This file is indexed.

/usr/share/perl5/Math/PlanePath/CubicBase.pm is in libmath-planepath-perl 113-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# Copyright 2012, 2013 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=CubicBase --all --output=numbers --size=60x20
# math-image --path=CubicBase --values=Multiples,multiples=27 --output=numbers --size=60x20

# math-image --path=CubicBase --expression='i<128?i:0' --output=numbers --size=132x20
#

package Math::PlanePath::CubicBase;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'parameter_info_array',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';

# uncomment this to run the ### lines
#use Smart::Comments;


use constant n_start => 0;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_even;

# use constant parameter_info_array =>
#   [ Math::PlanePath::Base::Digits::parameter_info_radix2(),
#
#    # Experimental ...
#    # { name      => 'skewed',
#    #   type      => 'boolean',
#    #   default   => 0,
#    # },
# ];

use constant absdx_minimum => 2;
use constant dir_maximum_dxdy => (-1, -3);   # supremum

#------------------------------------------------------------------------------
sub new {
  my $self = shift->SUPER::new(@_);

  my $radix = $self->{'radix'};
  if (! defined $radix || $radix <= 2) { $radix = 2; }
  $self->{'radix'} = $radix;

  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### CubicBase n_to_xy(): "$n"

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  # is this sort of midpoint worthwhile? not documented yet
  {
    my $int = int($n);
    ### $int
    ### $n
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;       # BigFloat int() gives BigInt, use that
  }

  my $x = 0;
  my $y = 0;

  my $radix = $self->{'radix'};
  if (my @digits = digit_split_lowtohigh($n,$radix)) {
    my $len = ($n * 0) + 1;  # inherit bignum 1
    my $ext = 1;
    for (;;) {
      { # 0 degrees
        $x += (2*(shift @digits)) * $len;    # low to high
      }
      @digits || last;

      if ($ext ^= 1) {
        $len *= $radix;
      }

      { # +120 degrees
        my $dlen = (shift @digits) * $len;   # low to high
        $x -= $dlen;
        $y += $dlen;
      }
      @digits || last;

      if ($ext ^= 1) {
        $len *= $radix;
      }

      { # +240 degrees
        my $dlen = (shift @digits) * $len;   # low to high
        $x -= $dlen;
        $y -= $dlen;
      }
      @digits || last;

      if ($ext ^= 1) {
        $len *= $radix;
      }
    }

    if ($self->{'skewed'}) {
      $x = ($x + $y) / 2;
    }
  }

  ### result: "$x,$y"
  return ($x,$y);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### CubicBase xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);
  if (is_infinite($x)) { return ($x); }
  if (is_infinite($y)) { return ($y); }

  if ($self->{'skewed'}) {
    $x = 2*$x - $y;
  } else {
    if (($x + $y) % 2) {
      # nothing on odd squares, only A2 even squares
      return undef;
    }
  }
  # $x = ($x-$y)/2;  # into i,j coordinates

  foreach my $overflow ($x+$y, $x-$y) {
    if (is_infinite($overflow)) { return $overflow; }
  }

  my $radix = $self->{'radix'};
  my $zero = ($x * 0 * $y);  # inherit bignum 0
  my @n; # digits low to high

  if ($x || $y) {
    my $ext = 1;

    for (;;) {
      ### at: "x=$x y=$y"

      {
        my $digit = (($x+$y)/2) % $radix;
        push @n, $digit;
        $x -= 2*$digit;

        ### 0deg digit: $digit
        ### subtract to: "x=$x y=$y"
      }

      last unless $x || $y;
      if ($ext ^= 1) {
        ### assert: ($x % $radix) == 0
        ### assert: ($y % $radix) == 0
        $x = int($x/$radix);
        $y = int($y/$radix);
        ### divide out to: "x=$x y=$y"
      }

      {
        my $digit = (($y-$x)/2) % $radix;
        push @n, $digit;
        $x += $digit;
        $y -= $digit;

        ### 120deg digit: $digit
        ### subtract to: "x=$x y=$y"
      }

      last unless $x || $y;
      if ($ext ^= 1) {
        ### assert: ($x % $radix) == 0
        ### assert: ($y % $radix) == 0
        $x = int($x/$radix);
        $y = int($y/$radix);
        ### divide out to: "x=$x y=$y"
      }

      {
        my $digit = (-$y) % $radix;
        push @n, $digit;
        $x += $digit;
        $y += $digit;

        ### 240deg digit: $digit
        ### subtract to: "x=$x y=$y"
      }

      last unless $x || $y;
      if ($ext ^= 1) {
        ### assert: ($x % $radix) == 0
        ### assert: ($y % $radix) == 0
        $x = int($x/$radix);
        $y = int($y/$radix);
        ### divide out to: "x=$x y=$y"
      }
    }
  }

  return digit_join_lowtohigh (\@n, $radix, $zero);
}

# ENHANCE-ME: Can probably do better by measuring extents in 3 directions
# for a hexagonal boundary.
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### CubicBase rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  my $radix = $self->{'radix'} ;
  my $xm = max(abs($x1),abs($x2)) * $radix*$radix*$radix;
  my $ym = max(abs($y1),abs($y2)) * $radix*$radix*$radix;

  return (0,
          $xm*$xm+$ym*$ym);
}

1;
__END__

# xy_to_n() high to low
#
# use Math::PlanePath::Base::Digits
#   'round_down_pow';
#
# my ($len, $level) = round_down_pow(abs($x)+abs($y), $radix);
# $len *= $radix;
# $level++;
# $len *= $radix;
# ### $level
# ### $len
#
# for (;;) {
#   ### at: "x=$x y=$y"
#
#   {
#     my $k = -$y;
#     my $digit = ($k >= 0
#                  ? int($k/$len)
#                  : -int(-$k/$len));
#     $n = $n*$radix + $digit;
#     $x += $digit*$len;
#     $y += $digit*$len;
#
#     ### 240deg digit: $digit
#     ### add to: "x=$x y=$y"
#   }
#
#   $len = int($len/$radix);
#   ### $len
#
#   {
#     my $k = $y;
#     my $digit = int($k/$len) % $radix;
#     $n = $n*$radix + $digit;
#     $x += $digit*$len;
#     $y -= $digit*$len;
#
#     ### 120deg digit: $digit
#     ### subtract to: "x=$x y=$y"
#   }
#
#   {
#     my $digit = ($x >= 0
#                  ? int($x/(2*$len))
#                  : -int(-$x/(2*$len)));
#     $n = $n*$radix + $digit;
#     $x -= 2*$digit;
#
#     ### 0deg digit: $digit
#     ### subtract to: "x=$x y=$y"
#   }
#
#   last unless $level-- > 0;
#
# }


=for stopwords eg Ryde Math-PlanePath Radix ie radix

=head1 NAME

Math::PlanePath::CubicBase -- replications in three directions

=head1 SYNOPSIS

 use Math::PlanePath::CubicBase;
 my $path = Math::PlanePath::CubicBase->new (radix => 4);
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This is a pattern of replications in three directions 0, 120 and 240 degrees.

=cut

# these numbers generated with
#   math-image --path=CubicBase --expression='i<64?i:0' --output=numbers --size=132x20

=pod

                       18    19    26    27                      5
                          16    17    24    25                   4
                 22    23    30    31                            3
                    20    21    28    29                         2
           50    51    58    59     2     3    10    11          1
              48    49    56    57     0     1     8     9   <- Y=0
     54    55    62    63     6     7    14    15               -1
        52    53    60    61     4     5    12    13            -2
                       34    35    42    43                     -3
                          32    33    40    41                  -4
                 38    39    46    47                           -5
                    36    37    44    45                        -6

                                       ^
    -11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

The points are on a triangular grid by using every second integer X,Y, as
per L<Math::PlanePath/Triangular Lattice>.  All points on that triangular
grid are visited.

The initial N=0,N=1 is replicated at +120 degrees.  Then that trapezoid at
+240 degrees

    +-----------+                       +-----------+
     \  2     3  \                       \  2     3  \
      +-----------+                       \           \
        \  0     1  \                       \  0     1  \
         +-----------+             ---------  -----------+
                                   \  6     7  \
      replicate +120deg              \          \    rep +240deg
                                      \  4     5 \
                                       +----------+

Then that bow-tie N=0to7 is replicated at 0 degrees again.  Each replication
is 1/3 of the circle around, 0, 120, 240 degrees repeating.  The relative
layout within a replication is unchanged.

                      -----------------------
                      \ 18    19    26    27 \
                       \                       \
                        \  16    17    24    25 \
               ----------              ----------
                \ 22    23    30    31 \
                  \                      \
                   \ 20    21    28    29  \
          --------- ------------ +----------- -----------
          \ 50    51    58    59  \  2     3  \ 10    11 \
            \                      +-----------+           \
             \ 48    49    56    57  \  0     1  \  8     9 \
    ----------              --------- +-----------  ---------+
    \ 54    55    62    63  \  6     7  \ 14    15  \
     \                        \          \            \
       \ 52    53    60    61  \  4     5 \  12    13  \
        --------------          +----------+------------
                      \ 34    35    42    43 \
                       \                       \
                        \  32    33    40    41 \
                ---------+            -----------
                \ 38    39    46    47 \
                 \                       \
                   \ 36    37    44    45 \
                    -----------------------

The radial distance doubles on every second replication, so N=1 and N=2 are
at 1 unit from the origin, then N=4 and N=8 at 2 units, then N=16 and N=32
at 4 units.  N=64 is not shown but is then at 8 units away (X=8,Y=0).

This is similar to the C<ImaginaryBase>, but where that path repeats in 4
directions based on i=squareroot(-1), here it's 3 directions based on
w=cuberoot(1) = -1/2+i*sqrt(3)/2.

=head2 Radix

The C<radix> parameter controls the "r" used to break N into X,Y.  For
example radix 4 gives 4x4 blocks, with r-1 replications of the preceding
level at each stage.

=cut

# math-image --path=CubicBase,radix=4 --expression='i<64?i:0' --output=numbers --size=150x30

=pod

       3         radix => 4              12    13    14    15
       2                                     8     9    10    11
       1                                        4     5     6     7
     Y=0 ->                                        0     1     2     3
      -1                     28    29    30    31
      -2                        24    25    26    27
      -3                           20    21    22    23
      -4                              16    17    18    19
      -5         44    45    46    47
      ...           40    41    42    43
                       36    37    38    39
                          32    33    34    35
     60    61    62    63
        56    57    58    59
           52    53    54    55
              48    49    50    51

                                                   ^
    -15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

Notice the parts always replicate away from the origin, so the block N=16 to
N=31 is near the origin at X=-4, then N=32,48,64 are further away.

In this layout the replications still mesh together perfectly and all points
on the triangular grid are visited.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::CubicBase-E<gt>new ()>

=item C<$path = Math::PlanePath::CubicBase-E<gt>new (radix =E<gt> $r)>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

=back

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::ImaginaryBase>,
L<Math::PlanePath::ImaginaryHalf>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2012, 2013 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut