2 0, 1, 2, 3
1 0, 1, 2, 3
parts=4 has 4 children at the origin N=0 and thereafter either 0, 1 or 3.
parts=2 or parts=1 can have 2 children on the boundaries where the 3rd child
is chopped off.
=item C<$n_parent = $path-E<gt>tree_n_parent($n)>
Return the parent node of C<$n>, or C<undef> if C<$n E<lt>= 1> (the start of
the path).
=back
=head1 OEIS
This cellular automaton is in Sloane's Online Encyclopedia of Integer
Sequences as
=over
L<http://oeis.org/A147582> (etc)
=back
parts=4
A147562 total cells to depth, being tree_depth_to_n() n_start=0
A147582 added cells at depth
parts=2
A183060 total cells to depth=n in half plane
A183061 added cells at depth=n
parts=1
A151922 total cells to depth=n in quadrant
A079314 added cells at depth=n
The A147582 new cells sequence starts from n=1, so takes the innermost N=1
single cell as level n=1, then N=2,3,4,5 as level n=2 with 5 cells, etc.
This makes the formula a binary 1-bits count on n-1 rather than on N the way
levelcells() above is expressed.
The 1-bits-count power 3^(count 1-bits in level) part of the levelcells() is
also separately in A048883, and as n-1 in A147610.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::UlamWarburtonQuarter>,
L<Math::PlanePath::LCornerTree>,
L<Math::PlanePath::CellularRule>
L<Math::PlanePath::SierpinskiTriangle> (a similar binary 1s-count related
level calculation)
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|