/usr/share/perl5/Math/PlanePath/HexArms.pm is in libmath-planepath-perl 113-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | # Copyright 2011, 2012, 2013 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=HexArms --lines --scale=10
# math-image --path=HexArms --all --output=numbers_dash
# math-image --path=HexArms --values=Polygonal,polygonal=8
# Abundant: A005101
# octagonal numbers ...
# 26-gonal near vertical x2
# 152 near horizontal
#
# 2
# 164 +162
# 542 +378 +216
# 1136 +594 +216
#
package Math::PlanePath::HexArms;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'round_nearest';
# uncomment this to run the ### lines
#use Devel::Comments '###';
use constant arms_count => 6;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_even;
use constant dx_minimum => -2;
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant absdx_minimum => 1;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
use constant dir_maximum_dxdy => (1,-1); # South-East
#------------------------------------------------------------------------------
# [ 0, 1, 2, 3,],
# [ 0, 1, 3, 6 ],
# N = (1/2 d^2 + 1/2 d)
# d = -1/2 + sqrt(2 * $n + 1/4)
# = (-1 + 2*sqrt(2 * $n + 1/4)) / 2
# = (-1 + sqrt(8 * $n + 1)) / 2
sub n_to_xy {
my ($self, $n) = @_;
#### HexArms n_to_xy: $n
if ($n < 2) {
if ($n < 1) { return; }
### centre
$n--;
return ($n, -$n); # from n=1 towards n=7 at x=1,y=-1
}
$n -= 2;
my $frac;
{ my $int = int($n);
$frac = $n - $int;
$n = $int; # BigFloat int() gives BigInt, use that
}
# arm as initial rotation
my $rot = _divrem_mutate($n,6);
### $n
my $d = int ((-1 + sqrt(8 * $n + 1)) / 2);
### d frac: ((-1 + sqrt(8 * $n + 1)) / 2)
### $d
### base: $d*($d+1)/2
$n -= $d*($d+1)/2;
### remainder: $n
### assert: $n <= $d
$rot += ($d % 6);
my $x = $frac + 2 + $d + $n;
my $y = $frac - $d + $n;
$rot %= 6;
if ($rot >= 3) {
$rot -= 3;
$x = -$x; # rotate 180
$y = -$y;
}
if ($rot == 0) {
return ($x,$y);
} elsif ($rot == 1) {
return (($x-3*$y)/2, # rotate +60
($x+$y)/2);
} else {
return (($x+3*$y)/-2, # rotate +120
($x-$y)/2);
}
}
sub xy_to_n {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
### HexArms xy_to_n: "x=$x, y=$y"
if (($x ^ $y) & 1) {
return undef; # nothing on odd points
}
if ($x == 0 && $y == 0) {
return 1;
}
my $rot = 0;
# eg. y=2 have (0<=>$y)-$y == -1-2 == -3
if ($x < (0 <=> $y) - $y) {
### left diagonal half ...
$rot = 3;
$x = -$x; # rotate 180
$y = -$y;
}
if ($x < $y) {
### upper mid sixth, rot 2 ...
$rot += 2;
($x,$y) = ((3*$y-$x)/2, # rotate -120
($x+$y)/-2);
} elsif ($y > 0) {
### first sixth, rot 1 ...
$rot++;
($x,$y) = (($x+3*$y)/2, # rotate -60
($y-$x)/2);
} else {
### last sixth, rot 0 ...
}
### assert: ($x+$y) % 2 == 0
# diagonal down from N=2
# d=0 n=2
# d=6 n=128
# d=12 n=470
# N = (3 d^2 + 3 d + 2)
# = ((3*$d + 3)*$d + 2)
# xoffset = 3*($x+$y-2)
# N + xoffset = ((3*$d + 3)*$d + 2) + 3*($x+$y-2)
# = (3*$d + 3)*$d + 2 + 3*($x+$y) - 6
# = (3*$d + 3)*$d + 3*($x+$y) - 4
#
my $d = ($x-$y-2)/2;
### xy: "$x,$y"
### $rot
### x offset: $x+$y-2
### x offset sixes: 3*($x+$y-2)
### quadratic: "d=$d q=".((3*$d + 3)*$d + 2)
### d mod: $d % 6
### rot d mod: (($rot-$d) % 6)
return ((3*$d + 3)*$d) + 3*($x+$y) - 4 + (($rot-$d) % 6);
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
# d = [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
# Nmax = [ 7, 19, 37, 61, 91, 127, 169, 217, 271 ]
# being the N=7 arm one spot before the corner of each run
# N = (3 d^2 + 3 d + 1)
# = ((3*$d + 3)*$d + 1)
#
my $d = _rect_to_hex_radius ($x1,$y1, $x2,$y2);
return (1,
((3*$d + 3)*$d + 1));
}
# hexagonal distance
sub _rect_to_hex_radius {
my ($x1,$y1, $x2,$y2) = @_;
$x1 = abs (round_nearest ($x1));
$y1 = abs (round_nearest ($y1));
$x2 = abs (round_nearest ($x2));
$y2 = abs (round_nearest ($y2));
# radial symmetric in +/-y
my $y = max (abs($y1), abs($y2));
# radial symmetric in +/-x
my $x = max (abs($x1), abs($x2));
return ($y >= $x
? $y # middle
: int(($x + $y + 1)/2)); # end, round up
}
1;
__END__
=for stopwords Math-PlanePath Ryde
=head1 NAME
Math::PlanePath::HexArms -- six spiral arms
=head1 SYNOPSIS
use Math::PlanePath::HexArms;
my $path = Math::PlanePath::HexArms->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path follows six spiral arms, each advancing successively,
...--66 5
\
67----61----55----49----43 60 4
/ \ \
... 38----32----26----20 37 54 3
/ \ \ \
44 21----15---- 9 14 31 48 ... 2
/ / \ \ \ \ \
50 27 10---- 4 3 8 25 42 65 1
/ / / / / / /
56 33 16 5 1 2 19 36 59 <-Y=0
/ / / / \ / / /
62 39 22 11 6 7----13 30 53 -1
\ \ \ \ \ / /
... 45 28 17 12----18----24 47 -2
\ \ \ /
51 34 23----29----35----41 ... -3
\ \ /
57 40----46----52----58----64 -4
\
63--... -5
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
-9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8 9
The X,Y points are integers using every second position to give a triangular
lattice, per L<Math::PlanePath/Triangular Lattice>.
Each arm is N=6*k+rem for a remainder rem=0,1,2,3,4,5, so sequences related
to multiples of 6 or with a modulo 6 pattern may fall on particular arms.
=head2 Abundant Numbers
The "abundant" numbers are those N with sum of proper divisors E<gt> N. For
example 12 is abundant because it's divisible by 1,2,3,4,6 and their sum is
16. All multiples of 6 starting from 12 are abundant. Plotting the
abundant numbers on the path gives the 6*k arm and some other points in
between,
* * * * * * * * * * * * * * ...
* * *
* * * * * * *
* * *
* * * *
* * * *
* * * * * * * * * *
* * * * * *
* * * * * * * * *
* * * * * * *
* * * * * * * *
* * * * * * *
* * * * * *
* * * * * * *
* * * * *
* * * * * * * *
* * * * *
* * * * *
* * * * * * *
* * * * * * * * * * *
* * * *
* * * *
* * * *
* * * * *
* *
* * * * * * * * * * * * * * *
There's blank arms either side of the 6*k because 6*k+1 and 6*k-1 are not
abundant until some fairly big values. The first abundant 6*k+1 might be
5,391,411,025, and the first 6*k-1 might be 26,957,055,125.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::HexArms-E<gt>new ()>
Create and return a new square spiral object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path.
For C<$n E<lt> 1> the return is an empty list, as the path starts at 1.
Fractional C<$n> gives a point on the line between C<$n> and C<$n+6>, that
C<$n+6> being the next on the same spiralling arm. This is probably of
limited use, but arises fairly naturally from the calculation.
=back
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::SquareArms>,
L<Math::PlanePath::DiamondArms>,
L<Math::PlanePath::HexSpiral>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|