This file is indexed.

/usr/share/perl5/Math/PlanePath/HexSpiralSkewed.pm is in libmath-planepath-perl 113-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# Copyright 2010, 2011, 2012, 2013 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::HexSpiralSkewed;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'round_nearest';

# uncomment this to run the ### lines
#use Devel::Comments;


use Math::PlanePath::SquareSpiral;
*parameter_info_array = \&Math::PlanePath::SquareSpiral::parameter_info_array;
use constant xy_is_visited => 1;

use constant dx_minimum => -1;
use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant dsumxy_minimum => -1; # W,S straight
use constant dsumxy_maximum => 1;  # N,E straight
use constant ddiffxy_minimum => -2; # NW diagonal
use constant ddiffxy_maximum => 2;  # SE diagonal
use constant dir_maximum_dxdy => (1,-1); # South-East


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);

  # parameters
  $self->{'wider'} ||= 0;  # default
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }

  return $self;
}

# Same as HexSpiral, but diagonal down and to the left is the downwards
# vertical at x=-$w_left.

sub n_to_xy {
  my ($self, $n) = @_;
  ### HexSpiralSkewed n_to_xy(): $n

  $n = $n - $self->{'n_start'};  # N=0 basis
  if ($n < 0) { return; }

  my $w = $self->{'wider'};
  my $w_right = int($w/2);
  my $w_left = $w - $w_right;
  #### $w
  #### $w_left
  #### $w_right

  my $d = int((sqrt(int(3*$n) + ($w+2)*$w + 1) - 1 - $w) / 3);
  #### d frac: (sqrt(int(3*$n) + ($w+2)*$w + 1) - 1 - $w) / 3
  #### $d
  $n -= (3*$d + 2 + 2*$w)*$d + 1;
  #### remainder: $n

  $n += 1; # N=1 basis

  if ($n <= $d+1+$w) {
    #### bottom horizontal
    return ($n - $w_left,
            -$d);
  }
  $n -= $d+1+$w;
  if ($n <= $d) {
    #### right lower vertical, being 1 shorter: $n
    return ($d + 1 + $w_right,
            $n - $d);
  }
  $n -= $d;
  if ($n <= $d+1) {
    #### right upper diagonal: $n
    return (-$n + $d + 1 + $w_right,
            $n);
  }
  $d = $d + 1; # no warnings if $d==infinity
  $n -= $d;
  if ($n <= $d+$w) {
    #### top horizontal
    return (-$n + $w_right,
            $d);
  }
  $n -= $d+$w;
  if ($n <= $d) {
    #### left upper vertical
    return (-$d - $w_left,
            -$n + $d);
  }
  #### left lower diagonal
  $n -= $d;
  return ($n - $d - $w_left,
          -$n);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  my $w = $self->{'wider'};
  my $w_right = int($w/2);
  my $w_left = $w - $w_right;

  if ($y > 0) {
    $x -= $w_right;
    if ($x < -$y-$w) {
      ### left upper vertical
      my $d = -$x - $w;
      ### $d
      ### base: (3*$d + 1 + 2*$w)*$d
      return ((3*$d + 1 + 2*$w)*$d
              - $y
              + $self->{'n_start'});
    } else {
      my $d = $y + max($x,0);
      ### right upper diagonal and top horizontal
      ### $d
      ### base: (3*$d - 1 + 2*$w)*$d - $w
      return ((3*$d - 1 + 2*$w)*$d - $w
              - $x
              + $self->{'n_start'});
    }

  } else {
    # $y < 0
    $x += $w_left;
    if ($x-$w <= -$y) {
      my $d = -$y + max(-$x,0);
      ### left lower diagonal and bottom horizontal
      ### $d
      ### base: (3*$d + 2 + 2*$w)*$d + 1
      return ((3*$d + 2 + 2*$w)*$d
              + $x
              + $self->{'n_start'});
    } else {
      ### right lower vertical
      my $d = $x - $w;
      ### $d
      ### base: (3*$d - 2 + 2*$w)*$d + 1 - $w
      return ((3*$d - 2 + 2*$w)*$d - $w
              + $y
              + $self->{'n_start'});
    }
  }
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### HexSpiralSkewed rect_to_n_range(): $x1,$y1, $x2,$y2

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  my $w = $self->{'wider'};
  my $w_right = int($w/2);
  my $w_left = $w - $w_right;

  my $d = 0;
  foreach my $x ($x1, $x2) {
    $x += $w_left;
    if ($x >= $w) {
      $x -= $w;
    }
    foreach my $y ($y1, $y2) {
      $d = max ($d,
                (($y > 0) == ($x > 0)
                 ? abs($x) + abs($y)      # top right or bottom left diagonals
                 : max(abs($x),abs($y)))); # top left or bottom right squares
    }
  }
  $d += 1;

  # diagonal downwards bottom right being the end of a revolution
  # s=0
  # s=1  n=7
  # s=2  n=19
  # s=3  n=37
  # s=4  n=61
  # n = 3*$d*$d + 3*$d + 1
  #
  ### gives: "sum $d is " . (3*$d*$d + 3*$d + 1)

  # ENHANCE-ME: find actual minimum if rect doesn't cover 0,0
  return ($self->{'n_start'},
          (3*$d + 3 + 2*$self->{'wider'})*$d + $self->{'n_start'});
}

1;
__END__

=for stopwords PlanePath Ryde Math-PlanePath OEIS

=head1 NAME

Math::PlanePath::HexSpiralSkewed -- integer points around a skewed hexagonal spiral

=head1 SYNOPSIS

 use Math::PlanePath::HexSpiralSkewed;
 my $path = Math::PlanePath::HexSpiralSkewed->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path makes a hexagonal spiral with points skewed so as to fit a square
grid and fully cover the plane.

    13--12--11   ...              2
     |         \   \
    14   4---3  10  23            1
     |   |     \   \   \
    15   5   1---2   9  22    <- Y=0
      \   \          |   | 
        16   6---7---8  21       -1
          \              |    
            17--18--19--20       -2

     ^   ^   ^   ^   ^   ^ 
    -2  -1  X=0  1   2   3  ...

The kinds of N=3*k^2 numbers which fall on straight lines in the plain
C<HexSpiral> also fall on straight lines when skewed.  See
L<Math::PlanePath::HexSpiral> for notes on this.

=head2 Skew

The skewed path is the same shape as the plain C<HexSpiral>, but fits more
points on a square grid.  The skew pushes the top horizontal to the left, as
shown by the following parts, and the bottom horizontal is similarly skewed
but to the right.

    HexSpiralSkewed               HexSpiral

    13--12--11                   13--12--11       
     |         \                /          \      
    14          10            14            10    
     |             \         /                \  
    15               9     15                   9

    -2  -1  X=0  1   2     -4 -3 -2  X=0  2  3  4

In general the coordinates can be converted each way by

    plain X,Y -> skewed (X-Y)/2, Y

    skewed X,Y -> plain 2*X+Y, Y

=head1 Corners

C<HexSpiralSkewed> is similar to the C<SquareSpiral> but cuts off the
top-right and bottom-left corners so that each loop is 6 steps longer than
the previous, whereas for the C<SquareSpiral> it's 8.  See
L<Math::PlanePath::SquareSpiral/Corners> for other corner cutting.

=head2 Wider

An optional C<wider> parameter makes the path wider, stretched along the top
and bottom horizontals.  For example

    $path = Math::PlanePath::HexSpiralSkewed->new (wider => 2);

gives

    21--20--19--18--17                    2
     |                 \    
    22   8---7---6---5  16                1
     |   |             \   \    
    23   9   1---2---3---4  15        <- Y=0
      \   \                  |     
       24   10--11--12--13--14  ...      -1
          \                      |    
            25--26--27--28--29--30       -2

     ^   ^   ^   ^   ^   ^   ^   ^ 
    -4  -3  -2  -1  X=0  1   2   3  ...

The centre horizontal from N=1 is extended by C<wider> many further places,
then the path loops around that shape.  The starting point 1 is shifted to
the left by wider/2 places (rounded up to an integer) to keep the spiral
centred on the origin X=0,Y=0.

Each loop is still 6 longer than the previous, since the widening is
basically a constant amount added into each loop.  The result is the same as
the plain C<HexSpiral> of the same widening too.  The effect looks better in
the plain C<HexSpiral>.

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start with the same shape etc.  For example
to start at 0,

=cut

# math-image --path=HexSpiralSkewed,n_start=0 --all --output=numbers --size=70x9

=pod

    n_start => 0

    27  26  25  24                            3
    28  12  11  10  23                        2
    29  13   3   2   9  22                    1
    30  14   4   0   1   8  21 ...       <- Y=0
        31  15   5   6   7  20  39           -1
            32  16  17  18  19  38           -2
                33  34  35  36  37           -3
                 
    -3  -2  -1  X=0  1   2   3   4

In this numbering the X axis N=0,1,8,21,etc is the octagonal numbers
3*X*(X+1).

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::HexSpiralSkewed-E<gt>new ()>

=item C<$path = Math::PlanePath::HexSpiralSkewed-E<gt>new (wider =E<gt> $w)>

Create and return a new hexagon spiral object.  An optional C<wider>
parameter widens the spiral path, it defaults to 0 which is no widening.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  C<$x> and C<$y> are
each rounded to the nearest integer, which has the effect of treating each
point in the path as a square of side 1.

=back

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A056105> (etc)

=back

    A056105    N on X axis, 3n^2-2n+1
    A056106    N on Y axis, 3n^2-n+1
    A056107    N on North-West diagonal, 3n^2+1
    A056108    N on X negative axis, 3n^2+n+1
    A056109    N on Y negative axis, 3n^2+2n+1
    A003215    N on South-East diagonal, centred hexagonals

    n_start=0
      A000567    N on X axis, octagonal numbers
      A049450    N on Y axis
      A049451    N on X negative axis
      A045944    N on Y negative axis, octagonal numbers second kind
      A062783    N on X=Y diagonal north-east
      A033428    N on north-west diagonal, 3*k^2
      A063436    N on south-west diagonal
      A028896    N on south-east diagonal

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::HexSpiral>,
L<Math::PlanePath::HeptSpiralSkewed>,
L<Math::PlanePath::PentSpiralSkewed>,
L<Math::PlanePath::DiamondSpiral>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut