/usr/share/perl5/Math/Bezier.pm is in libmath-bezier-perl 0.01-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | #========================================================================
# Math::Bezier
#
# Module for the solution of Bezier curves based on the algorithm
# presented by Robert D. Miller in Graphics Gems V, "Quick and Simple
# Bezier Curve Drawing".
#
# Andy Wardley <abw@kfs.org>
#
# Copyright (C) 2000 Andy Wardley. All Rights Reserved.
#
# This module is free software; you can redistribute it and/or
# modify it under the same terms as Perl itself.
#
#========================================================================
package Math::Bezier;
use strict;
use vars qw( $VERSION );
$VERSION = '0.01';
use constant X => 0;
use constant Y => 1;
use constant CX => 2;
use constant CY => 3;
#------------------------------------------------------------------------
# new($x1, $y1, $x2, $y2, ..., $xn, $yn)
#
# Constructor method to create a new Bezier curve form.
#------------------------------------------------------------------------
sub new {
my $class = shift;
my @points = ref $_[0] eq 'ARRAY' ? @{$_[0]} : @_;
my $size = scalar @points;
my @ctrl;
die "invalid control points, expects (x1, y1, x2, y2, ..., xn, yn)\n"
if $size % 2;
while (@points) {
push(@ctrl, [ splice(@points, 0, 2) ]);
}
$size = scalar @ctrl;
my $n = $size - 1;
my $choose;
for (my $k = 0; $k <= $n; $k++) {
if ($k == 0) {
$choose = 1;
}
elsif ($k == 1) {
$choose = $n;
}
else {
$choose *= ($n - $k + 1) / $k;
}
$ctrl[$k]->[CX] = $ctrl[$k]->[X] * $choose;
$ctrl[$k]->[CY] = $ctrl[$k]->[Y] * $choose;
}
bless \@ctrl, $class;
}
#------------------------------------------------------------------------
# point($theta)
#
# Calculate (x, y) point on curve at position $theta (in the range 0 - 1)
# along the curve. Returns a list ($x, $y) or reference to a list
# [$x, $y] when called in list or scalar context respectively.
#------------------------------------------------------------------------
sub point {
my ($self, $t) = @_;
my $size = scalar @$self;
my (@points, $point);
my $n = $size - 1;
my $u = $t;
push(@points, [ $self->[0]->[CX], $self->[0]->[CY] ]);
for (my $k = 1; $k <= $n; $k++) {
push(@points, [ $self->[$k]->[CX] * $u, $self->[$k]->[CY] * $u ]);
$u *= $t;
}
$point = [ @{ $points[$n] } ];
my $t1 = 1 - $t;
my $tt = $t1;
for (my $k = $n - 1; $k >= 0; $k--) {
$point->[X] += $points[$k]->[X] * $tt;
$point->[Y] += $points[$k]->[Y] * $tt;
$tt = $tt * $t1;
}
return wantarray ? (@$point) : $point;
}
#------------------------------------------------------------------------
# curve($npoints)
#
# Sample curve at $npoints points. Returns a list or reference to a list
# of (x, y) points along the curve, when called in list or scalar context
# respectively.
#------------------------------------------------------------------------
sub curve {
my ($self, $npoints) = @_;
$npoints = 20 unless defined $npoints;
my @points;
$npoints--;
foreach (my $t = 0; $t <= $npoints; $t++) {
push(@points, ($self->point($t / $npoints)));
}
return wantarray ? (@points) : \@points;
}
1;
__END__
=head1 NAME
Math::Bezier - solution of Bezier Curves
=head1 SYNOPSIS
use Math::Bezier;
# create curve passing list of (x, y) control points
my $bezier = Math::Bezier->new($x1, $y1, $x2, $y2, ..., $xn, $yn);
# or pass reference to list of control points
my $bezier = Math::Bezier->new([ $x1, $y1, $x2, $y2, ..., $xn, $yn]);
# determine (x, y) at point along curve, range 0 -> 1
my ($x, $y) = $bezier->point(0.5);
# returns list ref in scalar context
my $xy = $bezier->point(0.5);
# return list of 20 (x, y) points along curve
my @curve = $bezier->curve(20);
# returns list ref in scalar context
my $curve = $bezier->curve(20);
=head1 DESCRIPTION
This module implements the algorithm for the solution of Bezier curves
as presented by Robert D. Miller in Graphics Gems V, "Quick and Simple
Bezier Curve Drawing".
A new Bezier curve is created using the new() constructor, passing a list
of (x, y) control points.
use Math::Bezier;
my @control = ( 0, 0, 10, 20, 30, -20, 40, 0 );
my $bezier = Math::Bezier->new(@control);
Alternately, a reference to a list of control points may be passed.
my $bezier = Math::Bezier->new(\@control);
The point($theta) method can then be called on the object, passing a
value in the range 0 to 1 which represents the distance along the
curve. When called in list context, the method returns the x and y
coordinates of that point on the Bezier curve.
my ($x, $y) = $bezier->point(0.5);
print "x: $x y: $y\n
When called in scalar context, it returns a reference to a list containing
the x and y coordinates.
my $point = $bezier->point(0.5);
print "x: $point->[0] y: $point->[1]\n";
The curve($n) method can be used to return a set of points sampled
along the length of the curve (i.e. in the range 0 <= $theta <= 1).
The parameter indicates the number of sample points required,
defaulting to 20 if undefined. The method returns a list of ($x1,
$y1, $x2, $y2, ..., $xn, $yn) points when called in list context, or
a reference to such an array when called in scalar context.
my @points = $bezier->curve(10);
while (@points) {
my ($x, $y) = splice(@points, 0, 2);
print "x: $x y: $y\n";
}
my $points = $bezier->curve(10);
while (@$points) {
my ($x, $y) = splice(@$points, 0, 2);
print "x: $x y: $y\n";
}
=head1 AUTHOR
Andy Wardley E<lt>abw@kfs.orgE<gt>
=head1 SEE ALSO
Graphics Gems 5, edited by Alan W. Paeth, Academic Press, 1995,
ISBN 0-12-543455-3. Section IV.8, 'Quick and Simple Bezier Curve
Drawing' by Robert D. Miller, pages 206-209.
=cut
|