This file is indexed.

/usr/share/perl5/Math/PlanePath/GcdRationals.pm is in libmath-planepath-perl 113-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
# Copyright 2011, 2012, 2013 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# A003989 diagonals from (1,1)
# A109004        0,1,1,2,1,2,3,1,1,3,4,1,2,1,4,5,1,1,1,1
#  gcd by diagonals (0,0)=0
#                   (1,0)=1 (0,1)=1
#                   (2,0)=2 (1,1)=1 (0,2)=2
# A050873 gcd rows n>=1, k=1..n
#            1,1,2,1,1,3,1,2,1,4,1,1,1,1,5,1,2,3,2,1,6,1,1,1,
# add        0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0  A023532 0 at m(m+3)/2
# IntXY      1,0,2,0,0,3,0,1,0,4,0,0,0,0,5,0,1,2,1,0,6,
# IntXY+1    2,1,3,1,1,4,1,2,1,5,1,1,1,1,6,1,2,3,2,1,7
# diff       1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1   A023531
# A178340  1,2,1,3,1,1,4,1,2,1,5,1,1,1,1,6,1,2,3,2,1,7,1,1 Bernoulli
#   T(n,m) = A003989(n-m+1,m) m>=1, except when factor cancels

# diagonals_down even/odd in wedges, and other modulo

# math-image --path=GcdRationals --expression='i<30*31/2?i:0' --text --size=40
# math-image --path=GcdRationals --output=numbers --expression='i<100?i:0'
# math-image --path=GcdRationals --all --output=numbers

# Y = v = j/g
# X = (g-1)*v + u
#   = (g-1)*j/g + i/g
#   = ((g-1)*j + i)/g

# j=5  11 ...
# j=4  7 8 9 10
# j=3  4 5 6
# j=2  2 3
# j=1  1
#
# N = (1/2 d^2 - 1/2 d + 1)
#   = (1/2*$d**2 - 1/2*$d + 1)
#   = ((1/2*$d - 1/2)*$d + 1)
# j = 1/2 + sqrt(2 * $n + -7/4)
#   = [ 1 + 2*sqrt(2 * $n + -7/4) ] /2
#   = [ 1 + sqrt(8*$n -7) ] /2
#

# Primes
# i=3*a,j=3*b
# N=3*a*(3*b-1)/2


package Math::PlanePath::GcdRationals;
use 5.004;
use strict;
use Carp;
#use List::Util 'min','max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
*_divrem = \&Math::PlanePath::_divrem;

use Math::PlanePath::CoprimeColumns;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;


# uncomment this to run the ### lines
#use Smart::Comments;

use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant x_minimum => 1;
use constant y_minimum => 1;
use constant gcdxy_maximum => 1;  # no common factor

use constant parameter_info_array =>
  [ { name        => 'pairs_order',
      display     => 'Pairs Order',
      type        => 'enum',
      default     => 'rows',
      choices     => ['rows','rows_reverse','diagonals_down','diagonals_up'],
      choices_display => ['Rows',
                          'Rows Reverse',
                          'Diagonals Down',
                          'Diagonals Up'],
      description => 'Order in the i,j pairs.',
    } ];

sub absdy_minimum {
  my ($self) = @_;
  return ($self->{'pairs_order'} eq 'diagonals_down'
          ? 1
          : 0);
}

{
  my %dir_minimum_dxdy
    = (rows           => [1,0],  # N=4 to N=5 horiz
       rows_reverse   => [1,0],  # N=1 to N=2 horiz
       diagonals_down => [0,1],  # N=1 to N=2 vertical, nothing less
       diagonals_up   => [1,0],  # N=4 to N=5 horiz
      );
  sub dir_minimum_dxdy {
    my ($self) = @_;
    return @{$dir_minimum_dxdy{$self->{'pairs_order'}}};
  }
}
{
  my %dir_maximum_dxdy
    = (rows           => [1,-1], # N=2 to N=3 SE diagonal
       rows_reverse   => [2,-1], # N=3 to N=4 dX=2,dY=-1
       diagonals_down => [1,-1], # N=5 to N=6 SE diagonal
       diagonals_up   => [2,-1], # N=9 to N=10 dX=2,dY=-1
      );
  sub dir_maximum_dxdy {
    my ($self) = @_;
    return @{$dir_maximum_dxdy{$self->{'pairs_order'}}};
  }
}

#------------------------------------------------------------------------------

# all rationals X,Y >= 1 no common factor
use Math::PlanePath::DiagonalRationals;
*xy_is_visited = Math::PlanePath::DiagonalRationals->can('xy_is_visited');

sub new {
  my $self = shift->SUPER::new(@_);

  my $pairs_order = ($self->{'pairs_order'} ||= 'rows');
  (($self->{'pairs_order_n_to_xy'}
    = $self->can("_pairs_order__${pairs_order}__n_to_xy"))
   && ($self->{'pairs_order_xygr_to_n'}
       = $self->can("_pairs_order__${pairs_order}__xygr_to_n")))
    or croak "Unrecognised pairs_order: ",$pairs_order;

  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### GcdRationals n_to_xy(): "$n"

  if ($n < 1) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  # what to do for fractional $n?
  {
    my $int = int($n);
    if ($n != $int) {
      ### frac ...
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;
  }

  my ($x,$y) = $self->{'pairs_order_n_to_xy'}->($n);

  # if ($self->{'pairs_order'} eq 'rows'
  #     || $self->{'pairs_order'} eq 'rows_reverse') {
  #   $y = int((sqrt(8*$n-7) + 1) / 2);
  #   $x = $n - ($y - 1)*$y/2;
  #
  #   if ($self->{'pairs_order'} eq 'rows_reverse') {
  #     $x = $y - ($x-1);
  #   }
  #
  #   # require Math::PlanePath::PyramidRows;
  #   # my ($x,$y) = Math::PlanePath::PyramidRows->new(step=>1)->n_to_xy($n);
  #   # $x+=1;
  #   # $y+=1;
  #
  # } else {
  #   require Math::PlanePath::DiagonalsOctant;
  #   ($x,$y) = Math::PlanePath::DiagonalsOctant->new->n_to_xy($n);
  #   if ($self->{'pairs_order'} eq 'diagonals_up') {
  #     my $d = $x+$y;      # top 0,d measure diag down by x
  #     my $e = int($d/2);  # end e,d-e
  #     ($x,$y) = ($e-$x, $d - ($e-$x));
  #   }
  #   $x+=1;
  #   $y+=1;
  # }
  ### triangle: "$x,$y"

  my $gcd = _gcd($x,$y);
  $x /= $gcd;
  $y /= $gcd;

  ### $gcd
  ### reduced: "$x,$y"
  ### push out to x: $x + ($gcd-1)*$y

  return ($x + ($gcd-1)*$y, $y);
}

sub _pairs_order__rows__n_to_xy {
  my ($n) = @_;
  my $y = int((sqrt(8*$n-7) + 1) / 2);
  return ($n - ($y-1)*$y/2,
          $y);
}
sub _pairs_order__rows_reverse__n_to_xy {
  my ($n) = @_;
  my $y = int((sqrt(8*$n-7) + 1) / 2);
  return ($y*($y+1)/2 + 1 - $n,
          $y);
}
sub _pairs_order__diagonals_down__n_to_xy {
  my ($n) = @_;
  my $d = int(sqrt($n-1));  # eg. N=10 d=3
  $n -= $d*($d+1);          # eg. d=3 subtract 12
  if ($n > 0) {
    return ($n,
            2 - $n + 2*$d);
  } else {
    return ($n + $d,
            1 - $n + $d);
  }
}
sub _pairs_order__diagonals_up__n_to_xy {
  my ($n) = @_;
  my $d = int(sqrt($n-1));
  $n -= $d*($d+1);
  if ($n > 0) {
    return (-$n + $d + 2,
            $n + $d);
  } else {
    return (1 - $n,
            $n + 2*$d);
  }
}


# X=(g-1)*v+u
# Y=v
# u = x % y
# i = u*g
#   = (x % y)*g
#   = (x % y)*(floor(x/y)+1)
#
# Better:
#   g-1 = floor(x/y)
#   Y = j/g
#   X = ((g-1)*j + i)/g
#   j = Y*g
#   (g-1)*j + i = X*g
#   i = X*g - (g-1)*j
#     = X*g - (g-1)*Y*g
#   N = i + j*(j-1)/2
#     = X*g - (g-1)*Y*g + Y*g*(Y*g-1)/2
#     = X*g + Y*g * (-(g-1) + (Y*g-1)/2)    # but Y*g-1 may be odd
#     = X*g + Y*g * (Y*g-1 - (2g-2))/2
#     = X*g + Y*g * (Y*g-1 - 2g + 2))/2
#     = X*g + Y*g * (Y*g - 2g + 1))/2
#     = X*g + Y*g * ((Y-2)*g + 1) / 2
#     = g * [ X + Y*((Y-2)*g + 1) / 2 ]
#
#   N = X*g - (g-1)*Y*g + Y*g*(Y*g-1)/2
#     = [ 2*X*g - 2*(g-1)*Y*g + Y*g*(Y*g-1) ] / 2
#     = [ 2*X - 2*(g-1)*Y + Y*(Y*g-1) ] * g / 2
#     = [ 2*X + Y*(- 2*(g-1) + (Y*g-1)) ] * g / 2
#     = [ 2*X + Y*(-2g + 2 + Y*g - 1) ] * g / 2
#     = [ 2*X + Y*((Y-2)*g + 1) ] * g / 2
#     = X*g + [(Y-2)*g + 1]*Y*g/2
#
#  if Y and g both odd then (Y-2)*g+1 is odd+1 so even

# q=int(x/y)
# x = qy+r   qy=x-r
# r = x % y
# g-1 = q
# g = q+1
# g*y = (q+1)*y
#     = q*y + y
#     = x-r + y
#
#   N = X*g + Y*g * ((Y-2)*g + 1) / 2
#     = X*g + (X+Y-r) * ((Y-2)*g + 1) / 2
#     = X*g + (X+Y-r) * ((g*Y-2*g + 1) / 2
#     = X*g + (X+Y-r) * (((X+Y-r) - 2*g + 1) / 2
#     ... not much better

sub xy_to_n {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### GcdRationals xy_to_n(): "$x,$y"

  if (is_infinite($x)) { return $x; }
  if (is_infinite($y)) { return $y; }
  if ($x < 1 || $y < 1 || ! _coprime($x,$y)) {
    return undef;
  }

  my ($p,$r) = _divrem ($x,$y);
  ### $x
  ### $y
  ### $p
  ### $r
  return $self->{'pairs_order_xygr_to_n'}->($x,$y,$p+1,$r);


  # my $g = int($x/$y) + 1;
  # ### g: "$g"
  # ### halve: ''.$y*(($y-2)*$g + 1)
  # return $self->{'pairs_order_xygr_to_n'}->($x,$y,$g);
}

sub _pairs_order__rows__xygr_to_n {
  my ($x,$y,$g,$r) = @_;
  ### j: $x+$y-$r
  ### i: $g*$r
  $x += $y;
  $x -= $r;  # j=X+Y-r
  return $x*($x-1)/2 + $g*$r;   # i=g*r
}

# i = X*g - (g-1)*g*Y
#   = X*g - (g-1)*(X+Y-r)
#   = X*g - g*(X+Y-r) + *(X+Y-r)
#   = X*g - g*X - g*Y + g*r + (X+Y-r)
#   = X*g - g*X - (X+Y-r) + g*r + (X+Y-r)
#   = g*r
#
# N = j-i+1 + j*(j-1)/2
#   = [2j-2i + 2 + $j*($j-1)] / 2
#   = [-2i + 2 + 2j+ j*(j-1)] / 2
#   = [-2i + 2 + j*(j-1+2)] / 2
#   = [-2i + 2 + j*(j+1)] / 2
#   = 1-i + j*(j+1)/2
#
sub _pairs_order__rows_reverse__xygr_to_n {
  my ($x,$y,$g,$r) = @_;
  $y += $x;
  $y -= $r;    # j = X+Y-r
  if ($r == 0) {
    # Case r=0 which is Y=1 becomes i=0 and that doesn't reverse to the
    # correct place by j-i+1.  Can either set $r=1,$g+=1 or leave $r==0
    # alone and adjust $y.
    $y -= 2;
  }
  return $y*($y+1)/2 - $r*$g + 1;
}

# d = (i-1)+(j-1)+1
#   = i+j-1
#   = rg + X+Y-r - 1
#   = X+Y + r*(g-1) - 1
# if r==0 Y==1 then r=1 g=X-1
# i = r*g = X-1
# j = X+Y-r = X+1-1 = X-1
# d = i+j-1
#   = 2X-2
# N = (d*d - (d%2))/4 + X-1
#   = ((2X-2)*(2X-2) - 0)/4 + X-1
#   = (X-1)^2 + X-1
#
sub _pairs_order__diagonals_down__xygr_to_n {
  my ($x,$y,$g,$r) = @_;

  $y += $x + $r*($g-1) - 1;   # d=X+Y + r*(g-1) - 1
  if ($r == 0) {
    $y *= 2;   # d=2*g-2
  }
  return ($y*$y - ($y % 2))/4 + $r*$g;
}
sub _pairs_order__diagonals_up__xygr_to_n {
  my ($x,$y,$g,$r) = @_;

  $y += $x + $r*($g-1);   # d=X+Y + r*(g-1)
  if ($r == 0) {
    $y = 2*$x - 1;
  }
  return ($y*$y - ($y % 2))/4 - $r*$g + 1;
}


# increase in rows, so right column
# in column increase within g wedge, then drop
#
# int(x2/y2) is slope of top of the wedge containing x2,y2
# g = int(x2/y2)+1 is the slope of the bottom of that wedge
# yw = floor(x2 / g) is the Y of that bottom
# N at x2,yw,g+1 is the top of the wedge underneath, bigger g smaller y
# or x2,y2,g is the top-right corner
#
# Eg.
# x=19 y=2 to 4
# g=int(19/4)+1=5
# yw=int(19/5)=3
# N(19,3,6)=
#
# at X=Y+1 g=2
# nhi = (y*((y-2)*g + 1) / 2 + x)*g
#     = (y*((y-2)*2 + 1) / 2 + y+1)*2
#     = (y*(2y-4 + 1) / 2 + y+1)*2
#     = (y*(2y-3) / 2 + y+1)*2
#     = y*(2y-3)  + 2y+2
#     = 2y^2 - 3y + 2y + 2
#     = 2y^2 - y + 2
#     = y*(2y-1) + 2

# 11  12  13  14      47  49  51  53     108 111 114 117     194 198 202 206
#  7       9      30      34      69      75     124     132     195     205
#  4   5      17  19      39  42      70  74     110 115     159 165     217
#  2       8      18      32      50      72      98     128     162     200
#  1   3   6  10  15  21  28  36  45  55  66  78  91 105 120 136 153 171 190

# 206=20*19/2+16  i=16,j=20 gcd=4
# 19,5 is slope=floor(19/5)=3 so g=4
#
# 205=20*19/2+15  i=15,j=20 gcd=5
# 19,4 is slope=floor(19/4)=4 so g=5
#
# 217=21*20/2 + 7, i=21,j=7  gcd=7
# 19,3 is slope=floor(19/3)=6 so g=7

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  ### $x2
  ### $y2

  if ($x2 < 1 || $y2 < 1) {
    return (1, 0);  # outside quadrant
  }

  if ($x1 < 1) { $x1 = 1; }
  if ($y1 < 1) { $y1 = 1; }

  if ($self->{'pairs_order'} =~ /^diagonals/) {
    my $d = $x2 + max($x2,$y2);
    return (1, int($d*($d+($d%2)) / 4));  # N end of diagonal d
  }

  my $nhi;
  {
    my $c = max($x2,$y2);
    $nhi = _pairs_order__rows__xygr_to_n($c,$c,2,0);

    # my $rev = ($self->{'pairs_order'} eq 'rows_reverse');
    # my $slope = int($x2/$y2);
    # my $g = $slope + 1;
    #
    # # within top row
    # {
    #   my $x;
    #   if ($rev) {
    #     if ($slope > 0) {
    #       $x = max ($x1, $y2*$slope);  # left-most within this wedge
    #     } else {
    #       $x = $x1;  # top-left corner
    #     }
    #   } else {
    #     # pairs_order=rows
    #     $x = $x2;  # top-right corner
    #   }
    #   $nhi = $self->{'pairs_order_xygr_to_n'}->($x, $y2, $g, 0);
    #
    #   ### $slope
    #   ### $g
    #   ### x for hi: $x
    #   ### nhi for x,y2: $nhi
    # }
    #
    # # within x2 column, top of wedge below
    # #
    # my $yw = int(($x2+$g-1) / $g); # rounded up
    # if ($yw >= $y1) {
    #   $nhi = max ($nhi, $self->{'pairs_order_xygr_to_n'}->($x2,$yw,$g+1,0));
    #
    #   ### $yw
    #   ### nhi_wedge: $self->{'pairs_order_xygr_to_n'}->($x2,$yw,$g+1,0)
    # }
    #   my $yw = int($x2 / $g) - ($g==1);  # below X=Y diagonal when g==1
    #   if ($yw >= $y1) {
    #     $g = int($x2/$yw) + 1;  # perhaps went across more than one wedge
    #     $nhi = max ($nhi,
    #                 ($yw*(($yw-2)*($g+1) + 1) / 2 + $x2)*($g+1));
    #     ### $yw
    #     ### nhi_wedge: ($yw*(($yw-2)*($g+1) + 1) / 2 + $x2)*($g+1)
    #   }
  }

  my $nlo;
  {
    $nlo = _pairs_order__rows__xygr_to_n(1,$x1, 1, $x1-1);

    # my $g = int($x1/$y1) + 1;
    # $nlo = $self->{'pairs_order_xygr_to_n'}->($x1,$y1,$g,0);
    #
    # ### glo: $g
    # ### $nlo
    #
    # if ($g > 1) {
    #   my $yw = max (int($x1 / $g),
    #                 1);
    #   ### $yw
    #   if ($yw <= $y2) {
    #     $g = int($x1/$yw); # no +1, and perhaps up across more than one wedge
    #     $nlo = min ($nlo, $self->{'pairs_order_xygr_to_n'}->($x1,$yw,$g,0));
    #     ### glo_wedge: $g
    #     ### nlo_wedge: $self->{'pairs_order_xygr_to_n'}->($x1,$yw,$g,0)
    #   }
    # }
    # if ($nlo < 1) {
    #   $nlo = 1;
    # }
  }

  ### $nhi
  ### $nlo
  return ($nlo, $nhi);
}

sub _gcd {
  my ($x, $y) = @_;
  #### _gcd(): "$x,$y"

  # bgcd() available in even the earliest Math::BigInt
  if ((ref $x && $x->isa('Math::BigInt'))
      || (ref $y && $y->isa('Math::BigInt'))) {
    return Math::BigInt::bgcd($x,$y);
  }

  $x = abs(int($x));
  $y = abs(int($y));
  unless ($x > 0) {
    return $y;  # gcd(0,y)=y for y>=0, giving gcd(0,0)=0
  }
  if ($y > $x) {
    $y %= $x;
  }
  for (;;) {
    ### assert: $x >= 1

    if ($y <= 1) {
      return ($y == 0
              ? $x   # gcd(x,0)=x
              : 1);  # gcd(x,1)=1
    }
    ($x,$y) = ($y, $x % $y);
  }
}



# # old code, rows only ...
# sub rect_to_n_range {
#   my ($self, $x1,$y1, $x2,$y2) = @_;
#   ### rect_to_n_range(): "$x1,$y1  $x2,$y2"
#
#   $x1 = round_nearest ($x1);
#   $y1 = round_nearest ($y1);
#   $x2 = round_nearest ($x2);
#   $y2 = round_nearest ($y2);
#
#   ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
#   ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
#   ### $x2
#   ### $y2
#
#   if ($x2 < 1 || $y2 < 1) {
#     return (1, 0);  # outside quadrant
#   }
#
#   if ($x1 < 1) { $x1 = 1; }
#   if ($y1 < 1) { $y1 = 1; }
#
#   my $g = int($x2/$y2) + 1;
#   my $nhi = ($y2*(($y2-2)*$g + 1) / 2 + $x2)*$g;
#   ### ghi: $g
#   ### $nhi
#
#   my $yw = int($x2 / $g) - ($g==1);  # below X=Y diagonal when g==1
#   if ($yw >= $y1) {
#     $g = int($x2/$yw) + 1;  # perhaps went across more than one wedge
#     $nhi = max ($nhi,
#                 ($yw*(($yw-2)*($g+1) + 1) / 2 + $x2)*($g+1));
#     ### $yw
#     ### nhi_wedge: ($yw*(($yw-2)*($g+1) + 1) / 2 + $x2)*($g+1)
#   }
#
#   $g = int($x1/$y1) + 1;
#   my $nlo = ($y1*(($y1-2)*$g + 1) / 2 + $x1)*$g;
#
#   ### glo: $g
#   ### $nlo
#
#   if ($g > 1) {
#     $yw = max (int($x1 / $g),
#                1);
#     ### $yw
#     if ($yw <= $y2) {
#       $g = int($x1/$yw); # no +1, and perhaps up across more than one wedge
#       $nlo = min ($nlo,
#                   ($yw*(($yw-2)*$g + 1) / 2 + $x1)*$g);
#       ### glo_wedge: $g
#       ### nlo_wedge: ($yw*(($yw-2)*$g + 1) / 2 + $x1)*$g
#     }
#   }
#
#   return ($nlo, $nhi);
# }


1;
__END__

=for stopwords eg Ryde OEIS ie Math-PlanePath GCD gcd gcds gcd/2 gcd-1 j/gcd Fortnow coprime triangulars numberings pronics incrementing

=head1 NAME

Math::PlanePath::GcdRationals -- rationals by triangular GCD

=head1 SYNOPSIS

 use Math::PlanePath::GcdRationals;
 my $path = Math::PlanePath::GcdRationals->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Fortnow, Lance>This path enumerates X/Y rationals using a method by Lance
Fortnow taking a greatest common divisor out of a triangular position.

=over

L<http://blog.computationalcomplexity.org/2004/03/counting-rationals-quickly.html>

=back

The attraction of this approach is that it's both efficient to calculate and
visits blocks of X/Y rationals using a modest range of N values, roughly a
square N=2*max(num,den)^2 in the default rows style.

    13  |      79  80  81  82  83  84  85  86  87  88  89  90
    12  |      67              71      73              77     278
    11  |      56  57  58  59  60  61  62  63  64  65     233 235
    10  |      46      48              52      54     192     196
     9  |      37  38      40  41      43  44     155 157     161
     8  |      29      31      33      35     122     126     130
     7  |      22  23  24  25  26  27      93  95  97  99 101 103
     6  |      16              20      68              76     156
     5  |      11  12  13  14      47  49  51  53     108 111 114
     4  |       7       9      30      34      69      75     124
     3  |       4   5      17  19      39  42      70  74     110
     2  |       2       8      18      32      50      72      98
     1  |       1   3   6  10  15  21  28  36  45  55  66  78  91
    Y=0 |
         --------------------------------------------------------
          X=0   1   2   3   4   5   6   7   8   9  10  11  12  13

The mapping from N to rational is

    N = i + j*(j-1)/2     for upper triangle 1 <= i <= j
    gcd = GCD(i,j)
    rational = i/j + gcd-1

which means X=numerator Y=denominator are

    X = (i + j*(gcd-1))/gcd  = j + (i-j)/gcd
    Y = j/gcd

The i,j position is a numbering of points above the X=Y diagonal by rows in
the style of L<Math::PlanePath::PyramidRows> with step=1, but starting from
i=1,j=1.

    j=4  |  7  8  9 10
    j=3  |  4  5  6
    j=2  |  2  3
    j=1  |  1
         +-------------
          i=1  2  3  4

If GCD(i,j)=1 then X/Y is simply X=i,Y=j unchanged.  This means fractions
S<X/Y E<lt> 1> are numbered by rows with increasing numerator, but skipping
positions where i,j have a common factor.

The skipped positions where i,j have a common factor become rationals
S<X/YE<gt>1>, ie. below the X=Y diagonal.  The integer part is GCD(i,j)-1 so
S<rational = gcd-1 + i/j>.  For example

    N=51 is at i=6,j=10 by rows
    common factor gcd(6,10)=2
    so rational R = 2-1 + 6/10 = 1+3/5 = 8/5
    ie. X=8,Y=5

If j is prime then gcd(i,j)=1 and so X=i,Y=j.  This means that in rows with
prime Y are numbered by consecutive N across to the X=Y diagonal.  For
example in row Y=7 above N=22 to N=27.

=head2 Triangular Numbers

X<Triangular numbers>N=1,3,6,10,etc along the bottom Y=1 row is the
triangular numbers N=k*(k-1)/2.  Such an N is at i=k,j=k and has gcd(i,j)=k
which divides out to Y=1.

    N=k*(k-1)/2  i=k,j=k

    Y = j/gcd
      = 1       on the bottom row

    X = (i + j*(gcd-1)) / gcd
      = (k + k*(k-1)) / k
      = k-1     successive points on that bottom row

N=1,2,4,7,11,etc in the column at X=1 immediately follows each of those
bottom row triangulars, ie. N+1.

    N in X=1 column = Y*(Y-1)/2 + 1

=head2 Primes

If N is prime then it's above the sloping line X=2*Y.  If N is composite
then it might be above or below, but the primes are always above.  Here's
the table with dots "..." marking the X=2*Y line.

           primes and composites above
        |
     6  |      16              20      68
        |                                             .... X=2*Y
     5  |      11  12  13  14      47  49  51  53 ....
        |                                     ....
     4  |       7       9      30      34 .... 69
        |                             ....
     3  |       4   5      17  19 .... 39  42      70   only
        |                     ....                      composite
     2  |       2       8 .... 18      32      50       below
        |             ....
     1  |       1 ..3.  6  10  15  21  28  36  45  55
        |     ....
    Y=0 | ....
         ---------------------------------------------
          X=0   1   2   3   4   5   6   7   8   9  10

Values below X=2*Y such as 39 and 42 are always composite.  Values above
such as 19 and 30 are either prime or composite.  Only X=2,Y=1 is exactly on
the line, which is prime N=3 as it happens.  The rest of the line X=2*k,Y=k
is not visited since common factor k would mean X/Y is not a rational in
least terms.

This pattern of primes and composites occurs because N is a multiple of
gcd(i,j) when that gcd is odd, or a multiple of gcd/2 when that gcd is even.

    N = i + j*(j-1)/2
    gcd = gcd(i,j)

    N = gcd   * (i/gcd + j/gcd * (j-1)/2)  when gcd odd
        gcd/2 * (2i/gcd + j/gcd * (j-1))   when gcd even

If gcd odd then either j/gcd or j-1 is even, to take the "/2" divisor.  If
gcd even then only gcd/2 can come out as a factor since taking out the full
gcd might leave both j/gcd and j-1 odd and so the "/2" not an integer.  That
happens for example to N=70

    N = 70
    i = 4, j = 12     for 4 + 12*11/2 = 70 = N
    gcd(i,j) = 4
    but N is not a multiple of 4, only of 4/2=2

Of course knowing gcd or gcd/2 is a factor of N is only useful when that
factor is 2 or more, so

    odd gcd >= 2                means gcd >= 3
    even gcd with gcd/2 >= 2    means gcd >= 4

    so N composite when gcd(i,j) >= 3

If gcdE<lt>3 then the "factor" coming out is only 1 and says nothing about
whether N is prime or composite.  There are both prime and composite N with
gcdE<lt>3, as can be seen among the values above the X=2*Y line in the table
above.

=head2 Rows Reverse

Option C<pairs_order =E<gt> "rows_reverse"> reverses the order of points
within the rows of i,j pairs,

    j=4 | 10  9  8  7
    j=3 |  6  5  4
    j=2 |  3  2
    j=1 |  1
        +------------
         i=1  2  3  4

The X,Y numbering becomes

=cut

# math-image --path=GcdRationals,pairs_order=rows_reverse --all --output=numbers

=pod

    pairs_order => "rows_reverse"

    11  |      66  65  64  63  62  61  60  59  58  57
    10  |      55      53              49      47     209
     9  |      45  44      42  41      39  38     170 168
     8  |      36      34      32      30     135     131
     7  |      28  27  26  25  24  23     104 102 100  98
     6  |      21              17      77              69
     5  |      15  14  13  12      54  52  50  48     118
     4  |      10       8      35      31      76      70
     3  |       6   5      20  18      43  40      75  71
     2  |       3       9      19      33      51      73
     1  |       1   2   4   7  11  16  22  29  37  46  56
    Y=0 |
         ------------------------------------------------
          X=0   1   2   3   4   5   6   7   8   9  10  11

The triangular numbers, per L</Triangular Numbers> above, are now in the X=1
column, ie. at the left rather than at the Y=1 bottom row.  That bottom row
is now the next after each triangular, ie. T(X)+1.

=head2 Diagonals

Option C<pairs_order =E<gt> "diagonals_down"> takes the i,j pairs by
diagonals down from the Y axis.  C<pairs_order =E<gt> "diagonals_up">
likewise but upwards from the X=Y centre up to the Y axis.  (These
numberings are in the style of L<Math::PlanePath::DiagonalsOctant>.)

    diagonals_down            diagonals_up

    j=7 | 13                   j=7 | 16
    j=6 | 10 14                j=6 | 12 15
    j=5 |  7 11 15             j=5 |  9 11 14
    j=4 |  5  8 12 16          j=4 |  6  8 10 13
    j=3 |  3  6  9             j=3 |  4  5  7
    j=2 |  2  4                j=2 |  2  3
    j=1 |  1                   j=1 |  1
        +------------              +------------
         i=1  2  3  4               i=1  2  3  4

The resulting path becomes

=cut

# math-image --path=GcdRationals,pairs_order=diagonals_down --all --output=numbers --size=40x10

=pod

    pairs_order => "diagonals_down"

     9  |     21 27    40 47    63 72
     8  |     17    28    41    56    74
     7  |     13 18 23 29 35 42    58 76
     6  |     10          30    44
     5  |      7 11 15 20    32 46 62 80
     4  |      5    12    22    48    52
     3  |      3  6    14 24    33 55
     2  |      2     8    19    34    54
     1  |      1  4  9 16 25 36 49 64 81
    Y=0 |
         --------------------------------
          X=0  1  2  3  4  5  6  7  8  9

X<Square numbers>The Y=1 bottom row is the perfect squares which are at i=j
in the C<DiagonalsOctant> and have gcd(i,j)=i thus becoming X=i,Y=1.

=cut

# math-image --path=GcdRationals,pairs_order=diagonals_up --all --output=numbers --size=40x10

=pod

    pairs_order => "diagonals_up"

     9  |     25 29    39 45    58 65
     8  |     20    28    38    50    80
     7  |     16 19 23 27 32 37    63 78
     6  |     12          26    48
     5  |      9 11 14 17    35 46 59 74
     4  |      6    10    24    44    54
     3  |      4  5    15 22    34 51
     2  |      2     8    18    33    52
     1  |      1  3  7 13 21 31 43 57 73
    Y=0 |
         --------------------------------
          X=0  1  2  3  4  5  6  7  8  9

X<Square numbers>X<Pronic numbers>N=1,2,4,6,9 etc in the X=1 column is the
perfect squares k*k and the pronics k*(k+1) interleaved, also called the
X<Quarter square numbers>quarter-squares.  N=2,5,10,17,etc on Y=X+1 above
the leading diagonal are the squares+1, and N=3,8,15,24,etc below on Y=X-1
below the diagonal are the squares-1.

The GCD division moves points downwards and shears them across horizontally.
The effect on diagonal lines of i,j points is as follows

      | 1
      |   1     gcd=1 slope=-1
      |     1
      |       1
      |         1
      |           1
      |             1
      |               1
      |                 1
      |                 .    gcd=2 slope=0
      |               .   2
      |             .     2     3  gcd=3 slope=1
      |           .       2   3           gcd=4 slope=2
      |         .         2 3         4
      |       .           3       4       5     gcd=5 slope=3
      |     .                 4      5
      |   .               4     5
      | .                 5
      +-------------------------------

The line of "1"s is the diagonal with gcd=1 and thus X,Y=i,j unchanged.

The line of "2"s is when gcd=2 so X=(i+j)/2,Y=j/2.  Since i+j=d is constant
within the diagonal this makes X=d fixed, ie. vertical.

Then gcd=3 becomes X=(i+2j)/3 which slopes across by +1 for each i, or gcd=4
has X=(i+3j)/4 slope +2, etc.

Of course only some of the points in an i,j diagonal have a given gcd, but
those which do are transformed this way.  The effect is that for N up to a
given diagonal row all the "*" points in the following are traversed, plus
extras in wedge shaped arms out to the side.

     | *
     | * *                 up to a given diagonal points "*"
     | * * *               all visited, plus some wedges out
     | * * * *             to the right
     | * * * * *
     | * * * * *   /
     | * * * * * /  --
     | * * * * *  --
     | * * * * *--
     +--------------

In terms of the rationals X/Y the effect is that up to N=d^2 with diagonal
d=2j the fractions enumerated are

    N=d^2
    enumerates all num/den where num <= d and num+den <= 2*d

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over

=item C<$path = Math::PlanePath::GcdRationals-E<gt>new ()>

=item C<$path = Math::PlanePath::GcdRationals-E<gt>new (pairs_order =E<gt> $str)>

Create and return a new path object.  The C<pairs_order> option can be

    "rows"               (default)
    "rows_reverse"
    "diagonals_down"
    "diagonals_up"

=back

=head1 FORMULAS

=head2 X,Y to N -- Rows

The defining formula above for X,Y can be inverted to give i,j and N.  This
calculation doesn't notice if X,Y have a common factor, so a coprime(X,Y)
test must be made separately if necessary (for C<xy_to_n()> it is).

    X/Y = g-1 + (i/g)/(j/g)

The g-1 integer part is recovered by a division X divide Y,

    X = quot*Y + rem   division by Y rounded towards 0
      where 0 <= rem < Y
      unless Y=1 in which case use quot=X-1, rem=1
    g-1 = quot
    g = quot+1

The Y=1 special case can instead be left as the usual kind of division
quot=X,rem=0, so 0E<lt>=remE<lt>Y.  This will give i=0 which is outside the
intended 1E<lt>=iE<lt>=j range, but j is 1 bigger and the combination still
gives the correct N.  It's as if the i=g,j=g point at the end of a row is
moved to i=0,j=g+1 just before the start of the next row.  If only N is of
interest not the i,j then it can be left rem=0.

Equating the denominators in the X/Y formula above gives j by

    Y = j/g          the definition above

    j = g*Y
      = (quot+1)*Y
    j = X+Y-rem      per the division X=quot*Y+rem

And equating the numerators gives i by

    X = (g-1)*Y + i/g     the definition above

    i = X*g - (g-1)*Y*g
      = X*g - quot*Y*g
      = X*g - (X-rem)*g     per the division X=quot*Y+rem
    i = rem*g
    i = rem*(quot+1)

Then N from i,j by the definition above

    N = i + j*(j-1)/2

For example X=11,Y=4 divides X/Y as 11=4*2+3 for quot=2,rem=3 so i=3*(2+1)=9
j=11+4-3=12 and so N=9+12*11/2=75 (as shown in the first table above).

It's possible to use only the quotient p, not the remainder rem, by taking
j=(quot+1)*Y instead of j=X+Y-rem, but usually a division operation gives
the remainder at no extra cost, or a cost small enough that it's worth
swapping a multiply for an add or two.

The gcd g can be recovered by rounding up in the division, instead of
rounding down and then incrementing with g=quot+1.

   g = ceil(X/Y)
     = cquot for division X=cquot*Y - crem

But division in most programming languages is towards 0 or towards
-infinity, not upwards towards +infinity.

=head2 X,Y to N -- Rows Reverse

For pairs_order="rows_reverse", the horizontal i is reversed to j-i+1.  This
can be worked into the triangular part of the N formula as

    Nrrev = (j-i+1) + j*(j-1)/2        for 1<=i<=j
          = j*(j+1)/2 - i + 1

The Y=1 case described above cannot be left to go through with rem=0 giving
i=0 and j+1 since the reversal j-i+1 is then not correct.  Either use rem=1
as described, or if not then compensate at the end,

    if r=0 then j -= 2            adjust
    Nrrev = j*(j+1)/2 - i + 1     same Nrrev as above

For example X=5,Y=1 is quot=5,rem=0 gives i=0*(5+1)=0 j=5+1-0=6.  Without
adjustment it would be Nrrev=6*7/2-0+1=22 which is wrong.  But adjusting
j-=2 so that j=6-2=4 gives the desired Nrrev=4*5/2-0+1=11 (per the table in
L</Rows Reverse> above).

=cut

# No, not quite
#
# =head2 Rectangle N Range -- Rows
#
# An over-estimate of the N range can be calculated just from the X,Y to N
# formula above.
#
# Within a row N increases with increasing X, so for a rectangle the minimum
# is in the left column and the maximum in the right column.
#
# Within a column N values increase until reaching the end of a "g" wedge,
# then drop down a bit.  So the maximum is either the top-right corner of the
# rectangle, or the top of the next lower wedge, ie. smaller Y but bigger g.
# Conversely the minimum is either the bottom right of the rectangle, or the
# bottom of the next higher wedge, ie. smaller g but bigger Y.  (Is that
# right?)
#
# This is an over-estimate because it ignores which X,Y points are coprime and
# thus actually should have N values.
#
# =head2 Rectangle N Range -- Rows Reverse
#
# When row pairs are taken in reverse order increasing X is not increasing N,
# but rather the maximum N of a row is at the left end of the wedge.

=pod

=head1 OEIS

This enumeration of rationals is in Sloane's Online Encyclopedia of Integer
Sequences in the following forms

=over

L<http://oeis.org/A054531> (etc)

=back

    pairs_order="rows" (the default)
      A226314   X coordinate
      A054531   Y coordinate, being N/GCD(i,j)
      A000124   N in X=1 column, triangular+1
      A050873   ceil(X/Y), gcd by rows
      A050873-A023532  floor(X/Y)
                gcd by rows and subtract 1 unless i=j

    pairs_order="diagonals_down"
      A033638   N in X=1 column, quartersquares+1 and pronic+1
      A000290   N in Y=1 row, perfect squares

    pairs_order="diagonals_up"
      A002620   N in X=1 column, squares and pronics
      A002061   N in Y=1 row, central polygonals (extra initial 1)
      A002522   N at Y=X+1 above leading diagonal, squares+1

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::DiagonalRationals>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::CoprimeColumns>,
L<Math::PlanePath::DiagonalsOctant>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut