This file is indexed.

/usr/share/perl5/Math/PlanePath/ComplexMinus.pm is in libmath-planepath-perl 113-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
# Copyright 2011, 2012, 2013 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=ComplexMinus --lines --scale=10
# math-image --path=ComplexMinus --all --output=numbers_dash --size=80x50

package Math::PlanePath::ComplexMinus;
use 5.004;
use strict;
use List::Util 'min';
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 113;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';

# uncomment this to run the ### lines
#use Smart::Comments;


use constant n_start => 0;

use constant parameter_info_array =>
  [ { name        => 'realpart',
      display     => 'Real Part',
      type        => 'integer',
      default     => 1,
      minimum     => 1,
      width       => 2,
      description => 'Real part r in the i-r complex base.',
    } ];


sub absdx_minimum {
  my ($self) = @_;
  return ($self->{'realpart'} == 1
          ? 0   # i-1 N=3 dX=0,dY=-3
          : 1); # i-r otherwise always diff
}

# realpart=1
# dx=1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0 = (6*16^k-2)/15
# dy=1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1 = ((9*16^5-1)/15-1)/2+1
# approaches dx=6/15=12/30, dy=9/15/2=9/30

# FIXME: are others smaller than East ?
sub dir_maximum_dxdy {
  my ($self) = @_;
  if ($self->{'realpart'} == 1) { return (12,-9); }
  else { return (0,0); }
}

#------------------------------------------------------------------------------
sub new {
  my $self = shift->SUPER::new(@_);

  my $realpart = $self->{'realpart'};
  if (! defined $realpart || $realpart < 1) {
    $self->{'realpart'} = $realpart = 1;
  }
  $self->{'norm'} = $realpart*$realpart + 1;
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### ComplexMinus n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  # is this sort of midpoint worthwhile? not documented yet
  {
    my $int = int($n);
    ### $int
    ### $n
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;       # BigFloat int() gives BigInt, use that
  }

  my $x = 0;
  my $y = 0;
  my $dx = 1;
  my $dy = 0;
  my $realpart = $self->{'realpart'};
  my $norm = $self->{'norm'};

  foreach my $digit (digit_split_lowtohigh($n,$norm)) {
    ### at: "$x,$y  digit=$digit"

    $x += $digit * $dx;
    $y += $digit * $dy;

    # multiply i-r, ie. (dx,dy) = (dx + i*dy)*(i-$realpart)
    $dy = -$dy;
    ($dx,$dy) = ($dy - $realpart*$dx,
                 $dx + $realpart*$dy);
  }

  ### final: "$x,$y"
  return ($x,$y);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### ComplexMinus xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  my $realpart = $self->{'realpart'};
  {
    my $rx = $realpart*$x;
    my $ry = $realpart*$y;
    foreach my $overflow ($rx+$ry, $rx-$ry) {
      if (is_infinite($overflow)) { return $overflow; }
    }
  }

  my $norm = $self->{'norm'};
  my $zero = ($x * 0 * $y);  # inherit bignum 0
  my @n; # digits low to high

  while ($x || $y) {
    my $new_y = $y*$realpart + $x;

    my $digit = $new_y % $norm;
    push @n, $digit;

    $x -= $digit;
    $new_y = $digit - $new_y;

    # div i-realpart,
    # is (i*y + x) * -(i+realpart)/norm
    #  x = [ x*realpart - y ] / -norm
    #    = [ y - x*realpart ] / norm
    #  y = - [ y*realpart + x ] / norm
    #

    ### assert: (($y - $x*$realpart) % $norm) == 0
    ### assert: ($new_y % $norm) == 0

    ($x,$y) = (($y - $x*$realpart) / $norm,
               $new_y / $norm);
  }
  return digit_join_lowtohigh (\@n, $norm, $zero);
}

# for i-1 need level=6 to cover 8 points surrounding 0,0
# for i-2 and higher level=3 is enough

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### ComplexMinus rect_to_n_range(): "$x1,$y1  $x2,$y2"

  my $xm = max(abs($x1),abs($x2));
  my $ym = max(abs($y1),abs($y2));

  return (0,
          int (($xm*$xm + $ym*$ym)
               * $self->{'norm'} ** ($self->{'realpart'} > 1
                                     ? 4
                                     : 8)));
}

1;
__END__

=for stopwords eg Ryde Math-PlanePath 0.abcde twindragon ie 0xC 0,1,0xC,0xD OEIS ACM

=head1 NAME

Math::PlanePath::ComplexMinus -- twindragon and other complex number base i-r

=head1 SYNOPSIS

 use Math::PlanePath::ComplexMinus;
 my $path = Math::PlanePath::ComplexMinus->new (realpart=>1);
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Penney, Walter>X<Twindragon>This path traverses points by a complex number
base i-r for given integer r.  The default is base i-1 as per

=over

Walter Penny, A "Binary" System for Complex Numbers, Journal of the ACM,
volume 12, number 2, April 1965, pages 247-248.

=back

When continued to a power-of-2 extent this has come to be called the
"twindragon" shape.

=cut

# math-image --path=ComplexMinus --expression='i<64?i:0' --output=numbers

=pod

          26 27       10 11                       3
             24 25        8  9                    2
    18 19 30 31  2  3 14 15                       1
       16 17 28 29  0  1 12 13                <- Y=0
    22 23        6  7 58 59       42 43          -1
       20 21        4  5 56 57       40 41       -2
                50 51 62 63 34 35 46 47          -3
                   48 49 60 61 32 33 44 45       -4
                54 55       38 39                -5
                   52 53       36 37             -6

                    ^
    -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7

A complex integer can be represented as a set of powers,

    X+Yi = a[n]*b^n + ... + a[2]*b^2 + a[1]*b + a[0]
    base b=i-1
    digits a[n] to a[0] each = 0 or 1

    N = a[n]*2^n + ... + a[2]*2^2 + a[1]*2 + a[0]

N is those a[i] digits as bits and X,Y is the resulting complex number.  It
can be shown that this is a one-to-one mapping so every integer X,Y of the
plane is visited.

The shape of points N=0 to N=2^level-1 repeats as N=2^level to
N=2^(level+1)-1.  For example N=0 to N=7 is repeated as N=8 to N=15, but
starting at X=2,Y=2 instead of the origin.  That position 2,2 is because b^3
= 2+2i.  There's no rotations or mirroring etc in this replication, just
position offsets.

    N=0 to N=7          N=8 to N=15 repeat shape

    2   3                    10  11
        0   1                     8   9
    6   7                    14  15
        4   5                    12  13

For b=i-1 each N=2^level point starts at X+Yi=b^level.  The powering of that
b means the start position rotates around by +135 degrees each time and
outward by a radius factor sqrt(2) each time.  So for example b^3 = 2+2i is
followed by b^4 = -4, which is 135 degrees around and radius |b^3|=sqrt(8)
becomes |b^4|=sqrt(16).

=head2 Real Part

The C<realpart =E<gt> $r> option gives a complex base b=i-r for a given
integer rE<gt>=1.  For example C<realpart =E<gt> 2> is

    20 21 22 23 24                                               4
          15 16 17 18 19                                         3
                10 11 12 13 14                                   2
                       5  6  7  8  9                             1
             45 46 47 48 49  0  1  2  3  4                   <- Y=0
                   40 41 42 43 44                               -1
                         35 36 37 38 39                         -2
                               30 31 32 33 34                   -3
                      70 71 72 73 74 25 26 27 28 29             -4
                            65 66 67 68 69                      -5
                                  60 61 62 63 64                -6
                                        55 56 57 58 59          -7
                                              50 51 52 53 54    -8
                             ^
    -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9 10

N is broken into digits of base=norm=r*r+1, ie. digits 0 to r*r inclusive.
This makes horizontal runs of r*r+1 many points, such as N=5 to N=9 etc
above.  In the default r=1 these runs are 2 long whereas for r=2 they're
2*2+1=5 long, or r=3 would be 3*3+1=10, etc.

The offset back for each run like N=5 shown is the r in i-r, then the next
level is (i-r)^2 = (-2r*i + r^2-1) so N=25 begins at Y=-2*2=-4, X=2*2-1=3.

The successive replications tile the plane for any r, though the N values
needed to rotate around and do so become large if norm=r*r+1 is large.

=head2 X Axis Values

For base i-1, the X axis N=0,1,12,13,16,17,etc is integers using only digits
0,1,0xC,0xD in hexadecimal.  Those on the positive X axis have an odd number
of digits and on the X negative axis an even number of digits.

To be on the X axis the imaginary parts of the base powers b^k must cancel
out to leave just a real part.  The powers repeat in an 8-long cycle

    k    b^k for b=i-1
    0        +1
    1      i -1
    2    -2i +0   \ pair cancel
    3     2i +2   /
    4        -4
    5    -4i +4
    6     8i +0   \ pair cancel
    7    -8i -8   /

The k=0 and k=4 bits are always reals and can always be included.  Bits k=2
and k=3 have imaginary parts -2i and 2i which cancel out, so they can be
included together.  Similarly k=6 and k=7 with 8i and -8i.  The two blocks
k=0to3 and k=4to7 differ only in a negation so the bits can be reckoned in
groups of 4, which is hexadecimal.  Bit 1 is digit value 1 and bits 2,3
together are digit value 0xC, so adding one or both of those gives
combinations are 0,1,0xC,0xD.

The high hex digit determines the sign, positive or negative, of the total
real part.  Bits k=0 or k=2,3 are positive.  Bits k=4 or k=6,7 are negative,
so

    N for X>0   N for X<0

      0x01..     0x1_..     even number of hex 0,1,C,D following
      0x0C..     0xC_..     "_" digit any of 0,1,C,D
      0x0D..     0xD_..

which is equivalent to XE<gt>0 is an odd number of hex digits or XE<lt>0 is
an even number.  For example N=28=0x1C is at X=-2 since that N is XE<lt>0
form "0x1_".

The order of the values on the positive X axis is obtained by taking the
digits in reverse order on alternate positions

    0,1,C,D   high digit
    D,C,1,0
    0,1,C,D
    ...
    D,C,1,0
    0,1,C,D   low digit

For example in the following notice the first and third digit increases, but
the middle digit decreases,

    X=4to7     N=0x1D0,0x1D1,0x1DC,0x1DD
    X=8to11    N=0x1C0,0x1C1,0x1CC,0x1CD
    X=12to15   N=0x110,0x111,0x11C,0x11D
    X=16to19   N=0x100,0x101,0x10C,0x10D
    X=20to23   N=0xCD0,0xCD1,0xCDC,0xCDD

For the negative X axis it's the same if reading by increasing X,
ie. upwards toward +infinity, or the opposite way around if reading
decreasing X, ie. more negative downwards toward -infinity.

=head2 Fractal

The i-1 twindragon is usually conceived as taking fractional N like 0.abcde
in binary and giving fractional complex X+iY.  The twindragon is then all
the points of the complex plane reached by such fractional N.  This set of
points can be shown to be connected and to fill a certain radius around the
origin.

The code here might be pressed into use for that to some finite number of
bits by multiplying up to make an integer N

    Nint = Nfrac * 256^k
    Xfrac = Xint / 16^k
    Yfrac = Yint / 16^k

256 is a good power because b^8=16 is a positive real and so there's no
rotations to apply to the resulting X,Y, only a power-of-16 division
(b^8)^k=16^k each.  Using b^4=-4 for a multiplier 16^k and divisor (-4)^k
would be almost as easy too, requiring just sign changes if k odd.

=head2 Boundary Length

X<Gilbert, William J.>The length of the boundary of the first norm^k many
points, ie. N=0 to N=norm^k-1 inclusive, is calculated in

=over

William J. Gilbert, "The Fractal Dimension of Sets Derived From Complex
Bases", Canadian Math Bulletin, volume 29(4), 1986.
L<http://www.math.uwaterloo.ca/~wgilbert/Research/GilbertFracDim.pdf>

=back

The boundary formula is a 3rd-order recurrence.  For the twindragon case,

    realpart=1
    boundary[k] = boundary[k-1] + 2*boundary[k-3]

    4, 6, 10, 18, 30, 50, 86, 146, 246, 418, 710, ...

The first three boundaries are as follows.  Then the recurrence gives the
next boundary[3] = 10+2*4 = 18.

     k      area     boundary[k]
    ---     ----     -----------
                                       +---+
     0     2^k = 1       4             | 0 |
                                       +---+

                                       +---+---+
     1     2^k = 2       6             | 0   1 |
                                       +---+---+

                                   +---+---+
                                   | 2   3 |
     2     2^k = 4      10         +---+   +---+
                                       | 0   1 |
                                       +---+---+

Gilbert calculates the boundary of any i-r by taking it in three parts A,B,C
and showing how in the next replication level those boundary parts transform
into multiple copies of the preceding level parts.  The replication is
easier to visualize for a bigger "r" than for the twindragon because in
bigger r it's clearer how the A, B and C parts differ.  The replications are

    A -> A * (2*realpart-1)             + C * 2*realpart
    B -> A * (realpart^2-2*realpart+2)  + C * (realpart-1)^2
    C -> B

    starting from
      A = 2*realpart
      B = 2
      C = 2 - 2*realpart

    total boundary = A+B+C

For the twindragon case realpart=1 these A,B,C are already in the form of a
recurrence A-E<gt>A+2*C, B-E<gt>A, C-E<gt>B, per the formula above.  For
other real parts a little matrix rearrangement gives the recurrence

    boundary[k] = boundary[k-1] * (2*realpart - 1)   
                + boundary[k-2] * (norm - 2*realpart)
                + boundary[k-3] * norm               

    starting from
      boundary[0] = 4           (ie. a single square cell)
      boundary[1] = 2*norm + 2
      boundary[2] = 2*(norm-1)*(realpart+2) + 4

For example

    realpart=2
    boundary[k] = 3*boundary[k-1] + 1*boundary[k-2] + 5*boundary[k-1]

    4, 12, 36, 140, 516, 1868, 6820, 24908, ...

If calculating for large k values then the matrix form can be powered up
rather than repeated additions.  (As usual for all such recurrences.)

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::ComplexMinus-E<gt>new ()>

=item C<$path = Math::PlanePath::ComplexMinus-E<gt>new (realpart =E<gt> $r)>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

C<$n> should be an integer, it's unspecified yet what will be done for a
fraction.

=back

=head1 FORMULAS

=head2 X,Y to N

A given X,Y representing X+Yi can be turned into digits of N by successive
complex divisions by i-r.  Each digit of N is a real remainder 0 to r*r
inclusive from that division.

The base formula above is

    X+Yi = a[n]*b^n + ... + a[2]*b^2 + a[1]*b + a[0]

and we want the a[0]=digit to be a real 0 to r*r inclusive.  Subtracting
a[0] and dividing by b will give

    (X+Yi - digit) / (i-r)
    = - (X-digit + Y*i) * (i+r) / norm
    = (Y - (X-digit)*r)/norm
      + i * - ((X-digit) + Y*r)/norm

which is

    Xnew = Y - (X-digit)*r)/norm
    Ynew = -((X-digit) + Y*r)/norm

The a[0] digit must make both Xnew and Ynew parts integers.  The easiest one
to calculate from is the imaginary part, from which require

    - ((X-digit) + Y*r) == 0 mod norm

so

    digit = X + Y*r mod norm

This digit value makes the real part a multiple of norm too, as can be seen
from

    Xnew = Y - (X-digit)*r
         = Y - X*r - (X+Y*r)*r
         = Y - X*r - X*r + Y*r*r
         = Y*(r*r+1)
         = Y*norm

Notice Ynew is the quotient from (X+Y*r)/norm rounded towards negative
infinity.  Ie. in the division "X+Y*r mod norm" which calculates the digit,
the quotient is Ynew and the remainder is the digit.

=cut

# Is this quite right ? ...
#
# =head2 Radius Range
#
# In general for base i-1 after the first few innermost levels each
# N=2^level increases the covered radius around by a factor sqrt(2), ie.
#
#     N = 0 to 2^level-1
#     Xmin,Ymin closest to origin
#     Xmin^2+Ymin^2 approx 2^(level-7)
#
# The "level-7" is since the innermost few levels take a while to cover the
# points surrounding the origin.  Notice for example X=1,Y=-1 is not reached
# until N=58.  But after that it grows like N approx = pi*R^2.

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A066321> (etc)

=back

    realpart=1 (the default)
      A066321    N on X axis, being the base i-1 positive reals
      A066323    N on X axis, in binary
      A066322    diffs (N at X=16k+4) - (N at X=16k+3)
     
      A003476    boundary length / 2
                   recurrence a(n) = a(n-1) + 2*a(n-3)
      A203175    boundary length, starting from 4
                   (believe its conjectured recurrence is true)
      A052537    boundary length part A, B or C, per Gilbert's paper

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::ComplexPlus>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut