This file is indexed.

/usr/share/perl5/Math/PlanePath/DiagonalRationals.pm is in libmath-planepath-perl 113-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright 2011, 2012, 2013 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# Maybe:
# including_zero=>1 to have 0/1 for A038567


package Math::PlanePath::DiagonalRationals;
use 5.004;
use strict;
use Carp;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_rect_for_first_quadrant = \&Math::PlanePath::_rect_for_first_quadrant;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';

use Math::PlanePath::CoprimeColumns;
*_extend = \&Math::PlanePath::CoprimeColumns::_extend;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;
use vars '@_x_to_n';
*_x_to_n = \@Math::PlanePath::CoprimeColumns::_x_to_n;

# uncomment this to run the ### lines
# use Smart::Comments;


use constant parameter_info_array =>
  [ { name        => 'direction',
      share_key   => 'direction_downup',
      display     => 'Direction',
      type        => 'enum',
      default     => 'down',
      choices     => ['down','up'],
      choices_display => ['Down','Up'],
      description => 'Number points downwards or upwards along the diagonals.',
    },
    Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];

use constant default_n_start => 1;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant n_frac_discontinuity => .5;
use constant x_minimum => 1;
use constant y_minimum => 1;
use constant gcdxy_maximum => 1;  # no common factor

sub absdx_minimum {
  my ($self) = @_;
  return ($self->{'direction'} eq 'down' ? 0 : 1);
}
sub absdy_minimum {
  my ($self) = @_;
  return ($self->{'direction'} eq 'down' ? 1 : 0);
}
use constant dsumxy_minimum => 0;
use constant dsumxy_maximum => 1;  # to next diagonal stripe

sub dir_minimum_dxdy {
  my ($self) = @_;
  return ($self->{'direction'} eq 'down'
          ? (0,1)   # North
          : (1,0)); # East
}
sub dir_maximum_dxdy {
  my ($self) = @_;
  return ($self->{'direction'} eq 'down'
          ? (1,-1)    # South-East
          : (2,-1));  # ESE at N=3 down to X axis
}

#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);

  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  my $direction = ($self->{'direction'} ||= 'down');
  if (! ($direction eq 'up' || $direction eq 'down')) {
    croak "Unrecognised direction option: ", $direction;
  }

  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### DiagonalRationals n_to_xy(): $n

  if (2*($n-$self->{'n_start'}) < -1) {
    ### before n_start ...
    return;
  }
  my ($x,$y) = $self->Math::PlanePath::CoprimeColumns::n_to_xy($n+1)
    or return;
  ### CoprimeColumns: "x=$x y=$y"

  $x -= $y;
  if ($self->{'direction'} eq 'up') {
    return ($x,$y);
  } else {
    return ($y,$x);
  }
}

# Note: shared by FactorRationals
sub xy_is_visited {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  if ($x < 1
      || $y < 1
      || ! _coprime($x,$y)) {
    return 0;
  }
  return 1;
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### DiagonalRationals xy_to_n(): "$x,$y"
  if ($self->{'direction'} eq 'up') {
    ($x,$y) = ($y,$x);
  }
  my $n = Math::PlanePath::CoprimeColumns::xy_to_n($self,$x+$y,$x);

  # not the N=0 at Xcol=1,Ycol=1 which is Xdiag=1,Ydiag=0
  if (defined $n && $n > $self->{'n_start'}) {
    return $n-1;
  } else {
    return undef;
  }
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### DiagonalRationals rect_to_n_range(): "$x1,$y1 $x2,$y2"

  $x1 = round_nearest($x1);
  $y1 = round_nearest($y1);
  $x2 = round_nearest($x2);
  $y2 = round_nearest($y2);
  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  if ($x2 < 1 || $y2 < 1) {
    ### outside quadrant ...
    return (1, 0);
  }

  ### rect: "$x1,$y1  $x2,$y2"

  my $d2 = $x2 + $y2 + 1;
  if (is_infinite($d2)) {
    return (1, $d2);
  }
  while ($#_x_to_n < $d2) {
    _extend();
  }
  my $d1 = max (2, $x1 + $y1);
  ### $d1
  ### $d2

  return ($_x_to_n[$d1] - 1 + $self->{'n_start'},
          $_x_to_n[$d2] + $self->{'n_start'});
}

1;
__END__

=for stopwords Ryde Math-PlanePath coprime coprimes coprimeness totient totients Euler's onwards OEIS

=head1 NAME

Math::PlanePath::DiagonalRationals -- rationals X/Y by diagonals

=head1 SYNOPSIS

 use Math::PlanePath::DiagonalRationals;
 my $path = Math::PlanePath::DiagonalRationals->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path enumerates positive rationals X/Y with no common factor, going in
diagonal order from Y down to X.

    17  |    96...
    16  |    80
    15  |    72 81
    14  |    64    82
    13  |    58 65 73 83 97
    12  |    46          84
    11  |    42 47 59 66 74 85 98
    10  |    32    48          86
     9  |    28 33    49 60    75 87
     8  |    22    34    50    67    88
     7  |    18 23 29 35 43 51    68 76 89 99
     6  |    12          36    52          90
     5  |    10 13 19 24    37 44 53 61    77 91
     4  |     6    14    25    38    54    69    92
     3  |     4  7    15 20    30 39    55 62    78 93
     2  |     2     8    16    26    40    56    70    94
     1  |     1  3  5  9 11 17 21 27 31 41 45 57 63 71 79 95
    Y=0 |
        +---------------------------------------------------
         X=0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16

The order is the same as the C<Diagonals> path, but only those X,Y with no
common factor are numbered.

    1/1,                      N = 1
    1/2, 1/2,                 N = 2 .. 3
    1/3, 1/3,                 N = 4 .. 5
    1/4, 2/3, 3/2, 4/1,       N = 6 .. 9
    1/5, 5/1,                 N = 10 .. 11

N=1,2,4,6,10,etc at the start of each diagonal (in the column at X=1) is the
cumulative totient,

    totient(i) = count numbers having no common factor with i

                             i=K
    cumulative_totient(K) =  sum   totient(i)
                             i=1

=head2 Direction

Option C<direction =E<gt> 'up'> reverses the order within each diagonal to
count upward from the X axis.

=cut

# math-image --path=DiagonalRationals,direction=up --all --output=numbers --size=50x10

=pod

    direction => "up"

     8 |   27    
     7 |   21 26 
     6 |   17         
     5 |   11 16 20 25   
     4 |    9    15    24 
     3 |    5  8    14 19   
     2 |    3     7    13    23  
     1 |    1  2  4  6 10 12 18 22
    Y=0|                                 
       +---------------------------
       X=0  1  2  3  4  5  6  7  8

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start with the same shape,  For example
to start at 0,

=cut

# math-image --path=DiagonalRationals,n_start=0 --all --output=numbers --size=50x10

=pod

    n_start => 0

     8 |   21
     7 |   17 22
     6 |   11
     5 |    9 12 18 23
     4 |    5    13    24
     3 |    3  6    14 19
     2 |    1     7    15    25
     1 |    0  2  4  8 10 16 20 26
    Y=0|
       +---------------------------
       X=0  1  2  3  4  5  6  7  8

=head2 Coprime Columns

The diagonals are the same as the columns in C<CoprimeColumns>.  For example
the diagonal N=18 to N=21 from X=0,Y=8 down to X=8,Y=0 is the same as the
C<CoprimeColumns> vertical at X=8.  In general the correspondence is

   Xdiag = Ycol
   Ydiag = Xcol - Ycol

   Xcol = Xdiag + Ydiag
   Ycol = Xdiag

C<CoprimeColumns> has an extra N=0 at X=1,Y=1 which is not present in
C<DiagonalRationals>.  (It would be Xdiag=1,Ydiag=0 which is 1/0.)

The points numbered or skipped in a column up to X=Y is the same as the
points numbered or skipped on a diagonal, simply because X,Y no common
factor is the same as Y,X+Y no common factor.

Taking the C<CoprimeColumns> as enumerating fractions F = Ycol/Xcol with
S<0 E<lt> F E<lt> 1> the corresponding diagonal rational
S<0 E<lt> R E<lt> infinity> is

           1         F
    R = -------  =  ---
        1/F - 1     1-F

           1         R
    F = -------  =  ---
        1/R + 1     1+R

which is a one-to-one mapping between the fractions S<F E<lt> 1> and all
rationals.

=cut

# R = 1 / (1/F - 1)
# F = Ycol/Xcol
# R = 1 / (Xcol/Ycol - 1)
#   = 1 / (Xcol-Ycol)/Ycol
#   = Ycol / (Xcol-Ycol)
#
# R = 1 / (1/F - 1)
#   = 1 / (1-F)/F
#   = F/(1-F)
#
# 1/R = 1/F - 1
# 1/R + 1 = 1/F
# F = 1 / (1/R + 1)
#   = 1 / (1+R)/R
#   = R/(1+R)
#
# F = 1 / (1/R + 1)
# R = Xdiag/Ydiag
# F = 1 / (Ydiag/Xdiag + 1)
#   = 1 / (Ydiag+Xdiag)/Xdiag
#   = Xdiag/(Ydiag+Xdiag)
#   = Ycol/Xcol
# Xcol = Ydiag+Xdiag
# Ycol = Xdiag
#
# R = 1 / (1/F - 1)
#   = 1 / ((1+R)/R - 1)
#   = 1 / ((1+R-R)/R)
#   = 1 / (1/R)
#   = R

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::DiagonalRationals-E<gt>new ()>

=item C<$path = Math::PlanePath::DiagonalRationals-E<gt>new (n_start =E<gt> $n)>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 1 and if C<$n E<lt> 1> then the return is an empty list.

=back

=head1 BUGS

The current implementation is fairly slack and is slow on medium to large N.
A table of cumulative totients is built and retained for the diagonal d=X+Y.

=head1 OEIS

This enumeration of rationals is in Sloane's Online Encyclopedia of Integer
Sequences in the following forms

=over

L<http://oeis.org/A020652> (etc)

=back

    direction=down, n_start=1  (the defaults)
      A020652   X, numerator
      A020653   Y, denominator
      A038567   X+Y sum, starting from X=1,Y=1
      A054431   by diagonals 1=coprime, 0=not
                  (excluding X=0 row and Y=0 column)

      A054430   permutation N at Y/X
                  reverse runs of totient(k) many integers

      A054424   permutation DiagonalRationals -> RationalsTree SB
      A054425     padded with 0s at non-coprimes
      A054426     inverse SB -> DiagonalRationals
      A060837   permutation DiagonalRationals -> FactorRationals

    direction=down, n_start=0
      A157806   abs(X-Y) difference

direction=up swaps X,Y.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::CoprimeColumns>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::PythagoreanTree>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut