This file is indexed.

/usr/share/perl5/Math/PlanePath/FlowsnakeCentres.pm is in libmath-planepath-perl 113-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
# Copyright 2011, 2012, 2013 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=FlowsnakeCentres --lines --scale=10
#
# http://80386.nl/projects/flowsnake/
#


package Math::PlanePath::FlowsnakeCentres;
use 5.004;
use strict;
use POSIX 'ceil';
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest',
  'xy_is_even';
use Math::PlanePath::Base::Digits
  'digit_split_lowtohigh';

use Math::PlanePath::SacksSpiral;
*_rect_to_radius_range = \&Math::PlanePath::SacksSpiral::_rect_to_radius_range;

# uncomment this to run the ### lines
#use Devel::Comments;


use constant n_start => 0;

use constant parameter_info_array => [ { name      => 'arms',
                                         share_key => 'arms_3',
                                         display   => 'Arms',
                                         type      => 'integer',
                                         minimum   => 1,
                                         maximum   => 3,
                                         default   => 1,
                                         width     => 1,
                                         description => 'Arms',
                                       } ];
use constant dx_minimum => -2;
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant absdx_minimum => 1;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
use constant dir_maximum_dxdy => (1,-1); # South-East



#------------------------------------------------------------------------------
#         *
#        / \
#       /   \
#      *-----*
#
# (b/2)^2 + h^2 = s
# (1/2)^2 + h^2 = 1
# h^2 = 1 - 1/4
# h = sqrt(3)/2 = 0.866
#

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(3, $self->{'arms'} || 1));
  return $self;
}


# # next_state length 84
# my @next_state = (0, 35,49,14, 0,70, 7,  0,21, 7,21,42,28, 7,  # 0,7
#                   14,49,63,28,14, 0,21, 14,35,21,35,56,42,21,  # 14,21
#                   28,63,77,42,28,14,35, 28,49,35,49,70,56,35,  # 28,35
#                   42,77, 7,56,42,28,49, 42,63,49,63, 0,70,49,  # 42,49
#                   56, 7,21,70,56,42,63, 56,77,63,77,14, 0,63,  # 56,63
#                   70,21,35, 0,70,56,77, 70, 7,77, 7,28,14,77);  # 70,77
# my @digit_to_i = (0,  1, 0,-1,-1, 0, 1,  0, 1, 2, 3, 3, 2, 1,  # 0,7
#                   0,  0,-1,-1,-2,-2,-1,  0, 0, 1, 1, 0, 0,-1,  # 14,21
#                   0, -1,-1, 0,-1,-2,-2,  0,-1,-1,-2,-3,-2,-2,  # 28,35
#                   0, -1, 0, 1, 1, 0,-1,  0,-1,-2,-3,-3,-2,-1,  # 42,49
#                   0,  0, 1, 1, 2, 2, 1,  0, 0,-1,-1, 0, 0, 1,  # 56,63
#                   0,  1, 1, 0, 1, 2, 2,  0, 1, 1, 2, 3, 2,2);  # 70,77
# my @digit_to_j = (0,  0, 1, 1, 2, 2, 1,  0, 0,-1,-1, 0, 0, 1,  # 0,7
#                   0,  1, 1, 0, 1, 2, 2,  0, 1, 1, 2, 3, 2, 2,  # 14,21
#                   0,  1, 0,-1,-1, 0, 1,  0, 1, 2, 3, 3, 2, 1,  # 28,35
#                   0,  0,-1,-1,-2,-2,-1,  0, 0, 1, 1, 0, 0,-1,  # 42,49
#                   0, -1,-1, 0,-1,-2,-2,  0,-1,-1,-2,-3,-2,-2,  # 56,63
#                   0, -1, 0, 1, 1, 0,-1,  0,-1,-2,-3,-3,-2,-1);  # 70,77
# my @state_to_di = ( 1, 1, 0, 0,-1,-1,  -1,-1, 0, 0, 1,1);
# my @state_to_dj = ( 0, 0, 1, 1, 1, 1,   0, 0,-1,-1,-1,-1);
# 
# 
# sub n_to_xy {
#   my ($self, $n) = @_;
#   ### Flowsnake n_to_xy(): $n
# 
#   if ($n < 0) { return; }
#   if (is_infinite($n)) { return ($n,$n); }
# 
#   my $int = int($n);
#   $n -= $int;  # fraction part
#   ### $int
#   ### frac: $n
# 
#   my $state;
#   {
#     my $arm = _divrem_mutate ($int, $self->{'arms'});
#     $state = 28 * $arm;  # initial rotation
# 
#     # adjust so that for arms=2 point N=1 has $int==1
#     # or for arms=3 then points N=1 and N=2 have $int==1
#     if ($arm) { $int += 1; }
#   }
#   ### initial state: $state
# 
#   my $i = my $j = $int*0;  # bignum zero
# 
#   foreach my $digit (reverse digit_split_lowtohigh($int,7)) { # high to low
#     ### at: "state=$state digit=$digit  i=$i,j=$j  di=".$digit_to_i[$state+$digit]." dj=".$digit_to_j[$state+$digit]
# 
#     # i,j * (2+w), being 2*(i,j)+rot60(i,j)
#     # then add low digit position
#     #
#     $state += $digit;
#     ($i, $j) = (2*$i - $j + $digit_to_i[$state],
#                 3*$j + $i + $digit_to_j[$state]);
#     $state = $next_state[$state];
#   }
#   ### integer: "i=$i, j=$j"
# 
#   # fraction in final $state direction
#   if ($n) {
#     ### apply: "frac=$n  state=$state"
#     $state /= 7;
#     $i = $n * $state_to_di[$state] + $i;
#     $j = $n * $state_to_dj[$state] + $j;
#   }
# 
#   ### ret: "$i, $j  x=".(2*$i+$j)." y=$j"
#   return (2*$i+$j,
#           $j);
# 
# }

#       4-->5
#       ^    ^
#     /       \
#    3--- 2    6--
#          \
#           v
#       0-->1
#

my @digit_reverse = (0,1,1,0,0,0,1);   # 1,2,6

sub n_to_xy {
  my ($self, $n) = @_;
  ### FlowsnakeCentres n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  # ENHANCE-ME: work $frac into initial $x,$y somehow
  # my $frac;
  # {
  #   my $int = int($n);
  #   $frac = $n - $int;  # inherit possible BigFloat/BigRat
  #   $n = $int;  # BigInt instead of BigFloat
  # }
  {
    my $int = int($n);
    ### $int
    ### $n
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'});
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int; # BigFloat int() gives BigInt, use that
  }

  # arm as initial rotation
  my $rot = _divrem_mutate ($n, $self->{'arms'});

  my @digits = digit_split_lowtohigh($n,7);
  ### @digits

  my $x = 0;
  my $y = 0;
  {
    # if (! @n || $digits[0] == 0) {
    #   $x = 2*$frac;
    # } elsif ($digits[0] == 1) {
    #   $x = $frac;
    #   $y = -$frac;
    # } elsif ($digits[0] == 2) {
    #   $x = -2*$frac;
    # } elsif ($digits[0] == 3) {
    #   $x = $frac;
    #   $y = -$frac;
    # } elsif ($digits[0] == 4) {
    #   $x = 2*$frac;
    # } elsif ($digits[0] == 5) {
    #   $x = $frac;
    #   $y = -$frac;
    # } elsif ($digits[0] == 6) {
    #   $x = -$frac;
    #   $y = -$frac;
    # }

    my $rev = 0;
    foreach my $digit (reverse @digits) {   # high to low
      ### $digit
      if ($rev) {
        ### reverse: "$digit to ".(6 - $digit)
        $digit = 6 - $digit;  # mutate the array
      }
      $rev ^= $digit_reverse[$digit];
      ### now rev: $rev
    }
    ### reversed n: @n
  }

  my ($ox,$oy,$sx,$sy);
  if ($rot == 0) {
    $ox = 0;
    $oy = 0;
    $sx = 2;
    $sy = 0;
  } elsif ($rot == 1) {
    $ox = -1;  # at +120
    $oy = 1;
    $sx = -1;  # rot to +120
    $sy = 1;
  } else {
    $ox = -2;   # at 180
    $oy = 0;
    $sx = -1;  # rot to +240
    $sy = -1;
  }

  while (@digits) {
    my $digit = shift @digits;  # low to high
    ### digit: "$digit  $x,$y  side $sx,$sy  origin $ox,$oy"

    if ($digit == 0) {
      $x += (3*$sy - $sx)/2;    # at -120
      $y += ($sx + $sy)/-2;

    } elsif ($digit == 1) {
      ($x,$y) = ((3*$y-$x)/2,   # rotate -120
                 ($x+$y)/-2);
      $x += ($sx + 3*$sy)/2;    # at -60
      $y += ($sy - $sx)/2;

    } elsif ($digit == 2) {
      # centre

    } elsif ($digit == 3) {
      ($x,$y) = (($x+3*$y)/-2,  # rotate +120
                 ($x-$y)/2);
      $x -= $sx;                # at -180
      $y -= $sy;

    } elsif ($digit == 4) {
      $x += ($sx + 3*$sy)/-2;   # at +120
      $y += ($sx - $sy)/2;

    } elsif ($digit == 5) {
      $x += ($sx - 3*$sy)/2;    # at +60
      $y += ($sx + $sy)/2;

    } elsif ($digit == 6) {
      ($x,$y) = (($x+3*$y)/-2,  # rotate +120
                 ($x-$y)/2);
      $x += $sx;                # at X axis
      $y += $sy;
    }

    $ox += $sx;
    $oy += $sy;

    # 2*(sx,sy) + rot+60(sx,sy)
    ($sx,$sy) = ((5*$sx - 3*$sy) / 2,
                 ($sx + 5*$sy) / 2);
  }


  ### digits to: "$x,$y"
  ### origin sum: "$ox,$oy"
  ### origin rotated: (($ox-3*$oy)/2).','.(($ox+$oy)/2)
  $x += ($ox-3*$oy)/2;     # rotate +60
  $y += ($ox+$oy)/2;

  ### final: "$x,$y"
  return ($x,$y);
}

# all even points when arms==3
sub xy_is_visited {
  my ($self, $x, $y) = @_;
  if ($self->{'arms'} == 3) {
    return xy_is_even($self,$x,$y);
  } else {
    return defined($self->xy_to_n($x,$y));
  }
}

#       4-->5
#       ^    ^      forw
#     /       \
#    3--- 2    6---
#          \
#           v
#       0-->1
#
#       5   3
#            \       rev
#     /  \ /  v
#  --6    4    2
#             /
#           v
#       0-->1
#

my @modulus_to_digit
  = (0,3,1,2,4,6,5,    0,42,14,28, 0,56, 0,      # 0   right forw 0
     0,5,1,4,6,2,3,    0,42,14,70,14,14,28,    # 14  +120 rev   1
     6,3,5,4,2,0,1,   28,56,70, 0,28,42,28,    # 28  left rev   2
     4,5,3,2,6,0,1,   42,42,70,56,14,42,28,   # 42  +60 forw   3
     2,1,3,4,0,6,5,   56,56,14,42,70,56, 0,    # 56  -60 rev    6
     6,1,5,2,0,4,3,   28,56,70,14,70,70, 0,    # 70      forw
    );
sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### FlowsnakeCentres xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);
  if (($x ^ $y) & 1) {
    ### odd x,y ...
    return undef;
  }

  my $level_limit = log($x*$x + 3*$y*$y + 1) * 0.835 * 2;
  if (is_infinite($level_limit)) { return $level_limit; }

  my @digits;
  my $arm;
  my $state;
  for (;;) {
    if ($level_limit-- < 0) {
      ### oops, level limit ...
      return undef;
    }
    if ($x == 0 && $y == 0) {
      ### found first arm 0,0 ...
      $arm = 0;
      $state = 0;
      last;
    }
    if ($x == -2 && $y == 0) {
      ### found second arm -2,0 ...
      $arm = 1;
      $state = 42;
      last;
    }
    if ($x == -1 && $y == -1) {
      ### found third arm -1,-1 ...
      $arm = 2;
      $state = 70;
      last;
    }

    # if ((($x == -1 || $x == 1) && $y == -1)
    #     || ($x == 0 && $y == -2)) {
    #   ### below island ...
    #   return undef;
    # }

    my $m = ($x + 2*$y) % 7;
    ### at: "$x,$y   digits=".join(',',@digits)
    ### mod remainder: $m

    # 0,0 is m=0
    if ($m == 2) {  # 2,0  = 2
      $x -= 2;
    } elsif ($m == 3) {  # 1,1 = 1+2 = 3
      $x -= 1;
      $y -= 1;
    } elsif ($m == 1) {  # -1,1 = -1+2 = 1
      $x += 1;
      $y -= 1;
    } elsif ($m == 4) {  # 0,2 = 0+2*2 = 4
      $y -= 2;
    } elsif ($m == 6) {  # 2,2 = 2+2*2 = 6
      $x -= 2;
      $y -= 2;
    } elsif ($m == 5) {  # 3,1 = 3+2*1 = 5
      $x -= 3;
      $y -= 1;
    }
    push @digits, $m;

    ### digit: "$m  to $x,$y"
    ### shrink to: ((3*$y + 5*$x) / 14).','.((5*$y - $x) / 14)
    ### assert: (3*$y + 5*$x) % 14 == 0
    ### assert: (5*$y - $x) % 14 == 0

    # shrink
    ($x,$y) = ((3*$y + 5*$x) / 14,
               (5*$y - $x) / 14);
  }

  ### @digits
  my $arms = $self->{'arms'};
  if ($arm >= $arms) {
    return undef;
  }

  my $n = 0;
  foreach my $m (reverse @digits) {  # high to low
    ### $m
    ### digit: $modulus_to_digit[$state + $m]
    ### state: $state
    ### next state: $modulus_to_digit[$state+7 + $m]

    $n = 7*$n + $modulus_to_digit[$state + $m];
    $state = $modulus_to_digit[$state+7 + $m];
  }
  ### final n along arm: $n

  return $n*$arms + $arm;
}

# exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### FlowsnakeCentres rect_to_n_range(): "$x1,$y1  $x2,$y2"

  my ($r_lo, $r_hi) = _rect_to_radius_range ($x1,$y1*sqrt(3), $x2,$y2*sqrt(3));
  $r_hi *= 2;
  my $level_plus_1 = ceil( log(max(1,$r_hi/4)) / log(sqrt(7)) ) + 2;
  # return (0, 7**$level_plus_1);


  my $level_limit = $level_plus_1;
  ### $level_limit
  if (is_infinite($level_limit)) { return ($level_limit,$level_limit); }

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);
  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  ### sorted range: "$x1,$y1  $x2,$y2"

  my $rect_dist = sub {
    my ($x,$y) = @_;
    my $xd = ($x < $x1 ? $x1 - $x
              : $x > $x2 ? $x - $x2
              : 0);
    my $yd = ($y < $y1 ? $y1 - $y
              : $y > $y2 ? $y - $y2
              : 0);
    return ($xd*$xd + 3*$yd*$yd);
  };

  my $arms = $self->{'arms'};
  ### $arms
  my $n_lo;
  {
    my @hypot = (6);
    my $top = 0;
    for (;;) {
    ARM_LO: foreach my $arm (0 .. $arms-1) {
        my $i = 0;
        my @digits;
        if ($top > 0) {
          @digits = ((0)x($top-1), 1);
        } else {
          @digits = (0);
        }

        for (;;) {
          my $n = 0;
          foreach my $digit (reverse @digits) { # high to low
            $n = 7*$n + $digit;
          }
          $n = $n*$arms + $arm;
          ### lo consider: "i=$i  digits=".join(',',reverse @digits)."  is n=$n"

          my ($nx,$ny) = $self->n_to_xy($n);
          my $nh = &$rect_dist ($nx,$ny);
          if ($i == 0 && $nh == 0) {
            ### lo found inside: $n
            if (! defined $n_lo || $n < $n_lo) {
              $n_lo = $n;
            }
            next ARM_LO;
          }

          if ($i == 0 || $nh > $hypot[$i]) {
            ### too far away: "nxy=$nx,$ny   nh=$nh vs ".$hypot[$i]

            while (++$digits[$i] > 6) {
              $digits[$i] = 0;
              if (++$i <= $top) {
                ### backtrack up ...
              } else {
                ### not found within this top and arm, next arm ...
                next ARM_LO;
              }
            }
          } else {
            ### lo descend ...
            ### assert: $i > 0
            $i--;
            $digits[$i] = 0;
          }
        }
      }

      # if an $n_lo was found on any arm within this $top then done
      if (defined $n_lo) {
        last;
      }

      ### lo extend top ...
      if (++$top > $level_limit) {
        ### nothing below level limit ...
        return (1,0);
      }
      $hypot[$top] = 7 * $hypot[$top-1];
    }
  }

  my $n_hi = 0;
 ARM_HI: foreach my $arm (reverse 0 .. $arms-1) {
    my @digits = ((6) x $level_limit);
    my $i = $#digits;
    for (;;) {
      my $n = 0;
      foreach my $digit (reverse @digits) { # high to low
        $n = 7*$n + $digit;
      }
      $n = $n*$arms + $arm;
      ### hi consider: "arm=$arm  i=$i  digits=".join(',',reverse @digits)."  is n=$n"

      my ($nx,$ny) = $self->n_to_xy($n);
      my $nh = &$rect_dist ($nx,$ny);
      if ($i == 0 && $nh == 0) {
        ### hi found inside: $n
        if ($n > $n_hi) {
          $n_hi = $n;
          next ARM_HI;
        }
      }

      if ($i == 0 || $nh > (6 * 7**$i)) {
        ### too far away: "$nx,$ny   nh=$nh vs ".(6 * 7**$i)

        while (--$digits[$i] < 0) {
          $digits[$i] = 6;
          if (++$i < $level_limit) {
            ### hi backtrack up ...
          } else {
            ### hi nothing within level limit for this arm ...
            next ARM_HI;
          }
        }

      } else {
        ### hi descend
        ### assert: $i > 0
        $i--;
        $digits[$i] = 6;
      }
    }
  }

  if ($n_hi == 0) {
    ### oops, lo found but hi not found
    $n_hi = $n_lo;
  }

  return ($n_lo, $n_hi);
}

1;
__END__


  # if (@n) {
  #   my $digit = shift @n;
  #
  #   $ox += $sx;
  #   $oy += $sy;
  #
  #   if ($rev) {
  #     if ($digit == 0) {
  #       $x += $sx;                # at X axis
  #       $y += $sy;
  #       # $x += ($sx + 3*$sy)/2;    # at -60
  #       # $y += ($sy - $sx)/2;
  #       # $x += ($sx + 3*$sy)/-2;   # at +120
  #       # $y += ($sx - $sy)/2;
  #       # $x += (3*$sy - $sx)/2;    # at -120
  #       # $y += ($sx + $sy)/-2;
  #
  #     } elsif ($digit == 1) {
  #       ($x,$y) = ((3*$y-$x)/2,   # rotate -120
  #                  ($x+$y)/-2);
  #       return;
  #
  #     } elsif ($digit == 2) {
  #       return;
  #     } elsif ($digit == 3) {
  #       $x = -$x;                 # rotate 180
  #       $y = -$y;
  #       $x += $sx + ($sx - 3*$sy)/2;    # at +60 + X axis
  #       $y += $sy + ($sx + $sy)/2;
  #       return;
  #     } elsif ($digit == 4) {
  #       ($x,$y) = ((3*$y-$x)/2,   # rotate -120
  #                  ($x+$y)/-2);
  #       $x += ($sx - 3*$sy)/2;    # at +60
  #       $y += ($sx + $sy)/2;
  #       return;
  #     } elsif ($digit == 5) {
  #       ($x,$y) = (($x+3*$y)/-2,  # rotate +120
  #                  ($x-$y)/2);
  #       # centre
  #       return;
  #     } elsif ($digit == 6) {
  #       ($x,$y) = (($x-3*$y)/2,     # rotate +60
  #                  ($x+$y)/2);
  #       return;
  #     }
  #
  #   } else {
  #     if ($digit == 0) {
  #       $x += (3*$sy - $sx)/2;    # at -120
  #       $y += ($sx + $sy)/-2;
  #
  #     } elsif ($digit == 1) {
  #       ($x,$y) = ((3*$y-$x)/2,   # rotate -120
  #                  ($x+$y)/-2);
  #       $x += ($sx + 3*$sy)/2;    # at -60
  #       $y += ($sy - $sx)/2;
  #
  #     } elsif ($digit == 2) {
  #       $x = -$x;                 # rotate 180
  #       $y = -$y;
  #       $x += $sx;                # at X axis
  #       $y += $sy;
  #
  #     } elsif ($digit == 3) {
  #       ($x,$y) = (($x+3*$y)/-2,  # rotate +120
  #                  ($x-$y)/2);
  #       # centre
  #
  #     } elsif ($digit == 4) {
  #       $x += ($sx + 3*$sy)/-2;   # at +120
  #       $y += ($sx - $sy)/2;
  #
  #     } elsif ($digit == 5) {
  #       $x += ($sx - 3*$sy)/2;    # at +60
  #       $y += ($sx + $sy)/2;
  #
  #     } elsif ($digit == 6) {
  #       ($x,$y) = (($x+3*$y)/-2,  # rotate +120
  #                  ($x-$y)/2);
  #       $x += $sx + ($sx - 3*$sy)/2;    # at +60 + X axis
  #       $y += $sy + ($sx + $sy)/2;
  #     }
  #   }
  #
  #   # 2*(sx,sy) + rot+60(sx,sy)
  #   ($sx,$sy) = ((5*$sx - 3*$sy) / 2,
  #                ($sx + 5*$sy) / 2);
  # }




=for stopwords eg Ryde flowsnake Gosper Schouten's lookup Math-PlanePath multi-arm

=head1 NAME

Math::PlanePath::FlowsnakeCentres -- self-similar path of hexagon centres

=head1 SYNOPSIS

 use Math::PlanePath::FlowsnakeCentres;
 my $path = Math::PlanePath::FlowsnakeCentres->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Gosper, William>This path is a variation of the flowsnake curve by William
Gosper which follows the flowsnake tiling the same way but the centres of
the hexagons instead of corners across.  The result is the same overall
shape, but a symmetric base figure.

=cut

# math-image --path=FlowsnakeCentres --all --output=numbers_dash --size=78x45

=pod

                         39----40                          8
                        /        \
          32----33    38----37    41                       7
         /        \           \     \
       31----30    34----35----36    42    47              6
               \                    /     /  \
          28----29    16----15    43    46    48--...      5
         /           /        \     \     \
       27    22    17----18    14    44----45              4
      /     /  \           \     \
    26    23    21----20----19    13    10                 3
      \     \                    /     /  \
       25----24     4---- 5    12----11     9              2
                  /        \              /
                 3---- 2     6---- 7---- 8                 1
                        \
                    0---- 1                            <- Y=0

    -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9

The points are spread out on every second X coordinate to make little
triangles with integer coordinates, per L<Math::PlanePath/Triangular
Lattice>.

The base pattern is the seven points 0 to 6,

        4---- 5
      /        \
     3---- 2     6---
             \
        0---- 1

This repeats at 7-fold increasing scale, with sub-sections rotated according
to the edge direction, and the 1, 2 and 6 sub-sections in reverse.  Eg. N=7
to N=13 is the "1" part taking the base figure in reverse and rotated so the
end points towards the "2".

The next level can be seen at the midpoints of each such group, being
N=2,11,18,23,30,37,46.

                 ---- 37
             ----       ---
       30----              ---
       |                      ---
      |                           46
      |
      |        ----18
     |    -----      ---
    23---               ---
                           ---
                           --- 11
                      -----
                 2 ---

=head2 Arms

The optional C<arms> parameter can give up to three copies of the curve,
each advancing successively.  For example C<arms=E<gt>3> is as follows.
Notice the N=3*k points are the plain curve, and N=3*k+1 and N=3*k+2 are
rotated copies of it.

=cut

# math-image --path=FlowsnakeCentres,arms=3 --all --output=numbers_dash

=pod

                            84---...    48----45                   5
                           /           /        \
                         81    66    51----54    42                4
                        /     /  \           \     \
          28----25    78    69    63----60----57    39    30       3
         /        \     \     \                    /     /  \
       31----34    22    75----72    12----15    36----33    27    2
               \     \              /        \              /
          40----37    19     4     9---- 6    18----21----24       1
         /           /     /  \           \
       43    58    16     7     1     0---- 3    77----80      <- Y=0
      /     /  \     \     \                    /        \
    46    55    61    13----10     2    11    74----71    83      -1
      \     \     \              /     /  \           \     \
       49----52    64    73     5---- 8    14    65----68    86   -2
                  /     /  \              /     /           /
          ...   67----70    76    20----17    62    53   ...      -3
            \              /     /           /     /  \
             85----82----79    23    38    59----56    50         -4
                              /     /  \              /
                            26    35    41----44----47            -5
                              \     \
                               29----32                           -6

                                      ^
          -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9

As described in L<Math::PlanePath::Flowsnake/Arms> the flowsnake essentially
fills a hexagonal shape with wiggly sides.  For this Centres variation the
start of each arm corresponds to the centre of a little hexagon.  The N=0
little hexagon is at the origin, and the 1 and 2 beside and below,

    ^ / \   / \
     \   \ /   \
    | \   |     |
    |  1  |  0--->
    |     |     |
     \   / \   /
      \ /   \ /
       |     |
       |  2  |
       | /   |
        /   /
      v  \ /

Like the main Flowsnake the sides of the arms mesh perfectly and three arms
fill the plane.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::FlowsnakeCentres-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

In the current code the returned range is exact, meaning C<$n_lo> and
C<$n_hi> are the smallest and biggest in the rectangle, but don't rely on
that yet since finding the exact range is a touch on the slow side.  (The
advantage of which though is that it helps avoid very big ranges from a
simple over-estimate.)

=back

=head1 FORMULAS

=head2 N to X,Y

The C<n_to_xy()> calculation follows Ed Schouten's method

=over

L<http://80386.nl/projects/flowsnake/>

=back

breaking N into base-7 digits, applying reversals from high to low according
to digits 1, 2, or 6, then applying rotation and position according to the
resulting digits.

Unlike Ed's code, the path here starts from N=0 at the edge of the Gosper
island shape and for that reason doesn't cover the plane.  An offset of
N-2*7^21 and suitable X,Y offset can be applied to get the same result.

=head2 X,Y to N

The C<xy_to_n()> calculation also follows Ed Schouten's method.  It's based
on a nice observation that the seven cells of the base figure can be
identified from their X,Y coordinates, and the centre of those seven cell
figures then shrunk down a level to be a unit apart, thus generating digits
of N from low to high.

In triangular grid X,Y a remainder is formed

    m = (x + 2*y) mod 7

Taking the base figure's N=0 at 0,0 the remainders are

        4---- 6
      /        \
     1---- 3     5
             \
        0---- 2

The remainders are unchanged when the shape is moved by some multiple of the
next level X=5,Y=1 or the same at 120 degrees X=1,Y=3 or 240 degrees
X=-4,Y=1.  Those vectors all have X+2*Y==0 mod 7.

From the m remainder an offset can be applied to move X,Y to the 0 position,
leaving X,Y a multiple of the next level vectors X=5,Y=1 etc.  Those vectors
can then be shrunk down with

    Xshrunk = (3*Y + 5*X) / 14
    Yshrunk = (5*Y - X) / 14

This gives integers since 3*Y+5*X and 5*Y-X are always multiples of 14.  For
example the N=35 point at X=2,Y=6 reduces to X = (3*6+5*2)/14 = 2 and Y =
(5*6-2)/14 = 2, which is then the "5" part of the base figure.

The remainders can be mapped to digits and then reversals and rotations
applied, from high to low, according to the edge orientation.  Those steps
can be combined in a single lookup table with 6 states (three rotations, and
each one forward or reverse).

For the main curve the reduction ends at 0,0.  For the multi-arm form the
second arm ends to the right at -2,0 and the third below at -1,-1.  Notice
the modulo and shrink procedure maps those three points back to themselves
unchanged.  The calculation can be done without paying attention to which
arms are supposed to be in use.  On reaching one of the three ends the "arm"
is determined and the original X,Y can be rejected or accepted accordingly.

The key to this approach is that the base figure is symmetric around a
central point, so the tiling can be broken down first, and the rotations or
reversals in the path applied afterwards.  Can it work on a non-symmetric
base figure like the "across" style of the main Flowsnake, or something like
the C<DragonCurve> for that matter?

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::Flowsnake>,
L<Math::PlanePath::GosperIslands>

L<Math::PlanePath::KochCurve>,
L<Math::PlanePath::HilbertCurve>,
L<Math::PlanePath::PeanoCurve>,
L<Math::PlanePath::ZOrderCurve>

L<http://80386.nl/projects/flowsnake/> -- Ed Schouten's code

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut