This file is indexed.

/usr/share/perl5/Math/PlanePath/CoprimeColumns.pm is in libmath-planepath-perl 113-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
# Copyright 2011, 2012, 2013 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=CoprimeColumns --all --scale=10
# math-image --path=CoprimeColumns --output=numbers --all

package Math::PlanePath::CoprimeColumns;
use 5.004;
use strict;

use vars '$VERSION', '@ISA', '@_x_to_n';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';

# uncomment this to run the ### lines
# use Smart::Comments;


use constant default_n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant n_frac_discontinuity => .5;

use constant x_minimum => 1;
use constant y_minimum => 1;
use constant diffxy_minimum => 0; # octant Y<=X so X-Y>=0
use constant gcdxy_maximum => 1;  # no common factor

use constant dx_minimum => 0;
use constant dx_maximum => 1;
use constant dir_maximum_dxdy => (1,-1); # South-East

# shared by DiagonalRationals
use constant parameter_info_array =>
  [ { name        => 'n_start',
      share_key   => 'n_start_0',
      type        => 'integer',
      default     => 0,
      width       => 3,
      description => 'Starting N.',
    },
  ];

#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  return $self;
}


# shared with DiagonalRationals
@_x_to_n = (0,0,1);
sub _extend {
  ### _extend(): $#_x_to_n
  my $x = $#_x_to_n;
  push @_x_to_n, $_x_to_n[$x] + _totient($x);

  # if ($x > 2) {
  #   if (($x & 3) == 2) {
  #     $x >>= 1;
  #     $next_n += $_x_to_n[$x] - $_x_to_n[$x-1];
  #   } else {
  #     $next_n +=
  #   }
  # }
  ### last x: $#_x_to_n
  ### second last: $_x_to_n[$#_x_to_n-2]
  ### last: $_x_to_n[$#_x_to_n-1]
  ### diff: $_x_to_n[$#_x_to_n-1] - $_x_to_n[$#_x_to_n-2]
  ### totient of: $#_x_to_n - 2
  ### totient: _totient($#_x_to_n-2)
  ### assert: $_x_to_n[$#_x_to_n-1] - $_x_to_n[$#_x_to_n-2] == _totient($#_x_to_n-2)
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### CoprimeColumns n_to_xy(): $n

  $n = $n - $self->{'n_start'}; # to N=0 basis, and warn on undef

  # $n<-0.5 is ok for Math::BigInt circa Perl 5.12, it seems
  if (2*$n < -1) {
    return;
  }
  if (is_infinite($n)) {
    return ($n,$n);
  }

  my $frac;
  {
    my $int = int($n);
    $frac = $n - $int; # -.5 <= $frac < 1
    $n = $int;  # BigFloat int() gives BigInt, use that

    if (2*$frac >= 1) {
      $frac--;
      $n += 1;
      # now -.5 <= $frac < .5
    }
    ### $n
    ### $frac
    ### assert: 2*$frac >= -1
    ### assert: 2*$frac < 1
  }

  my $x = 1;
  for (;;) {
    while ($x > $#_x_to_n) {
      _extend();
    }
    if ($_x_to_n[$x] > $n) {
      $x--;
      last;
    }
    $x++;
  }
  $n -= $_x_to_n[$x];
  ### $x
  ### n base: $_x_to_n[$x]
  ### n next: $_x_to_n[$x+1]
  ### remainder: $n

  my $y = 1;
  for (;;) {
    if (_coprime($x,$y)) {
      if (--$n < 0) {
        return ($x, $frac + $y);
      }
    }
    if (++$y >= $x) {
      ### oops, not enough in this column ...
      return;
    }
  }
}

sub xy_is_visited {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  if ($x < 1
      || $y < 1
      || $y >= $x+($x==1)   # Y<X except X=Y=1 included
      || ! _coprime($x,$y)) {
    return 0;
  }
  return 1;
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### CoprimeColumns xy_to_n(): "$x,$y"
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  if (is_infinite($x)) { return $x; }
  if (is_infinite($y)) { return $y; }
  if ($x < 1
      || $y < 1
      || $y >= $x+($x==1)   # Y<X except X=Y=1 included
      || ! _coprime($x,$y)) {
    return undef;
  }

  while ($#_x_to_n < $x) {
    _extend();
  }
  my $n = $_x_to_n[$x];
  ### base n: $n
  if ($y != 1) {
    foreach my $i (1 .. $y-1) {
      if (_coprime($x,$i)) {
        $n += 1;
      }
    }
  }
  return $n + $self->{'n_start'};
}

# Asymptotically
#     phisum(x) ~ 1/(2*zeta(2)) * x^2 + O(x ln x)
#               = 3/pi^2 * x^2 + O(x ln x)
# or by Walfisz
#     phisum(x) ~ 3/pi^2 * x^2 + O(x * (ln x)^(2/3) * (ln ln x)^4/3)
#
# but want an upper bound, so that for a given X at least enough N is
# covered ...
#
# Note: DiagonalRationals depends on this working only to column resolution.
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### CoprimeColumns rect_to_n_range(): "$x1,$y1 $x2,$y2"

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  $x2 = round_nearest($x2);
  $y2 = round_nearest($y2);
  ### rounded ...
  ### $x2
  ### $y2

  if ($x2 < 1 || $y2 < 1
      # bottom right corner above X=Y diagonal, except X=1,Y=1 included
      || ($y1 >= $x2 + ($x2 == 1))) {
    ### outside ...
    return (1, 0);
  }
  if (is_infinite($x2)) {
    return ($self->{'n_start'}, $x2);
  }

  while ($#_x_to_n <= $x2) {
    _extend();
  }

  ### rect use xy_to_n at: "x=".($x2+1)." y=1"
  if ($x1 < 0) { $x1 = 0; }
  return ($_x_to_n[$x1]  + $self->{'n_start'},
          $_x_to_n[$x2+1] - 1 + $self->{'n_start'});

  # asympototically ?
  # return ($self->{'n_start'}, $self->{'n_start'} + .304*$x2*$x2 + 20);
}

# A000010
sub _totient {
  my ($x) = @_;
  my $count = (1                            # y=1 always
               + ($x > 2 && ($x&1))         # y=2 if $x odd
               + ($x > 3 && ($x % 3) != 0)  # y=3
               + ($x > 4 && ($x&1))         # y=4 if $x odd
              );
  for (my $y = 5; $y < $x; $y++) {
    $count += _coprime($x,$y);
  }
  return $count;
}

# code here only uses X>=Y but allow for any X,Y>=0 for elsewhere
sub _coprime {
  my ($x, $y) = @_;
  #### _coprime(): "$x,$y"

  if ($y > $x) {
    if ($x <= 1) {
      ### result yes ...
      return 1;
    }
    $y %= $x;
  }

  for (;;) {
    if ($y <= 1) {
      ### result: ($y == 1)
      return ($y == 1);
    }
    ($x,$y) = ($y, $x % $y);
  }
}

1;
__END__

=for stopwords Ryde coprime coprimes coprimeness totient totients Math-PlanePath Euler's onwards OEIS ie GCD

=head1 NAME

Math::PlanePath::CoprimeColumns -- coprime X,Y by columns

=head1 SYNOPSIS

 use Math::PlanePath::CoprimeColumns;
 my $path = Math::PlanePath::CoprimeColumns->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path visits points X,Y which are coprime, ie. no common factor so
gcd(X,Y)=1, in columns from Y=0 to YE<lt>=X.

    13 |                                          63
    12 |                                       57
    11 |                                    45 56 62
    10 |                                 41    55
     9 |                              31 40    54 61
     8 |                           27    39    53
     7 |                        21 26 30 38 44 52
     6 |                     17          37    51
     5 |                  11 16 20 25    36 43 50 60
     4 |                9    15    24    35    49
     3 |             5  8    14 19    29 34    48 59
     2 |          3     7    13    23    33    47
     1 |    0  1  2  4  6 10 12 18 22 28 32 42 46 58
    Y=0|
       +---------------------------------------------
       X=0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

Since gcd(X,0)=0 the X axis itself is never visited, and since gcd(K,K)=K
the leading diagonal X=Y is not visited except X=1,Y=1.

The number of coprime pairs in each column is Euler's totient function
phi(X).  Starting N=0 at X=1,Y=1 means N=0,1,2,4,6,10,etc horizontally along
row Y=1 are the cumulative totients

                          i=K
    cumulative totient = sum   phi(i)
                          i=1

Anything making a straight line etc in the path will probably be related to
totient sums in some way.

The pattern of coprimes or not within a column is the same going up as going
down, since X,X-Y has the same coprimeness as X,Y.  This means coprimes
occur in pairs from X=3 onwards.  When X is even the middle point Y=X/2 is
not coprime since it has common factor 2, from X=4 onwards.  So there's an
even number of points in each column from X=2 onwards and those cumulative
totient totals horizontally along X=1 are therefore always even likewise.

=head2 N Start

The default is to number points starting N=0 as shown above.  An optional
C<n_start> can give a different start with the same shape,  For example
to start at 1,

=cut

# math-image --path=CoprimeColumns,n_start=1 --all --output=numbers --size=50x16

=pod

    n_start => 1

     8 |                           28
     7 |                        22 27
     6 |                     18
     5 |                  12 17 21 26
     4 |               10    16    25
     3 |             6  9    15 20
     2 |          4     8    14    24
     1 |    1  2  3  5  7 11 13 19 23
    Y=0|
       +------------------------------
       X=0  1  2  3  4  5  6  7  8  9

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::CoprimeColumns-E<gt>new ()>

=item C<$path = Math::PlanePath::CoprimeColumns-E<gt>new (n_start =E<gt> $n)>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

=item C<$bool = $path-E<gt>xy_is_visited ($x,$y)>

Return true if C<$x,$y> is visited.  This means C<$x> and C<$y> have no
common factor.  This is tested with a GCD and is much faster than the full
C<xy_to_n()>.

=back

=head1 BUGS

The current implementation is fairly slack and is slow on medium to large N.
A table of cumulative totients is built and retained up to the highest X
column number used.

=head1 OEIS

This pattern is in Sloane's Online Encyclopedia of Integer Sequences in a
couple of forms,

=over

L<http://oeis.org/A002088> (etc)

=back

    n_start=0 (the default)
      A038567    X coordinate, reduced fractions denominator
      A020653    X-Y diff, fractions denominator by diagonals
                   skipping N=0 initial 1/1

      A002088    N on X axis, cumulative totient
      A127368    by columns Y coordinate if coprime, 0 if not
      A054521    by columns 1 if coprime, 0 if not

      A054427    permutation columns N -> RationalsTree SB N X/Y<1
      A054428      inverse, SB X/Y<1 -> columns
      A121998    Y of skipped X,Y among 2<=Y<=X, those not coprime
      A179594    X column position of KxK square unvisited

    n_start=1
      A038566    Y coordinate, reduced fractions numerator

      A002088    N on X=Y+1 diagonal, cumulative totient

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::DiagonalRationals>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::PythagoreanTree>,
L<Math::PlanePath::DivisibleColumns>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut