This file is indexed.

/usr/share/perl5/Math/PlanePath/TerdragonCurve.pm is in libmath-planepath-perl 113-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
# Copyright 2011, 2012, 2013 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.



# math-image --path=TerdragonCurve --lines --scale=20
#
# math-image --path=TerdragonCurve --all --scale=10

# cf A106154 terdragon 6 something
#    A105499 terdragon permute something



package Math::PlanePath::TerdragonCurve;
use 5.004;
use strict;
use List::Util 'first';
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;

use Math::PlanePath;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest',
  'xy_is_even';
use Math::PlanePath::Base::Digits
  'digit_split_lowtohigh';

use vars '$VERSION', '@ISA';
$VERSION = 113;
@ISA = ('Math::PlanePath');

use Math::PlanePath::TerdragonMidpoint;

# uncomment this to run the ### lines
#use Smart::Comments;


use constant n_start => 0;
use constant parameter_info_array =>
  [ { name      => 'arms',
      share_key => 'arms_6',
      display   => 'Arms',
      type      => 'integer',
      minimum   => 1,
      maximum   => 6,
      default   => 1,
      width     => 1,
      description => 'Arms',
    } ];

sub dx_minimum {
  my ($self) = @_;
  return ($self->{'arms'} == 1 ? -1 : -2);
}
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant absdx_minimum => 1;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;

# arms=1 curve goes at 0,120,240 degrees
# arms=2 second +60 to 60,180,300 degrees
# so when arms==1 dir maximum is 240 degrees
sub dir_maximum_dxdy {
  my ($self) = @_;
  return ($self->{'arms'} == 1
          ? (-1,-1)    # 0,2,4 only           South-West
          : ( 1,-1));  # rotated to 1,3,5 too South-East
}

#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(6, $self->{'arms'} || 1));
  return $self;
}

my @dir6_to_si = (1,0,0, -1,0,0);
my @dir6_to_sj = (0,1,0, 0,-1,0);
my @dir6_to_sk = (0,0,1, 0,0,-1);

sub n_to_xy {
  my ($self, $n) = @_;
  ### TerdragonCurve n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n, $n); }

  my $zero = ($n * 0);  # inherit bignum 0

  my $i = 0;
  my $j = 0;
  my $k = 0;
  my $si = $zero;
  my $sj = $zero;
  my $sk = $zero;

  # initial rotation from arm number
  {
    my $int = int($n);
    my $frac = $n - $int;  # inherit possible BigFloat
    $n = $int;             # BigFloat int() gives BigInt, use that

    my $rot = _divrem_mutate ($n, $self->{'arms'});

    my $s = $zero + 1;  # inherit bignum 1
    if ($rot >= 3) {
      $s = -$s;         # rotate 180
      $frac = -$frac;
      $rot -= 3;
    }
    if ($rot == 0)    { $i = $frac; $si = $s; } # rotate 0
    elsif ($rot == 1) { $j = $frac; $sj = $s; } # rotate +60
    else              { $k = $frac; $sk = $s; } # rotate +120
  }

  foreach my $digit (digit_split_lowtohigh($n,3)) {
    ### at: "$i,$j,$k   side $si,$sj,$sk"
    ### $digit

    if ($digit == 1) {
      ($i,$j,$k) = ($si-$j, $sj-$k, $sk+$i);  # rotate +120 and add
    } elsif ($digit == 2) {
      $i -= $sk;   # add rotated +60
      $j += $si;
      $k += $sj;
    }

    # add rotated +60
    ($si,$sj,$sk) = ($si - $sk,
                     $sj + $si,
                     $sk + $sj);
  }

  ### final: "$i,$j,$k   side $si,$sj,$sk"
  ### is: (2*$i + $j - $k).",".($j+$k)

  return (2*$i + $j - $k, $j+$k);
}


# all even points when arms==6
sub xy_is_visited {
  my ($self, $x, $y) = @_;
  if ($self->{'arms'} == 6) {
    return xy_is_even($self,$x,$y);
  } else {
    return defined($self->xy_to_n($x,$y));
  }
}

# maximum extent -- no, not quite right
#
#          .----*
#           \
#       *----.
#
# Two triangle heights, so
#     rnext = 2 * r * sqrt(3)/2
#           = r * sqrt(3)
#     rsquared_next = 3 * rsquared
# Initial X=2,Y=0 is rsquared=4
# then X=3,Y=1 is 3*3+3*1*1 = 9+3 = 12 = 4*3
# then X=3,Y=3 is 3*3+3*3*3 = 9+3 = 36 = 4*3^2
#
my @try_dx = (2, 1, -1, -2, -1,  1);
my @try_dy = (0, 1,  1, 0,  -1, -1);

sub xy_to_n {
  return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
  my ($self, $x, $y) = @_;
  ### TerdragonCurve xy_to_n_list(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);

  if (is_infinite($x)) {
    return $x;  # infinity
  }
  if (is_infinite($y)) {
    return $y;  # infinity
  }

  my @n_list;
  my $xm = 2*$x;  # doubled out
  my $ym = 2*$y;
  foreach my $i (0 .. $#try_dx) {
    my $t = $self->Math::PlanePath::TerdragonMidpoint::xy_to_n
      ($xm+$try_dx[$i], $ym+$try_dy[$i]);

    ### try: ($xm+$try_dx[$i]).",".($ym+$try_dy[$i])
    ### $t

    next unless defined $t;

    my ($tx,$ty) = n_to_xy($self,$t)  # not a method for TerdragonRounded
      or next;

    if ($tx == $x && $ty == $y) {
      ### found: $t
      if (@n_list && $t < $n_list[0]) {
        unshift @n_list, $t;
      } elsif (@n_list && $t < $n_list[-1]) {
        splice @n_list, -1,0, $t;
      } else {
        push @n_list, $t;
      }
      if (@n_list == 3) {
        return @n_list;
      }
    }
  }
  return @n_list;
}

# minimum  -- no, not quite right
#
#                *----------*
#                 \
#                  \   *
#               *   \
#                    \
#          *----------*
#
# width = side/2
# minimum = side*sqrt(3)/2 - width
#         = side*(sqrt(3)/2 - 1)
#
# minimum 4/9 * 2.9^level roughly
# h = 4/9 * 2.9^level
# 2.9^level = h*9/4
# level = log(h*9/4)/log(2.9)
# 3^level = 3^(log(h*9/4)/log(2.9))
#         = h*9/4, but big bigger for log
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### TerdragonCurve rect_to_n_range(): "$x1,$y1  $x2,$y2"
  my $xmax = int(max(abs($x1),abs($x2)));
  my $ymax = int(max(abs($y1),abs($y2)));
  return (0,
          ($xmax*$xmax + 3*$ymax*$ymax + 1)
          * 2
          * $self->{'arms'});
}

my @dir6_to_dx   = (2, 1,-1,-2, -1, 1);
my @dir6_to_dy   = (0, 1, 1, 0, -1,-1);
my @digit_to_nextturn = (2,-2);
sub n_to_dxdy {
  my ($self, $n) = @_;
  ### n_to_dxdy(): $n

  if ($n < 0) {
    return;  # first direction at N=0
  }
  if (is_infinite($n)) {
    return ($n,$n);
  }

  my $int = int($n);  # integer part
  $n -= $int;         # fraction part

  # initial direction from arm
  my $dir6 = _divrem_mutate ($int, $self->{'arms'});

  my @ndigits = digit_split_lowtohigh($int,3);
  $dir6 += 2 * scalar(grep {$_==1} @ndigits);  # count 1s for total turn
  $dir6 %= 6;
  my $dx = $dir6_to_dx[$dir6];
  my $dy = $dir6_to_dy[$dir6];

  if ($n) {
    # fraction part

    # find lowest non-2 digit, or zero if all 2s or no digits at all
    $dir6 += $digit_to_nextturn[ first {$_!=2} @ndigits, 0];
    $dir6 %= 6;
    $dx += $n*($dir6_to_dx[$dir6] - $dx);
    $dy += $n*($dir6_to_dy[$dir6] - $dy);
  }
  return ($dx, $dy);
}

1;
__END__


# old n_to_xy()
#
# # initial rotation from arm number
# my $arms = $self->{'arms'};
# my $rot = $n % $arms;
# $n = int($n/$arms);

# my @digits;
# my (@si, @sj, @sk);  # vectors
# {
#   my $si = $zero + 1; # inherit bignum 1
#   my $sj = $zero;     # inherit bignum 0
#   my $sk = $zero;     # inherit bignum 0
#
#   for (;;) {
#     push @digits, ($n % 3);
#     push @si, $si;
#     push @sj, $sj;
#     push @sk, $sk;
#     ### push: "digit $digits[-1]   $si,$sj,$sk"
#
#     $n = int($n/3) || last;
#
#     # straight + rot120 + straight
#     ($si,$sj,$sk) = (2*$si - $sj,
#                      2*$sj - $sk,
#                      2*$sk + $si);
#   }
# }
# ### @digits
#
# my $i = $zero;
# my $j = $zero;
# my $k = $zero;
# while (defined (my $digit = pop @digits)) {  # digits high to low
#   my $si = pop @si;
#   my $sj = pop @sj;
#   my $sk = pop @sk;
#   ### at: "$i,$j,$k  $digit   side $si,$sj,$sk"
#   ### $rot
#
#   $rot %= 6;
#   if ($rot == 1)    { ($si,$sj,$sk) = (-$sk,$si,$sj); }
#   elsif ($rot == 2) { ($si,$sj,$sk) = (-$sj,-$sk,$si); }
#   elsif ($rot == 3) { ($si,$sj,$sk) = (-$si,-$sj,-$sk); }
#   elsif ($rot == 4) { ($si,$sj,$sk) = ($sk,-$si,-$sj); }
#   elsif ($rot == 5) { ($si,$sj,$sk) = ($sj,$sk,-$si); }
#
#   if ($digit) {
#     $i += $si;  # digit=1 or digit=2
#     $j += $sj;
#     $k += $sk;
#     if ($digit == 2) {
#       $i -= $sj;  # digit=2, straight+rot120
#       $j -= $sk;
#       $k += $si;
#     } else {
#       $rot += 2;  # digit=1
#     }
#   }
# }
#
# $rot %= 6;
# $i = $frac * $dir6_to_si[$rot] + $i;
# $j = $frac * $dir6_to_sj[$rot] + $j;
# $k = $frac * $dir6_to_sk[$rot] + $k;
#
# ### final: "$i,$j,$k"
# return (2*$i + $j - $k, $j+$k);


=for stopwords eg Ryde Dragon Math-PlanePath Nlevel Knuth et al vertices doublings OEIS Online terdragon ie morphism si,sj,sk dX,dY

=head1 NAME

Math::PlanePath::TerdragonCurve -- triangular dragon curve

=head1 SYNOPSIS

 use Math::PlanePath::TerdragonCurve;
 my $path = Math::PlanePath::TerdragonCurve->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Davis>X<Knuth, Donald>This is the terdragon curve by Davis and Knuth,


              30                28                                  7
            /     \           /     \
           /       \         /       \
     31,34 -------- 26,29,32 ---------- 27                          6
          \        /         \
           \      /           \
           24,33,42 ---------- 22,25                                5
           /      \           /     \
          /        \         /       \
    40,43,46 ------ 20,23,44 -------- 12,21            10           4
          \        /        \        /      \        /     \
           \      /          \      /        \      /       \
             18,45 --------- 13,16,19 ------ 8,11,14 -------- 9     3
                  \          /       \      /       \
                   \        /         \    /         \
                       17              6,15 --------- 4,7           2
                                            \        /    \
                                             \      /      \
                                               2,5 ---------- 3     1
                                                   \
                                                    \
                                         0 ----------- 1         <-Y=0

       ^       ^        ^        ^       ^      ^      ^      ^
      -4      -3       -2       -1      X=0     1      2      3

Points are a triangular grid using every second integer X,Y as per
L<Math::PlanePath/Triangular Lattice>.

The base figure is an "S" shape

       2-----3
        \
         \
    0-----1

which then repeats in self-similar style, so N=3 to N=6 is a copy rotated
+120 degrees, which is the angle of the N=1 to N=2 edge,

    6      4          base figure repeats
     \   / \          as N=3 to N=6,
      \/    \         rotated +120 degrees
      5 2----3
        \
         \
    0-----1

Then N=6 to N=9 is a plain horizontal, which is the angle of N=2 to N=3,

          8-----9       base figure repeats
           \            as N=6 to N=9,
            \           no rotation
       6----7,4
        \   / \
         \ /   \
         5,2----3
           \
            \
       0-----1

Notice N=5 is a repeat of point X=1,Y=1 which is also N=2, and then N=7
repeats the N=4 position X=2,Y=2.  Each point repeats up to 3 times.  Inner
points are 3 times and on the edges of the curve area up to 2 times.  The
first tripled point is X=1,Y=3 which can be seen above as N=8, N=11 and
N=14.

The curve never crosses itself.  The vertices touch as little triangular
corners and no edges repeat.

The shape is the same as the C<GosperSide>, but the turns here are by 120
degrees each whereas the C<GosperSide> is by 60 degrees each.  The extra
angle here tightens up the shape.

=head2 Spiralling

The first step N=1 is to the right along the X axis and the path then slowly
spirals anti-clockwise and progressively fatter.  The end of each
replication is

    Nlevel = 3^level

That point is at level*30 degrees around (as reckoned with the usual
Y*sqrt(3) for a triangular grid, per L<Math::PlanePath/Triangular Lattice>).

    Nlevel     X,Y     angle (degrees)
    ------    -----    -----
      1        1,0        0
      3        3,1       30
      9        3,3       60
     27        0,6       90
     81       -9,9      120
    243      -27,9      150
    729      -54,0      180

The following is points N=0 to N=3^6=729 going half-circle around to 180
degrees.  The N=0 origin is marked "o" and the N=729 end marked "e".

=cut

# the following generated by
#   math-image --path=TerdragonCurve --expression='i<=729?i:0' --text --size=132x40

=pod

                               * *               * *
                            * * * *           * * * *
                           * * * *           * * * *
                            * * * * *   * *   * * * * *   * *
                         * * * * * * * * * * * * * * * * * * *
                        * * * * * * * * * * * * * * * * * * *
                         * * * * * * * * * * * * * * * * * * * *
                            * * * * * * * * * * * * * * * * * * *
                           * * * * * * * * * * * *   * *   * * *
                      * *   * * * * * * * * * * * *           * *
     * e           * * * * * * * * * * * * * * * *           o *
    * *           * * * * * * * * * * * *   * *
     * * *   * *   * * * * * * * * * * * *
    * * * * * * * * * * * * * * * * * * *
     * * * * * * * * * * * * * * * * * * * *
        * * * * * * * * * * * * * * * * * * *
       * * * * * * * * * * * * * * * * * * *
        * *   * * * * *   * *   * * * * *
                 * * * *           * * * *
                * * * *           * * * *
                 * *               * *

=head2 Tiling

The little "S" shapes of the base figure N=0 to N=3 can be thought of as a
parallelogram

       2-----3
      .     .
     .     .
    0-----1

The "S" shapes of each 3 points make a tiling of the plane with those
parallelograms

        \     \ /     /   \     \ /     /
         *-----*-----*     *-----*-----*
        /     / \     \   /     / \     \
     \ /     /   \     \ /     /   \     \ /
    --*-----*     *-----*-----*     *-----*--
     / \     \   /     / \     \   /     / \
        \     \ /     /   \     \ /     /
         *-----*-----*     *-----*-----*
        /     / \     \   /     / \     \
     \ /     /   \     \ /     /   \     \ /
    --*-----*     *-----o-----*     *-----*--
     / \     \   /     / \     \   /     / \
        \     \ /     /   \     \ /     /
         *-----*-----*     *-----*-----*
        /     / \     \   /     / \     \

As per for example

=over

L<http://tilingsearch.org/HTML/data23/C07A.html>

=back

=head2 Arms

The curve fills a sixth of the plane and six copies mesh together perfectly
rotated by 60, 120, 180, 240 and 300 degrees.  The C<arms> parameter can
choose 1 to 6 such curve arms successively advancing.

For example C<arms =E<gt> 6> begins as follows.  N=0,6,12,18,etc is the
first arm (the same shape as the plain curve above), then N=1,7,13,19 the
second, N=2,8,14,20 the third, etc.

                  \         /             \           /
                   \       /               \         /
                --- 8/13/31 ---------------- 7/12/30 ---
                  /        \               /         \
     \           /          \             /           \          /
      \         /            \           /             \        /
    --- 9/14/32 ------------- 0/1/2/3/4/5 -------------- 6/17/35 ---
      /         \            /           \             /        \
     /           \          /             \           /          \
                  \        /               \         /
               --- 10/15/33 ---------------- 11/16/34 ---
                  /        \               /         \
                 /          \             /           \

With six arms every X,Y point is visited three times, except the origin 0,0
where all six begin.  Every edge between the points is traversed once.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::TerdragonCurve-E<gt>new ()>

=item C<$path = Math::PlanePath::TerdragonCurve-E<gt>new (arms =E<gt> 6)>

Create and return a new path object.

The optional C<arms> parameter can make 1 to 6 copies of the curve, each arm
successively advancing.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  If there's nothing at
C<$x,$y> then return C<undef>.

The curve can visit an C<$x,$y> up to three times.  In the current code the
smallest of the these N values is returned.  Is that the best way?

=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>

Return a list of N point numbers for coordinates C<$x,$y>.  There can be
none, one, two or three N's for a given C<$x,$y>.

=back

=head2 Descriptive Methods

=over

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=item C<$dx = $path-E<gt>dx_minimum()>

=item C<$dx = $path-E<gt>dx_maximum()>

=item C<$dy = $path-E<gt>dy_minimum()>

=item C<$dy = $path-E<gt>dy_maximum()>

The dX,dY values, on the first arm, take three possible combinations, at 120
degree angles.

    dX,dY
    -----
     2, 0        dX minimum -1, maximum +2   arms == 1
    -1, 1        dY minimum -1, maximum +1
     1,-1

For 2 or more arms the second arm is rotated by 60 degrees so giving
additional combinations for a total six

    dX,dY also
    -----
    -2, 0        dX minimum -2, maximum +2   arms >= 2
     1, 1        dY minimum -1, maximum +1
    -1,-1

=back

=head1 FORMULAS

=head2 N to X,Y

There's no reversals or reflections in the curve so C<n_to_xy()> can take
the digits of N either low to high or high to low applying what's in effect
powers of the N=3 position.  The current code goes low to high using i,j,k
coordinates as described in L<Math::PlanePath/Triangular Calculations>.

    si = 1    # position of endpoint N=3^level
    sj = 0    #    where level=number of digits processed
    sk = 0

    i = 0     # position of N for digits so far processed
    j = 0
    k = 0

    loop base 3 digits of N low to high
       if digit == 0
          i,j,k no change
       if digit == 1
          (i,j,k) = (si-j, sj-k, sk+i)  # rotate +120, add si,sj,sk
       if digit == 2
          i -= sk      # add (si,sj,sk) rotated +60
          j += si
          k += sj

       (si,sj,sk) = (si - sk,      # add rotated +60
                     sj + si,
                     sk + sj)

The digit handling is a combination of rotate and offset,

    digit==1                   digit 2
    rotate and offset          offset at si,sj,sk rotated 

         ^                          2------>
          \                            
           \                          \ 
    *---  --1                  *--   --*

The calculation can also be thought of as using w=1/2+I*sqrt(3)/2, a complex
sixth root of unity.  i is the real part, j in the w direction (60 degrees),
and k in the w^2 direction (120 degrees).  si,sj,sk increase as if
multiplied by w+1.

=head2 Turn

At each point N the curve always turns 120 degrees either to the left or
right, it never goes straight ahead.  If N is written in ternary then the
lowest non-zero digit gives the turn

   ternary
   lowest
   non-zero     Turn
   --------     ----
      1         left
      2         right

Essentially at N=3^level or N=2*3^level the turn follows the shape at that 1
or 2 point.  The first and last unit step in each level are in the same
direction, so the next level shape gives the turn.

       2*3^k-------3^(k+1)
          \
           \
    0-------1*3^k

=head2 Next Turn

The next turn, ie. the turn at position N+1, can be calculated from the
ternary digits of N similarly.  The lowest non-2 digit gives the turn.

   ternary
   lowest
   non-2       Turn
   -------     ----
      0        left
      1        right

If N is all 2s then the lowest non-2 is taken to be a 0 above the high end.
For example N=8 is 22 ternary so considered 022 for lowest non-2 digit=0 and
turn left after the segment at N=8, ie. at N=9 turn left.

=head2 Total Turn

The direction at N, ie. the total cumulative turn, is given by the number of
1 digits when N is written in ternary,

    direction = (count 1s in ternary N) * 120 degrees

For example N=12 is ternary 110 which has two 1s so the cumulative turn at
that point is 2*120=240 degrees, ie. the segment N=16 to N=17 is at angle
240.

=head2 X,Y to N

The current code applies C<TerdragonMidpoint> C<xy_to_n()> to calculate six
candidate N from the six edges around a point.  Those N values which convert
back to the target X,Y by C<n_to_xy()> are the results for
C<xy_to_n_list()>.

The six edges are three going towards the point and three going away.  The
midpoint calculation gives N-1 for the towards and N for the away.  Is there
a good way to tell which edge is the smallest?  Or just which 3 edges lead
away?  It might be directions 0,2,4 for the even arms and 1,3,5 for the odd
ones, but the boundary of those areas is tricky.

=head2 X,Y Visited

When arms=6 all "even" points of the plane are visited.  As per the
triangular representation of X,Y this means

    X+Y mod 2 == 0        "even" points

=head1 OEIS

The terdragon is in Sloane's Online Encyclopedia of Integer Sequences as,

=over

L<http://oeis.org/A080846> (etc)

=back

    A080846   next turn 0=left,1=right, by 120 degrees
                (n=0 is turn at N=1)

    A060236   turn 1=left,2=right, by 120 degrees
                (lowest non-zero ternary digit)
    A137893   turn 1=left,0=right (morphism)
    A189640   turn 0=left,1=right (morphism, extra initial 0)
    A189673   turn 1=left,0=right (morphism, extra initial 0)
    A038502   strip trailing ternary 0s,
                taken mod 3 is turn 1=left,2=right

    A026225   N positions of left turns,
                being (3*i+1)*3^j so lowest non-zero digit is a 1
    A026179   N positions of right turns (except initial 1)
    A060032   bignum turns 1=left,2=right to 3^level

    A062756   total turn, count ternary 1s
    A005823   N positions where total turn == 0, ternary no 1s

A189673 and A026179 start with extra initial values arising from their
morphism definition.  That can be skipped to consider the turns starting
with a left turn at N=1.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::TerdragonRounded>,
L<Math::PlanePath::TerdragonMidpoint>,
L<Math::PlanePath::GosperSide>

L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::R5DragonCurve>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut