This file is indexed.

/usr/share/perl5/Math/PlanePath/PeanoCurve.pm is in libmath-planepath-perl 113-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
# Copyright 2010, 2011, 2012, 2013 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# cf
#
# http://www.cut-the-knot.org/Curriculum/Geometry/PeanoComplete.shtml
#     Java applet, directions in 9 sub-parts
#
# math-image --path=PeanoCurve,radix=5 --all --output=numbers
# math-image --path=PeanoCurve,radix=5 --lines
#
# T = 0.a1 a2 ...
# X = 0.b1 b2 ...
# Y = 0.c1 c2 ...
#
# b1=a1
# c1 = a2 comp(a1)
# b2 = a3 comp(a2)
# c2 = a4 comp(a1+a3)
#
# bn = a[2n-1] comp a2+a4+...+a[2n-2]
# cn = a[2n] comp a1+a3+...+a[2n-1]
#
# Brouwer(?) no continuous one-to-one between R and RxR, so line and plane
# are distinguished.
#


package Math::PlanePath::PeanoCurve;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';

# uncomment this to run the ### lines
# use Smart::Comments;


use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1;

use constant parameter_info_array =>
  [ { name      => 'radix',
      display   => 'Radix',
      share_key => 'radix_3',
      type      => 'integer',
      minimum   => 2,
      default   => 3,
      width     => 3,
    } ];

sub dx_minimum {
  my ($self) = @_;
  return ($self->{'radix'} % 2
          ? -1      # odd
          : undef); # even, unlimited
}
sub dx_maximum {
  my ($self) = @_;
  return ($self->{'radix'} % 2
          ? 1         # odd
          : undef);   # even, unlimited
}

*dy_minimum = \&dx_minimum;
*dy_maximum = \&dx_maximum;

*dsumxy_minimum = \&dx_minimum;
*dsumxy_maximum = \&dx_maximum;

*ddiffxy_minimum = \&dx_minimum;
*ddiffxy_maximum = \&dx_maximum;

sub dir_maximum_dxdy {
  my ($self) = @_;
  return ($self->{'radix'} % 2
          ? (0,-1)   # odd, South
          : (0,0));  # even, supremum
}


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);

  if (! $self->{'radix'} || $self->{'radix'} < 2) {
    $self->{'radix'} = 3;
  }
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### PeanoCurve n_to_xy(): $n
  if ($n < 0) {            # negative
    return;
  }
  if (is_infinite($n)) {
    return ($n,$n);
  }

  {
    # ENHANCE-ME: for odd radix the ends join and the direction can be had
    # without a full N+1 calculation
    my $int = int($n);
    ### $int
    ### $n
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int; # BigFloat int() gives BigInt, use that
  }

  my $radix = $self->{'radix'};
  my @ndigits = digit_split_lowtohigh($n,$radix)
    or return (0,0);

  # high to low style
  #
  my $radix_minus_1 = $radix - 1;
  my $xk = 0;
  my $yk = 0;
  my @ydigits;
  my @xdigits;

  $#ndigits |= 1;      # ensure even number of entries
  $ndigits[-1] ||= 0;  # possible 0 as extra high digit
  ### @ndigits

  foreach my $i (reverse 0 .. ($#ndigits >> 1)) {
    ### $i
    {
      my $ndigit = pop @ndigits;  # high to low
      $xk ^= $ndigit;
      $ydigits[$i] = ($yk & 1 ? $radix_minus_1-$ndigit : $ndigit);
    }
    @ndigits || last;
    {
      my $ndigit = pop @ndigits;
      $yk ^= $ndigit;
      $xdigits[$i] = ($xk & 1 ? $radix_minus_1-$ndigit : $ndigit);
    }
  }

  ### @xdigits
  ### @ydigits
  my $zero = ($n * 0);  # inherit bignum 0
  return (digit_join_lowtohigh(\@xdigits, $radix, $zero),
          digit_join_lowtohigh(\@ydigits, $radix, $zero));



  # low to high style
  #
  # my $x = my $y = ($n * 0);  # inherit bignum 0
  # my $power = 1 + $x;        # inherit bignum 1
  #
  # while (@ndigits) {   # N digits low to high
  #   ### $power
  #   {
  #     my $ndigit = shift @ndigits;  # low to high
  #     if ($ndigit & 1) {
  #       $y = $power-1 - $y;   # 99..99 - Y
  #     }
  #     $x += $power * $ndigit;
  #   }
  #   @ndigits || last;
  #   {
  #     my $ndigit = shift @ndigits;  # low to high
  #     $y += $power * $ndigit;
  #     $power *= $radix;
  #
  #     if ($ndigit & 1) {
  #       $x = $power-1 - $x;
  #     }
  #   }
  # }
  # return ($x, $y);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### PeanoCurve xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  if ($x < 0 || $y < 0) {
    return undef;
  }
  if (is_infinite($x)) {
    return $x;
  }
  if (is_infinite($y)) {
    return $y;
  }

  my $radix = $self->{'radix'};
  my $zero = ($x * 0 * $y);  # inherit bignum 0

  my @x = digit_split_lowtohigh ($x, $radix);
  my @y = digit_split_lowtohigh ($y, $radix);

  my $radix_minus_1 = $radix - 1;
  my $xk = 0;
  my $yk = 0;

  my @n;  # stored low to high, generated from high to low
  my $i_high = max($#x,$#y);
  my $npos = 2*$i_high+1;

  foreach my $i (reverse 0 .. $i_high) {  # high to low
    {
      my $digit = $y[$i] || 0;
      if ($yk & 1) {
        $digit = $radix_minus_1 - $digit;  # reverse digit
      }
      $n[$npos--] = $digit;
      $xk ^= $digit;
    }
    {
      my $digit = $x[$i] || 0;
      if ($xk & 1) {
        $digit = $radix_minus_1 - $digit;  # reverse digit
      }
      $n[$npos--] = $digit;
      $yk ^= $digit;
    }
  }
  return digit_join_lowtohigh (\@n, $radix, $zero);
}

# exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);
  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  ### rect_to_n_range(): "$x1,$y1 to $x2,$y2"

  if ($x2 < 0 || $y2 < 0) {
    return (1, 0);
  }

  my $radix = $self->{'radix'};

  my ($power, $level) = round_down_pow (max($x2,$y2), $radix);
  if (is_infinite($level)) {
    return (0, $level);
  }

  my $n_power = $power * $power * $radix;
  my $max_x = 0;
  my $max_y = 0;
  my $max_n = 0;
  my $max_xk = 0;
  my $max_yk = 0;

  my $min_x = 0;
  my $min_y = 0;
  my $min_n = 0;
  my $min_xk = 0;
  my $min_yk = 0;

  # l<=c<h doesn't overlap c1<=c<=c2 if
  #     l>c2 or h-1<c1
  #     l>c2 or h<=c1
  # so does overlap if
  #     l<=c2 and h>c1
  #
  my $radix_minus_1 = $radix - 1;
  my $overlap = sub {
    my ($c,$ck,$digit, $c1,$c2) = @_;
    if ($ck & 1) {
      $digit = $radix_minus_1 - $digit;
    }
    ### overlap consider: "inv".($ck&1)."digit=$digit ".($c+$digit*$power)."<=c<".($c+($digit+1)*$power)." cf $c1 to $c2 incl"
    return ($c + $digit*$power <= $c2
            && $c + ($digit+1)*$power > $c1);
  };

  while ($level-- >= 0) {
    ### $power
    ### $n_power
    ### $max_n
    ### $min_n
    {
      my $digit;
      for ($digit = $radix_minus_1; $digit > 0; $digit--) {
        last if &$overlap ($max_y,$max_yk,$digit, $y1,$y2);
      }
      $max_n += $n_power * $digit;
      $max_xk ^= $digit;
      if ($max_yk&1) { $digit = $radix_minus_1 - $digit; }
      $max_y += $power * $digit;
      ### max y digit (complemented): $digit
      ### $max_y
      ### $max_n
    }
    {
      my $digit;
      for ($digit = 0; $digit < $radix_minus_1; $digit++) {
        last if &$overlap ($min_y,$min_yk,$digit, $y1,$y2);
      }
      $min_n += $n_power * $digit;
      $min_xk ^= $digit;
      if ($min_yk&1) { $digit = $radix_minus_1 - $digit; }
      $min_y += $power * $digit;
      ### min y digit (complemented): $digit
      ### $min_y
      ### $min_n
    }

    $n_power = int($n_power/$radix);
    {
      my $digit;
      for ($digit = $radix_minus_1; $digit > 0; $digit--) {
        last if &$overlap ($max_x,$max_xk,$digit, $x1,$x2);
      }
      $max_n += $n_power * $digit;
      $max_yk ^= $digit;
      if ($max_xk&1) { $digit = $radix_minus_1 - $digit; }
      $max_x += $power * $digit;
      ### max x digit (complemented): $digit
      ### $max_x
      ### $max_n
    }
    {
      my $digit;
      for ($digit = 0; $digit < $radix_minus_1; $digit++) {
        last if &$overlap ($min_x,$min_xk,$digit, $x1,$x2);
      }
      $min_n += $n_power * $digit;
      $min_yk ^= $digit;
      if ($min_xk&1) { $digit = $radix_minus_1 - $digit; }
      $min_x += $power * $digit;
      ### min x digit (complemented): $digit
      ### $min_x
      ### $min_n
    }

    $power = int($power/$radix);
    $n_power = int($n_power/$radix);
  }
  ### is: "$min_n at $min_x,$min_y  to  $max_n at $max_x,$max_y"
  return ($min_n, $max_n);
}

1;
__END__


#    +--+
#    |  |
# +--+--+--+
#    |  |
#    +--+
# 
#          +
#          |
#       +--+--+
#       |  |  |
#    +--+--+--+--+
#    |  |  |  |  |
# +--+--+--+--+--+--+
#    |  |  |  |  |
#    +--+--+--+--+
#       |  |  |
#       +--+--+
#          |
#          +


=for stopwords Guiseppe Peano Peano's there'll eg Sur une courbe qui remplit toute aire Mathematische Annalen Ryde OEIS trit-twiddling ie bignums prepending trit Math-PlanePath versa Online Radix radix Georg representable Mephisto DOI bitwise

=head1 NAME

Math::PlanePath::PeanoCurve -- 3x3 self-similar quadrant traversal

=head1 SYNOPSIS

 use Math::PlanePath::PeanoCurve;
 my $path = Math::PlanePath::PeanoCurve->new;
 my ($x, $y) = $path->n_to_xy (123);

 # or another radix digits ...
 my $path5 = Math::PlanePath::PeanoCurve->new (radix => 5);

=head1 DESCRIPTION

X<Peano, Guiseppe>This path is an integer version of the curve described by
Peano for filling a unit square,

=over

Guiseppe Peano, "Sur une courbe, qui remplit toute une aire plane",
Mathematische Annalen, volume 36, number 1, 1890, p157-160.  DOI
10.1007/BF01199438.
L<http://www.springerlink.com/content/w232301n53960133/>

=back

It traverses a quadrant of the plane one step at a time in a self-similar
3x3 pattern,

       8    60--61--62--63--64--65  78--79--80--...
             |                   |   |
       7    59--58--57  68--67--66  77--76--75
                     |   |                   |
       6    54--55--56  69--70--71--72--73--74
             |
       5    53--52--51  38--37--36--35--34--33
                     |   |                   |
       4    48--49--50  39--40--41  30--31--32
             |                   |   |
       3    47--46--45--44--43--42  29--28--27
                                             |
       2     6---7---8---9--10--11  24--25--26
             |                   |   |
       1     5---4---3  14--13--12  23--22--21
                     |   |                   |
      Y=0    0---1---2  15--16--17--18--19--20

           X=0   1   2   3   4   5   6   7   8   9 ...

The start is an S shape of the nine points 0 to 8, and then nine of those
groups are put together in the same S configuration.  The sub-parts are
flipped horizontally and/or vertically to make the starts and ends adjacent,
so 8 is next to 9, 17 next to 18, etc,

    60,61,62 --- 63,64,65     78,79,80
    59,58,57     68,67,55     77,76,75
    54,55,56     69,70,71 --- 72,73,74
     |
     |
    53,52,51     38,37,36 --- 35,34,33
    48,49,50     39,40,41     30,31,32
    47,46,45 --- 44,43,42     29,28,27
                                     |
                                     |
     6,7,8  ----  9,10,11     24,25,26
     3,4,5       12,13,14     23,22,21
     0,1,2       15,16,17 --- 18,19,20

The process repeats, tripling in size each time.

Within a power-of-3 square, 3x3, 9x9, 27x27, 81x81 etc (3^k)x(3^k) at the
origin, all the N values 0 to 3^(2*k)-1 are within the square.  The top
right corner 8, 80, 728, etc is the 3^(2*k)-1 maximum in each.

Because each step is by 1, the distance along the curve between two X,Y
points is the difference in their N values as given by C<xy_to_n()>.

=head2 Radix

The C<radix> parameter can do the calculation in a base other than 3, using
the same kind of direction reversals.  For example radix 5 gives 5x5 groups,

=cut

# math-image --path=PeanoCurve,radix=5 --expression='i<=50?i:0' --output=numbers_dash

=pod

     radix => 5

      4  |  20--21--22--23--24--25--26--27--28--29
         |   |                                   |
      3  |  19--18--17--16--15  34--33--32--31--30
         |                   |   |
      2  |  10--11--12--13--14  35--36--37--38--39
         |   |                                   |
      1  |   9-- 8-- 7-- 6-- 5  44--43--42--41--40
         |                   |   |
     Y=0 |   0-- 1-- 2-- 3-- 4  45--46--47--48--49--50-...
         |
         +----------------------------------------------
           X=0   1   2   3   4   5   6   7   8   9  10

If the radix is even then the ends of each group don't join up.  For example
in radix 4 N=15 isn't next to N=16, nor N=31 to N=32, etc.

=cut

# math-image --path=PeanoCurve,radix=4 --expression='i<=33?i:0' --output=numbers_dash

=pod

     radix => 4

      3  |  15--14--13--12  16--17--18--19
         |               |               |
      2  |   8-- 9--10--11  23--22--21--20
         |   |               |
      1  |   7-- 6-- 5-- 4  24--25--26--27
         |               |               |
     Y=0 |   0-- 1-- 2-- 3  31--30--29--28  32--33-...
         |
         +------------------------------------------
           X=0   1   2   4   5   6   7   8   9  10

Even sizes can be made to join using other patterns, but this module is just
Peano's digit construction.  For joining up in 2x2 groupings see
C<HilbertCurve> (which is essentially the only way to join up in 2x2).  For
bigger groupings there's various ways.

=head2 Unit Square

Peano's original form was for filling a unit square by mapping a number T in
the range 0E<lt>TE<lt>1 to a pair of X,Y coordinates 0E<lt>XE<lt>1 and
0E<lt>YE<lt>1.  The curve is continuous and every such X,Y is reached, so it
fills the unit square.  A unit cube or higher dimension can be filled
similarly by developing three or more coordinates X,Y,Z, etc.  Georg Cantor
had shown a line is equivalent to the plane, Peano's mapping is a continuous
way to do that.

The code here could be pressed into service for a fractional T to X,Y by
multiplying up by a power of 9 to desired precision then dividing X and Y
back by the same power of 3 (perhaps swapping X,Y for which one should be
the first ternary digit).  Note that if T is a binary floating point then a
power of 3 division will round off in general since 1/3 is not exactly
representable.  (See C<HilbertCurve> or C<ZOrderCurve> for binary mappings.)

=head2 Diagonal Lines

The Peano curve is sometimes shown as

         +-----+
         |     |
    -----+-----+-----
         |     |
         +-----+

As for example in

=over

X<Moore, Eliakim Hastings>E. H. Moore, "On Certain Crinkly
Curves",Trans. Am. Math. Soc., volume 1, number 1, 1900, pages 72-90.

L<http://www.ams.org/journals/tran/1900-001-01/S0002-9947-1900-1500526-4/>
L<http://www.ams.org/tran/1900-001-01/S0002-9947-1900-1500526-4/S0002-9947-1900-1500526-4.pdf>

L<http://www.ams.org/journals/tran/1900-001-04/S0002-9947-1900-1500428-3/>
L<http://www.ams.org/journals/tran/1900-001-04/S0002-9947-1900-1500428-3/S0002-9947-1900-1500428-3.pdf>

=back

The base "S" pattern in this form is the same, but turned 45 degrees and
line segments making diagonals through the squares, per the ".." marked
lines in the following.

    +--------+--------+--------+        +--------+--------+--------+
    |     .. | ..     |     .. |        |        |        |        |
    |6  ..   |7  ..   |8  ..   |        |    6--------7--------8   |
    | ..     |     .. | ..     |        |    |   |        |        |
    +--------+--------+--------+        +----|---+--------+--------+
    | ..     |     .. | ..     |        |    |   |        |        |
    |   ..  5|   ..  4|   ..  3|        |    5--------4--------3   |
    |     .. | ..     |     .. |        |        |        |    |   |
    +--------+--------+--------+        +--------+--------+----|---+
    |     .. | ..     |     .. |        |        |        |    |   |
    |0  ..   |1  ..   |2  ..   |        |    0--------1--------2   |
    | ..     |     .. | ..     |        |        |        |        |
    +--------+--------+--------+        +--------+--------+--------+

    X==Y mod 2 "even" points leading-diagonal  "/"
    X!=Y mod 2 "odd"  points opposite-diagonal "\"

Rounding off the corners of the diagonal form so they don't touch can help
show the equivalence,

=cut

# cf Math::PlanePath::PeanoRounded ... when finished

=pod

      -----7        /
     /      \      /
    6        -----8
    |
    |        4-----
     \      /      \
      5-----        3
                    |
      -----1        |
     /      \      /
    0        -----2

=head2 Power of 3 Patterns

Plotting sequences of values with some connection to ternary digits or
powers of 3 will usually give the most interesting patterns on the Peano
curve.  For example the Mephisto waltz sequence
(eg. L<Math::NumSeq::MephistoWaltz>) makes diamond shapes,

    **   *  ***   *  *  *** **   *** **   *** ** **   *  *
    *  *   ** ** ***   ** ***  *  *   ** ** ***   ** ***
      *** **   *** ** **   *  ***   *  ***   *  *  *** **
     ** ***  *  *   ***  *   ** ** ***  *  *   ***  *   **
      *** **   *** ** **   *  ***   *  ***   *  *  *** **
    *  *   ** ** ***   ** ***  *  *   ** ** ***   ** ***
      *** **   *** ** **   *  ***   *  ***   *  *  *** **
     ** ***  *  *   ***  *   ** ** ***  *  *   ***  *   **
    **   *  ***   *  *  *** **   *** **   *** ** **   *  *
    *  *   ** ** ***   ** ***  *  *   ** ** ***   ** ***
    **   *  ***   *  *  *** **   *** **   *** ** **   *  *
     ** ***  *  *   ***  *   ** ** ***  *  *   ***  *   **
      *** **   *** ** **   *  ***   *  ***   *  *  *** **
     ** ***  *  *   ***  *   ** ** ***  *  *   ***  *   **
    **   *  ***   *  *  *** **   *** **   *** ** **   *  *
     ** ***  *  *   ***  *   ** ** ***  *  *   ***  *   **
      *** **   *** ** **   *  ***   *  ***   *  *  *** **
    *  *   ** ** ***   ** ***  *  *   ** ** ***   ** ***
      *** **   *** ** **   *  ***   *  ***   *  *  *** **
     ** ***  *  *   ***  *   ** ** ***  *  *   ***  *   **
    **   *  ***   *  *  *** **   *** **   *** ** **   *  *
    *  *   ** ** ***   ** ***  *  *   ** ** ***   ** ***
    **   *  ***   *  *  *** **   *** **   *** ** **   *  *
     ** ***  *  *   ***  *   ** ** ***  *  *   ***  *   **
    **   *  ***   *  *  *** **   *** **   *** ** **   *  *
    *  *   ** ** ***   ** ***  *  *   ** ** ***   ** ***
      *** **   *** ** **   *  ***   *  ***   *  *  *** **

This arises from each 3x3 block in the Mephisto waltz being one of two
shapes which are then flipped by the Peano pattern

    * * _                     _ _ *
    * _ _           or        _ * *    (inverse)
    _ _ *                     * * _

    0,0,1, 0,0,1, 1,1,0       1,1,0, 1,1,0, 0,0,1

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::PeanoCurve-E<gt>new ()>

=item C<$path = Math::PlanePath::PeanoCurve-E<gt>new (radix =E<gt> $integer)>

Create and return a new path object.

The optional C<radix> parameter gives the base for digit splitting.  The
default is ternary C<radix =E<gt> 3>.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.  Integer positions are always just 1 apart either
horizontally or vertically, so the effect is that the fraction part appears
either added to or subtracted from X or Y.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return an integer point number for coordinates C<$x,$y>.  Each integer N is
considered the centre of a unit square and an C<$x,$y> within that square
returns N.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

Return a range of N values which occur in a rectangle with corners at
C<$x1>,C<$y1> and C<$x2>,C<$y2>.  If the X,Y values are not integers then
the curve is treated as unit squares centred on each integer point and
squares which are partly covered by the given rectangle are included.

The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.

=back

=head1 FORMULAS

=head2 N to X,Y

Peano's calculation is based on putting base-3 digits of N alternately to X
or Y.  From the high end of N a digit is appended to Y then the next
appended to X.  Beginning at an even digit position in N makes the last
digit go to X so the first N=0,1,2 goes along the X axis.

At each stage a "complement" state is maintained for X and for Y.  When
complemented the digit is reversed to S<2 - digit>, so 0,1,2 becomes 2,1,0.
This reverses the direction so points like N=12,13,14 shown above go to the
left, or groups like 9,10,11 then 12,13,14 then 15,16,17 go downwards.

The complement is calculated by adding the digits from N which went to the
other one of X or Y.  So the X complement is the sum of digits which have
gone to Y so far.  Conversely the Y complement is the sum of digits put
to X.  If the complement sum is odd then the reversal is done.  A bitwise
XOR can be used instead of a sum to accumulate odd/even-ness the same way as
a sum.

When forming the complement state the original digits from N are added,
before applying any complementing for putting them to X or Y.  If the radix
is odd, like the default 3, then complementing doesn't change it mod 2 so
either before or after is fine, but if the radix is even then it's not the
same.

It also works to take the base-3 digits of N from low to high, generating
low to high digits in X and Y.  When an odd digit is put to X then the low
digits of Y so far must be complemented as S<22..22 - Y> (the 22..22 value
being all 2s in base 3, ie. 3^k-1).  Conversely if an odd digit is put to Y
then X must be complemented.  With this approach the high digit position in
N doesn't have to be found, but instead peel off digits of N from the low
end.  But the subtract to complement is then more work if using bignums.

=head2 X,Y to N

The X,Y to N calculation can be done by an inverse of either the high to low
or low to high methods above.  In both cases digits are put alternately from
X and Y onto N, with complement as necessary.

For the low to high approach it's not easy to complement just the X digits
in the N constructed so far, but it works to build and complement the X and
Y digits separately then at the end interleave to make the final N.
Complementing is the ternary equivalent of an XOR in binary.  On a ternary
machine some trit-twiddling could no doubt do it.

For the low to high with even radix the complementing is also tricky since
changing the accumulated X affects the digits of Y below that, and vice
versa.  What's the rule?  Is it alternate digits which end up complemented?
In any case the current C<xy_to_n()> code goes high to low which is easier,
but means breaking the X,Y inputs into arrays of digits before beginning.

=head2 N to abs(dX),abs(dY)

The curve goes horizontally or vertically according to the number of trailing "2" digits when N is written in ternary,

    N trailing 2s   direction     abs(dX)     abs(dY)
    -------------   ---------     -------
      even          horizontal       1          0
      odd           vertical         0          1

For example N=5 is "12" in ternary has 1 trailing "2" which is odd so the
step from N=5 to N=6 is vertical.

This works because when stepping from N to N+1 a carry propagates through
the trailing 2s to increment the digit above.  Digits go alternately to X or
Y so odd or even trailing 2s put that carry into an X digit or Y digit.

          X Y X Y X
    N   ... 2 2 2 2
    N+1   1 0 0 0 0  carry propagates

=head2 Rectangle to N Range

An easy over-estimate of the maximum N in a region can be had by going to
the next bigger (3^k)x(3^k) square enclosing the region.  This means the
biggest X or Y rounded up to the next power of 3 (perhaps using C<log()> if
you trust its accuracy), so

    find k with 3^k > max(X,Y)
    N_hi = 3^(2k) - 1

An exact N range can be found by following the "high to low" N to X,Y
procedure above.  Start with the easy over-estimate to find a 3^(2k) ternary
digit position in N bigger than the desired region, then choose a digit
0,1,2 for X, the biggest which overlaps some of the region.  Or if there's
an X complement then the smallest digit is the biggest N, again whichever
overlaps the region.  Then likewise for a digit of Y, etc.

Biggest and smallest N must maintain separate complement states as they
track down different N digits.  A single loop can be used since there's the
same "2k" many digits of N to consider for both.

The N range of any shape can be done this way, not just a rectangle like
C<rect_to_n_range()>.  The procedure only depends on asking whether a
one-third sub-part of X or Y overlaps the target region or not.

=head1 OEIS

This path is in Sloane's Online Encyclopedia of Integer Sequences in several
forms,

=over

L<http://oeis.org/A163528> (etc)

=back

    A163528    X coordinate
    A163529    Y coordinate
    A163530    X+Y coordinate sum
    A163531    X^2+Y^2 square of distance from origin
    A163532    dX, change in X -1,0,1
    A163533    dY, change in Y -1,0,1
    A014578    abs(dX) from n-1 to n, 1=horiz 0=vertical
                 thue-morse count low 0-bits + 1 mod 2
    A182581    abs(dY) from n-1 to n, 0=horiz 1=vertical
                 thue-morse count low 0-bits mod 2
    A163534    direction of each step (up,down,left,right)
    A163535    direction, transposed X,Y
    A163536    turn 0=straight,1=right,2=left
    A163537    turn, transposed X,Y
    A163342    diagonal sums
    A163479    diagonal sums divided by 6

    A163480    N on X axis
    A163481    N on Y axis
    A163343    N on X=Y diagonal, 0,4,8,44,40,36,etc
    A163344    N on X=Y diagonal divided by 4
    A007417    N+1 of positions of horizontals, ternary even trailing 0s
    A145204    N+1 of positions of verticals, ternary odd trailing 0s

    A163332    Peano N -> ZOrder radix=3 N mapping
                 and vice versa since is self-inverse
    A163333    with ternary digit swaps before and after

And taking X,Y points by the Diagonals sequence, then the value of the
following sequences is the N of the Peano curve at those positions.

    A163334    numbering by diagonals, from same axis as first step
    A163336    numbering by diagonals, from opposite axis
    A163338    A163334 + 1, Peano starting from N=1
    A163340    A163336 + 1, Peano starting from N=1

C<Math::PlanePath::Diagonals> numbers points from the Y axis down, which is
the opposite axis to the Peano curve first step along the X axis, so a plain
C<Diagonals> -> C<PeanoCurve> is the "opposite axis" form A163336.

These sequences are permutations of the integers since all X,Y positions of
the first quadrant are reached eventually.  The inverses are as follows.
They can be thought of taking X,Y positions in the Peano curve order and
then asking what N the Diagonals would put there.

    A163335    inverse of A163334
    A163337    inverse of A163336
    A163339    inverse of A163338
    A163341    inverse of A163340

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::HilbertCurve>,
L<Math::PlanePath::ZOrderCurve>,
L<Math::PlanePath::AR2W2Curve>,
L<Math::PlanePath::BetaOmega>,
L<Math::PlanePath::CincoCurve>,
L<Math::PlanePath::KochelCurve>,
L<Math::PlanePath::WunderlichMeander>

L<Math::PlanePath::KochCurve>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut