/usr/share/perl5/Math/PlanePath/SierpinskiArrowheadCentres.pm is in libmath-planepath-perl 113-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 | # Copyright 2011, 2012, 2013 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=SierpinskiArrowheadCentres --lines --scale=10
#
# math-image --path=SierpinskiArrowheadCentres --all --output=numbers_dash
# math-image --path=SierpinskiArrowheadCentres --all --text --size=80
package Math::PlanePath::SierpinskiArrowheadCentres;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'digit_split_lowtohigh',
'digit_join_lowtohigh';
# uncomment this to run the ### lines
#use Smart::Comments;
use Math::PlanePath::SierpinskiArrowhead;
*parameter_info_array # align parameter
= \&Math::PlanePath::SierpinskiArrowhead::parameter_info_array;
*new = \&Math::PlanePath::SierpinskiArrowhead::new;
use constant n_start => 0;
use constant class_y_negative => 0;
*x_negative = \&Math::PlanePath::SierpinskiArrowhead::x_negative;
*x_maximum = \&Math::PlanePath::SierpinskiArrowhead::x_maximum;
use constant sumxy_minimum => 0; # triangular X>=-Y
use Math::PlanePath::SierpinskiTriangle;
*diffxy_maximum = \&Math::PlanePath::SierpinskiTriangle::diffxy_maximum;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
*dx_minimum = \&Math::PlanePath::SierpinskiArrowhead::dx_minimum;
*dx_maximum = \&Math::PlanePath::SierpinskiArrowhead::dx_maximum;
*absdx_minimum = \&Math::PlanePath::SierpinskiArrowhead::absdx_minimum;
*absdx_maximum = \&Math::PlanePath::SierpinskiArrowhead::absdx_maximum;
*dsumxy_minimum = \&Math::PlanePath::SierpinskiArrowhead::dsumxy_minimum;
*dsumxy_maximum = \&Math::PlanePath::SierpinskiArrowhead::dsumxy_maximum;
sub ddiffxy_minimum {
my ($self) = @_;
return ($self->{'align'} eq 'right' ? -1 : -2);
}
sub ddiffxy_maximum {
my ($self) = @_;
return ($self->{'align'} eq 'right' ? 1 : 2);
}
*dir_maximum_dxdy = \&Math::PlanePath::SierpinskiArrowhead::dir_maximum_dxdy;
#------------------------------------------------------------------------------
# States as multiples of 3 so that state+digit is the lookup for next state
# and x,y bit.
#
# 0 3 6 9 12 15
#
# 8 0 4 4 0 8
# | | |\ |\ \ \
# 7-6 1-2 3 5 5 3 2-1 6-7
# \ \ | \ | \ | |
# 1 5 7 3 2 6 6 2 3 7 5 1
# |\ \ |\ \ \ | \ | | |\ | |\
# 0 2-3-4 8 6-5-4 0-1 7-8 8-7 1-0 4-5-6 8 4-3-2 0
# 15 6 3
# 6 0 0 12 12 6
# 0,1 0,2 1,2
my @next_state = (6,0,15, 12,3,9, # 3,6
0,6,12, 15,9,3, # 6,9
3,12,6, 9,15,0); # 12,15
my @state_to_xbit = (0,1,0, 0,1,0,
0,0,1, 1,0,0,
0,0,1, 1,0,0); # 12,15
my @state_to_ybit = (0,0,1, 1,0,0,
0,1,0, 0,1,0,
1,0,0, 0,0,1); # 12,15
# dx,dy for digit==0 and digit==1 in each stage
my @state_to_dx;
my @state_to_dy;
foreach my $state (0,1, 3,4, 6,7, 9,10, 12,13, 15,16) {
$state_to_dx[$state] = $state_to_xbit[$state+1] - $state_to_xbit[$state];
$state_to_dy[$state] = $state_to_ybit[$state+1] - $state_to_ybit[$state];
}
sub n_to_xy {
my ($self, $n) = @_;
### SierpinskiArrowheadCentres n_to_xy(): $n
if ($n < 0) {
return;
}
if (is_infinite($n)) {
return ($n,$n);
}
my $int = int($n);
$n -= $int; # fraction part
my @digits = digit_split_lowtohigh($int,3);
my $state = ($#digits & 1 ? 6 : 0);
### @digits
### $state
my (@x,@y); # bits low to high
my $dirstate = $state ^ 6; # if all digits==2
foreach my $i (reverse 0 .. $#digits) {
### at: "x=".join(',',@x[($i+1)..$#digits])." y=".join(',',@y[($i+1)..$#digits])." apply i=$i state=$state digit=$digits[$i]"
my $digit = $digits[$i]; # high to low
$state += $digit;
$x[$i] = $state_to_xbit[$state];
$y[$i] = $state_to_ybit[$state];
if ($digit != 2) {
$dirstate = $state; # lowest non-2 digit
}
$state = $next_state[$state];
}
my $zero = $int * 0;
my $x = $n*$state_to_dx[$dirstate] + digit_join_lowtohigh(\@x,2,$zero);
my $y = $n*$state_to_dy[$dirstate] + digit_join_lowtohigh(\@y,2,$zero);
if ($self->{'align'} eq 'right') {
$y += $x;
} elsif ($self->{'align'} eq 'left') {
($x,$y) = (-$y,$x+$y);
} elsif ($self->{'align'} eq 'triangular') {
($x,$y) = ($x-$y,$x+$y);
}
return ($x,$y);
}
sub xy_to_n {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
### SierpinskiArrowheadCentres xy_to_n(): "$x, $y"
if ($y < 0) {
return undef;
}
if ($self->{'align'} eq 'left') {
if ($x > 0) {
return undef;
}
$x = 2*$x + $y; # adjust to triangular style
} elsif ($self->{'align'} eq 'triangular') {
if (($x%2) != ($y%2)) {
return undef;
}
} else {
# right or diagonal
if ($x < 0) {
return undef;
}
if ($self->{'align'} eq 'right') {
$x = 2*$x - $y;
} else { # diagonal
($x,$y) = ($x-$y, $x+$y);
}
}
### adjusted xy: "$x,$y"
my ($len, $level) = round_down_pow ($y, 2);
### pow2 round up: ($y + ($y==$x || $y==-$x))
### $len
### $level
$level += 1;
if (is_infinite($level)) {
return $level;
}
my $n = 0;
while ($level) {
$n *= 3;
### at: "$x,$y level=$level len=$len"
if ($y < 0 || $x < -$y || $x > $y) {
### out of range ...
return undef;
}
if ($y < $len) {
### digit 0, first triangle, no change ...
} else {
if ($level & 1) {
### odd level ...
if ($x > 0) {
### digit 1, right triangle ...
$n += 1;
$y -= $len;
$x = - ($x-$len);
### shift right and mirror to: "$x,$y"
} else {
### digit 2, left triangle ...
$n += 2;
$x += 1;
$y -= 2*$len-1;
### shift down to: "$x,$y"
($x,$y) = ((3*$y-$x)/2, # rotate -120
($x+$y)/-2);
### rotate to: "$x,$y"
}
} else {
### even level ...
if ($x < 0) {
### digit 1, left triangle ...
$n += 1;
$y -= $len;
$x = - ($x+$len);
### shift right and mirror to: "$x,$y"
} else {
### digit 2, right triangle ...
$n += 2;
$x -= 1;
$y -= 2*$len-1;
### shift down to: "$x,$y"
($x,$y) = (($x+3*$y)/-2, # rotate +120
($x-$y)/2);
### now: "$x,$y"
}
}
}
$level--;
$len /= 2;
}
### final: "$x,$y with n=$n"
if ($x == 0 && $y == 0) {
return $n;
} else {
return undef;
}
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### SierpinskiArrowheadCentres rect_to_n_range(): "$x1,$y1, $x2,$y2"
$y1 = round_nearest ($y1);
$y2 = round_nearest ($y2);
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } # swap to y1<=y2
if ($self->{'align'} eq 'diagonal') {
$y2 += max (round_nearest ($x1),
round_nearest ($x2));
}
unless ($y2 >= 0) {
### rect all negative, no N ...
return (1, 0);
}
my ($len,$level) = round_down_pow ($y2, 2);
### $y2
### $level
return (0, 3**($level+1) - 1);
}
1;
__END__
#------------------------------------------------------------------------------
# Old n_to_xy() triangular with explicit add/sub.
# my $x = my $y = ($int * 0); # inherit bigint 0
# my $len = $x + 1; # inherit bigint 1
#
# my @digits = digit_split_lowtohigh($int,3);
# for (;;) {
# unless (@digits) {
# $x = $n + $x;
# $y = $n + $y;
# last;
# }
# my $digit = shift @digits; # low to high
#
# ### odd right: "$x, $y len=$len frac=$n"
# ### $digit
# if ($digit == 0) {
# $x = $n + $x;
# $y = $n + $y;
# $n = 0;
#
# } elsif ($digit == 1) {
# $x = -2*$n -$x + $len; # mirror and offset
# $y += $len;
# $n = 0;
#
# } else {
# ($x,$y) = (($x+3*$y)/-2 - 1, # rotate +120
# ($x-$y)/2 + 2*$len-1);
# }
#
# unless (@digits) {
# $x = -$n + $x;
# $y = $n + $y;
# last;
# }
# $digit = shift @digits; # low to high
# $len *= 2;
#
# ### odd left: "$x, $y len=$len frac=$n"
# ### $digit
# if ($digit == 0) {
# $x = -$n + $x;
# $y = $n + $y;
# $n = 0;
#
# } elsif ($digit == 1) {
# $x = 2*$n + -$x - $len; # mirror and offset
# $y += $len;
# $n = 0;
#
# } else {
# ($x,$y) = ((3*$y-$x)/2 + 1, # rotate -120
# ($x+$y)/-2 + 2*$len-1);
# }
# $len *= 2;
# }
#
# ### final: "$x,$y"
# if ($self->{'align'} eq 'right') {
# return (($x+$y)/2, $y);
# } elsif ($self->{'align'} eq 'left') {
# return (($x-$y)/2, $y);
# } elsif ($self->{'align'} eq 'diagonal') {
# return (($x+$y)/2, ($y-$x)/2);
# } else { # triangular
# return ($x,$y);
# }
#------------------------------------------------------------------------------
=for stopwords eg Ryde Sierpinski Nlevel ie Math-PlanePath bitand dX,dY
=head1 NAME
Math::PlanePath::SierpinskiArrowheadCentres -- self-similar triangular path traversal
=head1 SYNOPSIS
use Math::PlanePath::SierpinskiArrowheadCentres;
my $path = Math::PlanePath::SierpinskiArrowheadCentres->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Sierpinski, Waclaw>This is a version of the Sierpinski arrowhead path
taking the centres of each triangle represented by the arrowhead segments.
The effect is to traverse the C<SierpinskiTriangle> points in a connected
sequence.
... ...
/ /
. 30 . . . . . 65 . ...
/ \ /
28----29 . . . . . . 66 68 9
\ \ /
27 . . . . . . . 67 8
\
26----25 19----18----17 15----14----13 7
/ \ \ / /
24 . 20 . 16 . 12 6
\ / /
23 21 . . 10----11 5
\ / \
22 . . . 9 4
/
4---- 5---- 6 8 3
\ \ /
3 . 7 2
\
2---- 1 1
/
0 <- Y=0
-9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7
The base figure is the N=0 to N=2 shape. It's repeated up in mirror image
as N=3 to N=6 then rotated across as N=6 to N=9. At the next level the same
is done with N=0 to N=8 as the base, then N=9 to N=17 up mirrored, and N=18
to N=26 across, etc.
The X,Y coordinates are on a triangular lattice using every second integer
X, per L<Math::PlanePath/Triangular Lattice>.
The base pattern is a triangle like
.-------.-------.
\ / \ /
\ 2 / \ 1 /
\ / \ /
.- - - -.
\ /
\ 0 /
\ /
.
Higher levels replicate this within the triangles 0,1,2 but the middle is
not traversed. The result is the familiar Sierpinski triangle by connected
steps of either 2 across or 1 diagonal.
* * * * * * * * * * * * * * * *
* * * * * * * *
* * * * * * * *
* * * *
* * * * * * * *
* * * *
* * * *
* *
* * * * * * * *
* * * *
* * * *
* *
* * * *
* *
* *
*
See the C<SierpinskiTriangle> path to traverse by rows instead.
=head2 Level Ranges
Counting the N=0,1,2 part as level 1, each replication level goes from
Nstart = 0
Nlevel = 3^level - 1 inclusive
For example level 2 from N=0 to N=3^2-1=9. Each level doubles in size,
0 <= Y <= 2^level - 1
- (2^level - 1) <= X <= 2^level - 1
The Nlevel position is alternately on the right or left,
Xlevel = / 2^level - 1 if level even
\ - 2^level + 1 if level odd
The Y axis ie. X=0, is crossed just after N=1,5,17,etc which is is 2/3
through the level, which is after two replications of the previous level,
Ncross = 2/3 * 3^level - 1
= 2 * 3^(level-1) - 1
=head2 Align Parameter
An optional C<align> parameter controls how the points are arranged relative
to the Y axis. The default shown above is "triangular". The choices are
the same as for the C<SierpinskiTriangle> path.
"right" means points to the right of the axis, packed next to each other and
so using an eighth of the plane.
=cut
# math-image --path=SierpinskiArrowheadCentres,align=right --all --output=numbers_dash
=pod
align => "right"
| |
7 | 26-25 19-18-17 15-14-13
| / | |/ /
6 | 24 20 16 12
| | / /
5 | 23 21 10-11
| |/ |
4 | 22 9
| /
3 | 4--5--6 8
| | |/
2 | 3 7
| |
1 | 2--1
| /
Y=0 | 0
+--------------------------
X=0 1 2 3 4 5 6 7
"left" is similar but skewed to the left of the Y axis, ie. into negative X.
=cut
# math-image --path=SierpinskiArrowheadCentres,align=left --all --output=numbers_dash
=pod
align => "left"
\ |
26-25 19-18-17 15-14-13 | 7
| \ \ | | |
24 20 16 12 | 6
\ | | |
23 21 10-11 | 5
\ | \ |
22 9 | 4
| |
4--5--6 8 | 3
\ \ | |
3 7 | 2
\ |
2--1 | 1
| |
0 | Y=0
--------------------------+
-7 -6 -5 -4 -3 -2 -1 X=0
"diagonal" puts rows on diagonals down from the Y axis to the X axis. This
uses the whole of the first quadrant, with gaps.
=cut
# math-image --expression='i<=26?i:0' --path=SierpinskiArrowheadCentres,align=diagonal --output=numbers_dash
=pod
align => "diagonal"
| |
7 | 26
| \
6 | 24-25
| |
5 | 23 19
| | |\
4 | 22-21-20 18
| \
3 | 4 17
| |\ |
2 | 3 5 16-15
| | \ \
1 | 2 6 10 14
| \ | |\ \
Y=0 | 0--1 7--8--9 11-12-13
+--------------------------
X=0 1 2 3 4 5 6 7
These diagonals visit all points X,Y where X and Y written in binary have no
1-bits in the same places, ie. where S<X bitand Y> = 0. This is the same as
the C<SierpinskiTriangle> with align=diagonal.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::SierpinskiArrowheadCentres-E<gt>new ()>
=item C<$path = Math::PlanePath::SierpinskiArrowheadCentres-E<gt>new (align =E<gt> $str)>
Create and return a new arrowhead path object. C<align> is a string, one of
the following as described above.
"triangular" the default
"right"
"left"
"diagonal"
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
If C<$n> is not an integer then the return is on a straight line between the
integer points.
=back
=head1 FORMULAS
=head2 N to X,Y
The align="diagonal" style is the most convenient to calculate. Each
ternary digit of N becomes a bit of X and Y.
ternary digits of N, high to low
xbit = state_to_xbit[state+digit]
ybit = state_to_ybit[state+digit]
state = next_state[state+digit]
There's a total of 6 states which are the permutations of 0,1,2 in the three
triangular parts. The states are in pairs as forward and reverse, but that
has no particular significance. Numbering the states by "3"s allows the
digit 0,1,2 to be added to make an index into tables for X,Y bit and next
state.
state=0 state=3
+---------+ +---------+
|^ 2 | | |\ 0 | |
| \ | | | \ | |
| \ | | | v | |
|----+----| |----+----|
| |^ | | || |
| 0 || 1 | | 0 || 1 |
|--->|| | |<---|v |
+---------+ +---------+
state=6 state=9
+---------+ +---------+
| | | | | |
| 1 | | | 1 | |
|--->| | |<---| |
|----+----| |----+----|
|^ |\ 2 | || |^ |
||0 | \ | || 2 | \0 |
|| | v | |v | \ |
+---------+ +---------+
state=12 state=15
+---------+ +---------+
|| 0 | | |^ | |
|| | | || 2 | |
|v | | || | |
|----+----| |----+----|
|\ 1 | | |^ 1 | |
| \ | 2 | | \ | 0 |
| v |--->| | \ |<---|
+---------+ +---------+
The initial state is 0 if an even number of ternary digits, or 6 if odd. In
the samples above it can be seen for example that N=0 to N=8 goes upwards as
per state 0, whereas N=0 to N=2 goes across as per state 6.
Having calculated an X,Y in align="diagonal" style it can be mapped to the
other alignments by
align coordinates from diagonal X,Y
----- -----------------------------
triangular X-Y, X+Y
right X, X+Y
left -Y, X+Y
=head2 N to dX,dY
For fractional N the direction of the curve towards the N+1 point can be
found from the least significant digit 0 or 1 (ie. a non-2 digit) and the
state at that point.
This works because if the least significant ternary digit of N is a 2 then
the direction of the curve is determined by the next level up, and so on for
all trailing 2s until reaching a non-2 digit.
If N is all 2s then the direction should be reckoned from an initial 0 digit
above them, which means the opposite 6 or 0 of the initial state.
=head2 Rectangle to N Range
An easy over-estimate of the range can be had from inverting the Nlevel
formulas in L</Level Ranges> above.
level = floor(log2(Ymax)) + 1
Nmax = 3^level - 1
For example Y=5, level=floor(log2(11))+1=3, so Nmax=3^3-1=26, which is the
left end of the Y=7 row, ie. rounded up to the end of the Y=4 to Y=7
replication.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::SierpinskiArrowhead>,
L<Math::PlanePath::SierpinskiTriangle>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013 Kevin Ryde
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|