This file is indexed.

/usr/share/perl5/Math/PlanePath/SquareReplicate.pm is in libmath-planepath-perl 113-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Copyright 2011, 2012, 2013 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=SquareReplicate --lines --scale=10
# math-image --path=SquareReplicate --all --output=numbers_dash --size=80x50


package Math::PlanePath::SquareReplicate;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh';

# uncomment this to run the ### lines
#use Devel::Comments;


use constant n_start => 0;
use constant xy_is_visited => 1;
use constant ddiffxy_maximum => 1;
use constant dir_maximum_dxdy => (0,-1); # South


#------------------------------------------------------------------------------
#  4 3 2
#  5 0 1
#  6 7 8
#
my @digit_to_x = (0,1, 1,0,-1, -1, -1,0,1);
my @digit_to_y = (0,0, 1,1,1,   0, -1,-1,-1);

sub n_to_xy {
  my ($self, $n) = @_;
  ### SquareReplicate n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  {
    my $int = int($n);
    ### $int
    ### $n
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;       # BigFloat int() gives BigInt, use that
  }

  my $x = my $y = ($n * 0);  # inherit bignum 0
  my $len = ($x + 1);        # inherit bignum 1

  foreach my $digit (digit_split_lowtohigh($n,9)) {
    ### at: "$x,$y  digit=$digit"

    $x += $digit_to_x[$digit] * $len;
    $y += $digit_to_y[$digit] * $len;
    $len *= 3;
  }

  ### final: "$x,$y"
  return ($x,$y);
}

#   mod    digit
#  5 3 4   4 3 2     (x mod 3) + 3*(y mod 3)
#  2 0 1   5 0 1
#  8 6 7   6 7 8
#
my @mod_to_digit = (0,1,5, 3,2,4, 7,8,6);

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### SquareReplicate xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  my ($len,$level_limit);
  {
    my $xa = abs($x);
    my $ya = abs($y);
    ($len,$level_limit) = round_down_pow (2*($xa > $ya ? $xa : $ya) || 1, 3);
    ### $level_limit
    ### $len
  }
  $level_limit += 2;
  if (is_infinite($level_limit)) {
    return $level_limit;
  }

  my $n = ($x * 0 * $y);  # inherit bignum 0
  my $power = ($n + 1);   # inherit bignum 1
  while ($x || $y) {
    if ($level_limit-- < 0) {
      ### oops, level limit reached ...
      return undef;
    }
    my $m = ($x % 3) + 3*($y % 3);
    my $digit = $mod_to_digit[$m];
    ### at: "$x,$y  m=$m digit=$digit"

    $x -= $digit_to_x[$digit];
    $y -= $digit_to_y[$digit];
    ### subtract: "$digit_to_x[$digit],$digit_to_y[$digit] to $x,$y"

    ### assert: $x % 3 == 0
    ### assert: $y % 3 == 0
    $x /= 3;
    $y /= 3;
    $n += $digit * $power;
    $power *= 9;
  }
  return $n;
}

# level   N    Xmax
#   1   9^1-1    1
#   2   9^2-1    1+3
#   3   9^3-1    1+3+9
# X <= 3^0+3^1+...+3^(level-1)
# X <= 1 + 3^0+3^1+...+3^(level-1)
# X <= (3^level - 1)/2
# 2*X+1 <= 3^level
# level >= log3(2*X+1)
#
# X < 1  +  3^0+3^1+...+3^(level-1)
# X < 1 + (3^level - 1)/2
# (3^level - 1)/2 > X-1
# 3^level - 1 > 2*X-2
# 3^level > 2*X-1
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### SquareReplicate rect_to_n_range(): "$x1,$y1  $x2,$y2"

  my $max = abs(round_nearest($x1));
  foreach ($y1, $x2, $y2) {
    my $m = abs(round_nearest($_));
    if ($m > $max) { $max = $m }
  }
  my ($pow) = round_down_pow (2*($max||1)-1, 3);
  return (0, 9*$pow*$pow - 1);  # 9^level-1
}

1;
__END__

=for stopwords eg Ryde Math-PlanePath aabbccdd

=head1 NAME

Math::PlanePath::SquareReplicate -- replicating squares

=head1 SYNOPSIS

 use Math::PlanePath::SquareReplicate;
 my $path = Math::PlanePath::SquareReplicate->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path is a self-similar replicating square,

    40--39--38  31--30--29  22--21--20         4
     |       |   |       |   |       |
    41  36--37  32  27--28  23  18--19         3
     |           |           |
    42--43--44  33--34--35  24--25--26         2

    49--48--47   4-- 3-- 2  13--12--11         1
     |       |   |       |   |       |
    50  45--46   5   0-- 1  14   9--10     <- Y=0
     |           |           |
    51--52--53   6-- 7-- 8  15--16--17        -1

    58--57--56  67--66--65  76--75--74        -2
     |       |   |       |   |       |
    59  54--55  68  63--64  77  72--73        -3
     |           |           |
    60--61--62  69--70--71  78--79--80        -4

                     ^
    -4  -3  -2  -1  X=0  1   2   3   4

The base shape is the initial N=0 to N=8 section,

   4  3  2
   5  0  1
   6  7  8

It then repeats with 3x3 blocks arranged in the same pattern, then 9x9
blocks, etc.

    36 --- 27 --- 18
     |             |
     |             |
    45      0 ---  9
     |              
     |              
    54 --- 63 --- 72

The replication means that the values on the X axis are those using only
digits 0,1,5 in base 9.  Those to the right have a high 1 digit and those to
the left a high 5 digit.  These digits are the values in the initial N=0 to
N=8 figure which fall on the X axis.

Similarly on the Y axis digits 0,3,7 in base 9, or the leading diagonal X=Y
0,2,6 and opposite diagonal 0,4,8.  The opposite diagonal digits 0,4,8 are
00,11,22 in base 3, so is all the values in base 3 with doubled digits
aabbccdd, etc.

=head2 Level Ranges

A given replication extends to

    Nlevel = 9^level - 1
    - (3^level - 1) <= X <= (3^level - 1)
    - (3^level - 1) <= Y <= (3^level - 1)

=head2 Complex Base

This pattern corresponds to expressing a complex integer X+i*Y in base b=3,

    X+Yi = a[n]*b^n + ... + a[2]*b^2 + a[1]*b + a[0]

using complex digits a[i] encoded in N in integer base 9,

    a[i] digit     N digit
    ----------     -------
          0           0
          1           1
        i+1           2
        i             3
        i-1           4
         -1           5
       -i-1           6
       -i             7
       -i+1           8

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::SquareReplicate-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

=back

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::CornerReplicate>,
L<Math::PlanePath::LTiling>,
L<Math::PlanePath::GosperReplicate>,
L<Math::PlanePath::QuintetReplicate>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut