This file is indexed.

/usr/include/HYPRE_sstruct_mv.h is in libhypre-dev 2.8.0b-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
/*BHEADER**********************************************************************
 * Copyright (c) 2008,  Lawrence Livermore National Security, LLC.
 * Produced at the Lawrence Livermore National Laboratory.
 * This file is part of HYPRE.  See file COPYRIGHT for details.
 *
 * HYPRE is free software; you can redistribute it and/or modify it under the
 * terms of the GNU Lesser General Public License (as published by the Free
 * Software Foundation) version 2.1 dated February 1999.
 *
 * $Revision: 2.31 $
 ***********************************************************************EHEADER*/


#ifndef HYPRE_SSTRUCT_MV_HEADER
#define HYPRE_SSTRUCT_MV_HEADER

#include "HYPRE_utilities.h"
#include "HYPRE.h"
#include "HYPRE_struct_mv.h"
#include "HYPRE_IJ_mv.h"

#ifdef __cplusplus
extern "C" {
#endif

/*--------------------------------------------------------------------------
 *--------------------------------------------------------------------------*/

/**
 * @name SStruct System Interface
 *
 * This interface represents a semi-structured-grid conceptual view of a linear
 * system.
 *
 * @memo A semi-structured-grid conceptual interface
 **/
/*@{*/

/*--------------------------------------------------------------------------
 *--------------------------------------------------------------------------*/

/**
 * @name SStruct Grids
 **/
/*@{*/

struct hypre_SStructGrid_struct;
/**
 * A grid object is constructed out of several structured ``parts'' and an
 * optional unstructured ``part''.  Each structured part has its own abstract
 * index space.
 **/
typedef struct hypre_SStructGrid_struct *HYPRE_SStructGrid;

/**
 * An enumerated type that supports cell centered, node centered, face centered,
 * and edge centered variables.  Face centered variables are split into x-face,
 * y-face, and z-face variables, and edge centered variables are split into
 * x-edge, y-edge, and z-edge variables.  The edge centered variable types are
 * only used in 3D.  In 2D, edge centered variables are handled by the face
 * centered types.
 *
 * Variables are referenced relative to an abstract (cell centered) index in the
 * following way:
 * \begin{itemize}
 * \item cell centered variables are aligned with the index;
 * \item node centered variables are aligned with the cell corner
 *       at relative index (1/2, 1/2, 1/2);
 * \item x-face, y-face, and z-face centered variables are aligned
 *       with the faces at relative indexes (1/2, 0, 0), (0, 1/2, 0),
 *       and (0, 0, 1/2), respectively;
 * \item x-edge, y-edge, and z-edge centered variables are aligned
 *       with the edges at relative indexes (0, 1/2, 1/2), (1/2, 0, 1/2),
 *       and (1/2, 1/2, 0), respectively.
 * \end{itemize}
 *
 * The supported identifiers are:
 * \begin{itemize}
 * \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_CELL}
 * \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_NODE}
 * \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_XFACE}
 * \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_YFACE}
 * \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_ZFACE}
 * \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_XEDGE}
 * \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_YEDGE}
 * \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_ZEDGE}
 * \end{itemize}
 *
 * NOTE: Although variables are referenced relative to a unique abstract
 * cell-centered index, some variables are associated with multiple grid cells.
 * For example, node centered variables in 3D are associated with 8 cells (away
 * from boundaries).  Although grid cells are distributed uniquely to different
 * processes, variables may be owned by multiple processes because they may be
 * associated with multiple cells.
 **/
typedef HYPRE_Int HYPRE_SStructVariable;

#define HYPRE_SSTRUCT_VARIABLE_UNDEFINED -1
#define HYPRE_SSTRUCT_VARIABLE_CELL       0
#define HYPRE_SSTRUCT_VARIABLE_NODE       1
#define HYPRE_SSTRUCT_VARIABLE_XFACE      2
#define HYPRE_SSTRUCT_VARIABLE_YFACE      3
#define HYPRE_SSTRUCT_VARIABLE_ZFACE      4
#define HYPRE_SSTRUCT_VARIABLE_XEDGE      5
#define HYPRE_SSTRUCT_VARIABLE_YEDGE      6
#define HYPRE_SSTRUCT_VARIABLE_ZEDGE      7

/**
 * Create an {\tt ndim}-dimensional grid object with {\tt nparts} structured
 * parts.
 **/
HYPRE_Int
HYPRE_SStructGridCreate(MPI_Comm           comm,
                        HYPRE_Int          ndim,
                        HYPRE_Int          nparts,
                        HYPRE_SStructGrid *grid);

/**
 * Destroy a grid object.  An object should be explicitly destroyed using this
 * destructor when the user's code no longer needs direct access to it.  Once
 * destroyed, the object must not be referenced again.  Note that the object may
 * not be deallocated at the completion of this call, since there may be
 * internal package references to the object.  The object will then be destroyed
 * when all internal reference counts go to zero.
 **/
HYPRE_Int
HYPRE_SStructGridDestroy(HYPRE_SStructGrid grid);

/**
 * Set the extents for a box on a structured part of the grid.
 **/
HYPRE_Int
HYPRE_SStructGridSetExtents(HYPRE_SStructGrid  grid,
                            HYPRE_Int          part,
                            HYPRE_Int         *ilower,
                            HYPRE_Int         *iupper);

/**
 * Describe the variables that live on a structured part of the grid.
 **/
HYPRE_Int
HYPRE_SStructGridSetVariables(HYPRE_SStructGrid      grid,
                              HYPRE_Int              part,
                              HYPRE_Int              nvars,
                              HYPRE_SStructVariable *vartypes);

/**
 * Describe additional variables that live at a particular index.  These
 * variables are appended to the array of variables set in
 * \Ref{HYPRE_SStructGridSetVariables}, and are referenced as such.
 *
 * NOTE: This routine is not yet supported.
 **/
HYPRE_Int
HYPRE_SStructGridAddVariables(HYPRE_SStructGrid      grid,
                              HYPRE_Int              part,
                              HYPRE_Int             *index,
                              HYPRE_Int              nvars,
                              HYPRE_SStructVariable *vartypes);

/**
 * Set the ordering of variables in a finite element problem.  This overrides
 * the default ordering described below.
 *
 * Array {\tt ordering} is composed of blocks of size (1 + {\tt ndim}).  Each
 * block indicates a specific variable in the element and the ordering of the
 * blocks defines the ordering of the variables.  A block contains a variable
 * number followed by an offset direction relative to the element's center.  For
 * example, a block containing (2, 1, -1, 0) means variable 2 on the edge
 * located in the (1, -1, 0) direction from the center of the element.  Note
 * that here variable 2 must be of type {\tt ZEDGE} for this to make sense.  The
 * {\tt ordering} array must account for all variables in the element.  This
 * routine can only be called after \Ref{HYPRE_SStructGridSetVariables}.
 *
 * The default ordering for element variables (var, i, j, k) varies fastest in
 * index i, followed by j, then k, then var.  For example, if var 0, var 1, and
 * var 2 are declared to be XFACE, YFACE, and NODE variables, respectively, then
 * the default ordering (in 2D) would first list the two XFACE variables, then
 * the two YFACE variables, then the four NODE variables as follows:
 *
 * (0,-1,0), (0,1,0), (1,0,-1), (1,0,1), (2,-1,-1), (2,1,-1), (2,-1,1), (2,1,1)
 **/
HYPRE_Int
HYPRE_SStructGridSetFEMOrdering(HYPRE_SStructGrid  grid,
                                HYPRE_Int          part,
                                HYPRE_Int         *ordering);

/**
 * Describe how regions just outside of a part relate to other parts.  This is
 * done a box at a time.
 *
 * Parts {\tt part} and {\tt nbor\_part} must be different, except in the case
 * where only cell-centered data is used.
 *
 * Indexes should increase from {\tt ilower} to {\tt iupper}.  It is not
 * necessary that indexes increase from {\tt nbor\_ilower} to {\tt
 * nbor\_iupper}.
 * 
 * The {\tt index\_map} describes the mapping of indexes 0, 1, and 2 on part
 * {\tt part} to the corresponding indexes on part {\tt nbor\_part}.  For
 * example, triple (1, 2, 0) means that indexes 0, 1, and 2 on part {\tt part}
 * map to indexes 1, 2, and 0 on part {\tt nbor\_part}, respectively.
 *
 * The {\tt index\_dir} describes the direction of the mapping in {\tt
 * index\_map}.  For example, triple (1, 1, -1) means that for indexes 0 and 1,
 * increasing values map to increasing values on {\tt nbor\_part}, while for
 * index 2, decreasing values map to increasing values.
 *
 * NOTE: All parts related to each other via this routine must have an identical
 * list of variables and variable types.  For example, if part 0 has only two
 * variables on it, a cell centered variable and a node centered variable, and
 * we declare part 1 to be a neighbor of part 0, then part 1 must also have only
 * two variables on it, and they must be of type cell and node.  In addition,
 * variables associated with FACEs or EDGEs must be grouped together and listed
 * in X, Y, Z order.  This is to enable the code to correctly associate
 * variables on one part with variables on its neighbor part when a coordinate
 * transformation is specified.  For example, an XFACE variable on one part may
 * correspond to a YFACE variable on a neighbor part under a particular
 * tranformation, and the code determines this association by assuming that the
 * variable lists are as noted here.
 **/
HYPRE_Int
HYPRE_SStructGridSetNeighborPart(HYPRE_SStructGrid  grid,
                                 HYPRE_Int          part,
                                 HYPRE_Int         *ilower,
                                 HYPRE_Int         *iupper,
                                 HYPRE_Int          nbor_part,
                                 HYPRE_Int         *nbor_ilower,
                                 HYPRE_Int         *nbor_iupper,
                                 HYPRE_Int         *index_map,
                                 HYPRE_Int         *index_dir);

/**
 * Describe how regions inside a part are shared with regions in other parts.
 *
 * Parts {\tt part} and {\tt shared\_part} must be different.
 *
 * Indexes should increase from {\tt ilower} to {\tt iupper}.  It is not
 * necessary that indexes increase from {\tt shared\_ilower} to {\tt
 * shared\_iupper}.  This is to maintain consistency with the {\tt
 * SetNeighborPart} function, which is also able to describe shared regions but
 * in a more limited fashion.
 *
 * The {\tt offset} is a triple (in 3D) used to indicate the dimensionality of
 * the shared set of data and its position with respect to the box extents {\tt
 * ilower} and {\tt iupper} on part {\tt part}.  The dimensionality is given by
 * the number of 0's in the triple, and the position is given by plus or minus
 * 1's.  For example: (0, 0, 0) indicates sharing of all data in the given box;
 * (1, 0, 0) indicates sharing of data on the faces in the (1, 0, 0) direction;
 * (1, 0, -1) indicates sharing of data on the edges in the (1, 0, -1)
 * direction; and (1, -1, 1) indicates sharing of data on the nodes in the (1,
 * -1, 1) direction.  To ensure the dimensionality, it is required that for
 * every nonzero entry, the corresponding extents of the box are the same.  For
 * example, if {\tt offset} is (0, 1, 0), then (2, 1, 3) and (10, 1, 15) are
 * valid box extents, whereas (2, 1, 3) and (10, 7, 15) are invalid (because 1
 * and 7 are not the same).
 *
 * The {\tt shared\_offset} is used in the same way as {\tt offset}, but with
 * respect to the box extents {\tt shared\_ilower} and {\tt shared\_iupper} on
 * part {\tt shared\_part}.
 * 
 * The {\tt index\_map} describes the mapping of indexes 0, 1, and 2 on part
 * {\tt part} to the corresponding indexes on part {\tt shared\_part}.  For
 * example, triple (1, 2, 0) means that indexes 0, 1, and 2 on part {\tt part}
 * map to indexes 1, 2, and 0 on part {\tt shared\_part}, respectively.
 *
 * The {\tt index\_dir} describes the direction of the mapping in {\tt
 * index\_map}.  For example, triple (1, 1, -1) means that for indexes 0 and 1,
 * increasing values map to increasing values on {\tt shared\_part}, while for
 * index 2, decreasing values map to increasing values.
 *
 * NOTE: All parts related to each other via this routine must have an identical
 * list of variables and variable types.  For example, if part 0 has only two
 * variables on it, a cell centered variable and a node centered variable, and
 * we declare part 1 to have shared regions with part 0, then part 1 must also
 * have only two variables on it, and they must be of type cell and node.  In
 * addition, variables associated with FACEs or EDGEs must be grouped together
 * and listed in X, Y, Z order.  This is to enable the code to correctly
 * associate variables on one part with variables on a shared part when a
 * coordinate transformation is specified.  For example, an XFACE variable on
 * one part may correspond to a YFACE variable on a shared part under a
 * particular tranformation, and the code determines this association by
 * assuming that the variable lists are as noted here.
 **/
HYPRE_Int
HYPRE_SStructGridSetSharedPart(HYPRE_SStructGrid  grid,
                               HYPRE_Int          part,
                               HYPRE_Int         *ilower,
                               HYPRE_Int         *iupper,
                               HYPRE_Int         *offset,
                               HYPRE_Int          shared_part,
                               HYPRE_Int         *shared_ilower,
                               HYPRE_Int         *shared_iupper,
                               HYPRE_Int         *shared_offset,
                               HYPRE_Int         *index_map,
                               HYPRE_Int         *index_dir);

/**
 * Add an unstructured part to the grid.  The variables in the unstructured part
 * of the grid are referenced by a global rank between 0 and the total number of
 * unstructured variables minus one.  Each process owns some unique consecutive
 * range of variables, defined by {\tt ilower} and {\tt iupper}.
 *
 * NOTE: This is just a placeholder.  This part of the interface is not finished.
 **/
HYPRE_Int
HYPRE_SStructGridAddUnstructuredPart(HYPRE_SStructGrid grid,
                                     HYPRE_Int         ilower,
                                     HYPRE_Int         iupper);

/**
 * Finalize the construction of the grid before using.
 **/
HYPRE_Int
HYPRE_SStructGridAssemble(HYPRE_SStructGrid grid);

/**
 * Set the periodicity a particular part.
 *
 * The argument {\tt periodic} is an {\tt ndim}-dimensional integer array that
 * contains the periodicity for each dimension.  A zero value for a dimension
 * means non-periodic, while a nonzero value means periodic and contains the
 * actual period.  For example, periodicity in the first and third dimensions
 * for a 10x11x12 part is indicated by the array [10,0,12].
 *
 * NOTE: Currently, this routine will only have an effect for matrix object
 * types {\tt HYPRE\_SSTRUCT} and {\tt HYPRE\_STRUCT}.  For {\tt HYPRE\_PARCSR},
 * periodicity must be set up manually through other routines such as
 * \Ref{HYPRE_SStructGridSetNeighborPart}.
 *
 * NOTE: Some of the solvers in hypre have power-of-two restrictions on the size
 * of the periodic dimensions.
 **/
HYPRE_Int
HYPRE_SStructGridSetPeriodic(HYPRE_SStructGrid  grid,
                             HYPRE_Int          part,
                             HYPRE_Int         *periodic);
/**
 * Setting ghost in the sgrids.
 **/
HYPRE_Int
HYPRE_SStructGridSetNumGhost(HYPRE_SStructGrid  grid,
                             HYPRE_Int         *num_ghost);

/*@}*/

/*--------------------------------------------------------------------------
 *--------------------------------------------------------------------------*/

/**
 * @name SStruct Stencils
 **/
/*@{*/

struct hypre_SStructStencil_struct;
/**
 * The stencil object.
 **/
typedef struct hypre_SStructStencil_struct *HYPRE_SStructStencil;

/**
 * Create a stencil object for the specified number of spatial dimensions and
 * stencil entries.
 **/
HYPRE_Int
HYPRE_SStructStencilCreate(HYPRE_Int             ndim,
                           HYPRE_Int             size,
                           HYPRE_SStructStencil *stencil);

/**
 * Destroy a stencil object.
 **/
HYPRE_Int
HYPRE_SStructStencilDestroy(HYPRE_SStructStencil stencil);

/**
 * Set a stencil entry.
 **/
HYPRE_Int
HYPRE_SStructStencilSetEntry(HYPRE_SStructStencil  stencil,
                             HYPRE_Int             entry,
                             HYPRE_Int            *offset,
                             HYPRE_Int             var);

/*@}*/

/*--------------------------------------------------------------------------
 *--------------------------------------------------------------------------*/

/**
 * @name SStruct Graphs
 **/
/*@{*/

struct hypre_SStructGraph_struct;
/**
 * The graph object is used to describe the nonzero structure of a matrix.
 **/
typedef struct hypre_SStructGraph_struct *HYPRE_SStructGraph;

/**
 * Create a graph object.
 **/
HYPRE_Int
HYPRE_SStructGraphCreate(MPI_Comm             comm,
                         HYPRE_SStructGrid    grid,
                         HYPRE_SStructGraph  *graph);

/**
 * Destroy a graph object.
 **/
HYPRE_Int
HYPRE_SStructGraphDestroy(HYPRE_SStructGraph graph);

/**
 * Set the domain grid.
 **/
HYPRE_Int
HYPRE_SStructGraphSetDomainGrid(HYPRE_SStructGraph graph,
                                HYPRE_SStructGrid  domain_grid);

/**
 * Set the stencil for a variable on a structured part of the grid.
 **/
HYPRE_Int
HYPRE_SStructGraphSetStencil(HYPRE_SStructGraph   graph,
                             HYPRE_Int            part,
                             HYPRE_Int            var,
                             HYPRE_SStructStencil stencil);

/**
 * Indicate that an FEM approach will be used to set matrix values on this part.
 **/
HYPRE_Int
HYPRE_SStructGraphSetFEM(HYPRE_SStructGraph graph,
                         HYPRE_Int          part);

/**
 * Set the finite element stiffness matrix sparsity.  This overrides the default
 * full sparsity pattern described below.
 *
 * Array {\tt sparsity} contains {\tt nsparse} row/column tuples (I,J) that
 * indicate the nonzeroes of the local stiffness matrix.  The layout of the
 * values passed into the routine \Ref{HYPRE_SStructMatrixAddFEMValues} is
 * determined here.
 *
 * The default sparsity is full (each variable is coupled to all others), and
 * the values passed into the routine \Ref{HYPRE_SStructMatrixAddFEMValues} are
 * assumed to be by rows (that is, column indices vary fastest).
 **/
HYPRE_Int
HYPRE_SStructGraphSetFEMSparsity(HYPRE_SStructGraph  graph,
                                 HYPRE_Int           part,
                                 HYPRE_Int           nsparse,
                                 HYPRE_Int          *sparsity);

/**
 * Add a non-stencil graph entry at a particular index.  This graph entry is
 * appended to the existing graph entries, and is referenced as such.
 *
 * NOTE: Users are required to set graph entries on all processes that own the
 * associated variables.  This means that some data will be multiply defined.
 **/
HYPRE_Int
HYPRE_SStructGraphAddEntries(HYPRE_SStructGraph   graph,
                             HYPRE_Int            part,
                             HYPRE_Int           *index,
                             HYPRE_Int            var,
                             HYPRE_Int            to_part,
                             HYPRE_Int           *to_index,
                             HYPRE_Int            to_var);

/**
 * Finalize the construction of the graph before using.
 **/
HYPRE_Int
HYPRE_SStructGraphAssemble(HYPRE_SStructGraph graph);

/**
 * Set the storage type of the associated matrix object.  It is used before
 * AddEntries and Assemble to compute the right ranks in the graph.
 * 
 * NOTE: This routine is only necessary for implementation reasons, and will
 * eventually be removed.
 *
 * @see HYPRE_SStructMatrixSetObjectType
 **/
HYPRE_Int
HYPRE_SStructGraphSetObjectType(HYPRE_SStructGraph  graph,
                                HYPRE_Int           type);
/*@}*/

/*--------------------------------------------------------------------------
 *--------------------------------------------------------------------------*/

/**
 * @name SStruct Matrices
 **/
/*@{*/

struct hypre_SStructMatrix_struct;
/**
 * The matrix object.
 **/
typedef struct hypre_SStructMatrix_struct *HYPRE_SStructMatrix;

/**
 * Create a matrix object.
 **/
HYPRE_Int
HYPRE_SStructMatrixCreate(MPI_Comm              comm,
                          HYPRE_SStructGraph    graph,
                          HYPRE_SStructMatrix  *matrix);

/**
 * Destroy a matrix object.
 **/
HYPRE_Int
HYPRE_SStructMatrixDestroy(HYPRE_SStructMatrix matrix);

/**
 * Prepare a matrix object for setting coefficient values.
 **/
HYPRE_Int
HYPRE_SStructMatrixInitialize(HYPRE_SStructMatrix matrix);

/**
 * Set matrix coefficients index by index.  The {\tt values} array is of length
 * {\tt nentries}.
 *
 * NOTE: For better efficiency, use \Ref{HYPRE_SStructMatrixSetBoxValues} to set
 * coefficients a box at a time.
 *
 * NOTE: Users are required to set values on all processes that own the
 * associated variables.  This means that some data will be multiply defined.
 *
 * NOTE: The entries in this routine must all be of the same type: either
 * stencil or non-stencil, but not both.  Also, if they are stencil entries,
 * they must all represent couplings to the same variable type (there are no
 * such restrictions for non-stencil entries).
 *
 * If the matrix is complex, then {\tt values} consists of pairs of doubles
 * representing the real and imaginary parts of each complex value.
 *
 * @see HYPRE_SStructMatrixSetComplex
 **/
HYPRE_Int
HYPRE_SStructMatrixSetValues(HYPRE_SStructMatrix  matrix,
                             HYPRE_Int            part,
                             HYPRE_Int           *index,
                             HYPRE_Int            var,
                             HYPRE_Int            nentries,
                             HYPRE_Int           *entries,
                             double              *values);

/**
 * Add to matrix coefficients index by index.  The {\tt values} array is of
 * length {\tt nentries}.
 *
 * NOTE: For better efficiency, use \Ref{HYPRE_SStructMatrixAddToBoxValues} to
 * set coefficients a box at a time.
 *
 * NOTE: Users are required to set values on all processes that own the
 * associated variables.  This means that some data will be multiply defined.
 *
 * NOTE: The entries in this routine must all be of the same type: either
 * stencil or non-stencil, but not both.  Also, if they are stencil entries,
 * they must all represent couplings to the same variable type.
 *
 * If the matrix is complex, then {\tt values} consists of pairs of doubles
 * representing the real and imaginary parts of each complex value.
 *
 * @see HYPRE_SStructMatrixSetComplex
 **/
HYPRE_Int
HYPRE_SStructMatrixAddToValues(HYPRE_SStructMatrix  matrix,
                               HYPRE_Int            part,
                               HYPRE_Int           *index,
                               HYPRE_Int            var,
                               HYPRE_Int            nentries,
                               HYPRE_Int           *entries,
                               double              *values);

/**
 * Add finite element stiffness matrix coefficients index by index.  The layout
 * of the data in {\tt values} is determined by the routines
 * \Ref{HYPRE_SStructGridSetFEMOrdering} and
 * \Ref{HYPRE_SStructGraphSetFEMSparsity}.
 *
 * If the matrix is complex, then {\tt values} consists of pairs of doubles
 * representing the real and imaginary parts of each complex value.
 *
 * @see HYPRE_SStructMatrixSetComplex
 **/
HYPRE_Int
HYPRE_SStructMatrixAddFEMValues(HYPRE_SStructMatrix  matrix,
                                HYPRE_Int            part,
                                HYPRE_Int           *index,
                                double              *values);

/**
 * Get matrix coefficients index by index.  The {\tt values} array is of length
 * {\tt nentries}.
 *
 * NOTE: For better efficiency, use \Ref{HYPRE_SStructMatrixGetBoxValues} to get
 * coefficients a box at a time.
 *
 * NOTE: Users may get values on any process that owns the associated variables.
 *
 * NOTE: The entries in this routine must all be of the same type: either
 * stencil or non-stencil, but not both.  Also, if they are stencil entries,
 * they must all represent couplings to the same variable type (there are no
 * such restrictions for non-stencil entries).
 *
 * If the matrix is complex, then {\tt values} consists of pairs of doubles
 * representing the real and imaginary parts of each complex value.
 *
 * @see HYPRE_SStructMatrixSetComplex
 **/
HYPRE_Int
HYPRE_SStructMatrixGetValues(HYPRE_SStructMatrix  matrix,
                             HYPRE_Int            part,
                             HYPRE_Int           *index,
                             HYPRE_Int            var,
                             HYPRE_Int            nentries,
                             HYPRE_Int           *entries,
                             double              *values);

/**
 * Get finite element stiffness matrix coefficients index by index.  The layout
 * of the data in {\tt values} is determined by the routines
 * \Ref{HYPRE_SStructGridSetFEMOrdering} and
 * \Ref{HYPRE_SStructGraphSetFEMSparsity}.
 *
 * If the matrix is complex, then {\tt values} consists of pairs of doubles
 * representing the real and imaginary parts of each complex value.
 *
 * @see HYPRE_SStructMatrixSetComplex
 **/
HYPRE_Int
HYPRE_SStructMatrixGetFEMValues(HYPRE_SStructMatrix  matrix,
                                HYPRE_Int            part,
                                HYPRE_Int           *index,
                                double              *values);

/**
 * Set matrix coefficients a box at a time.  The data in {\tt values} is ordered
 * as follows:
 *
   \begin{verbatim}
   m = 0;
   for (k = ilower[2]; k <= iupper[2]; k++)
      for (j = ilower[1]; j <= iupper[1]; j++)
         for (i = ilower[0]; i <= iupper[0]; i++)
            for (entry = 0; entry < nentries; entry++)
            {
               values[m] = ...;
               m++;
            }
   \end{verbatim}
 *
 * NOTE: Users are required to set values on all processes that own the
 * associated variables.  This means that some data will be multiply defined.
 *
 * NOTE: The entries in this routine must all be of the same type: either
 * stencil or non-stencil, but not both.  Also, if they are stencil entries,
 * they must all represent couplings to the same variable type (there are no
 * such restrictions for non-stencil entries).
 *
 * If the matrix is complex, then {\tt values} consists of pairs of doubles
 * representing the real and imaginary parts of each complex value.
 *
 * @see HYPRE_SStructMatrixSetComplex
 **/
HYPRE_Int
HYPRE_SStructMatrixSetBoxValues(HYPRE_SStructMatrix  matrix,
                                HYPRE_Int            part,
                                HYPRE_Int           *ilower,
                                HYPRE_Int           *iupper,
                                HYPRE_Int            var,
                                HYPRE_Int            nentries,
                                HYPRE_Int           *entries,
                                double              *values);

/**
 * Add to matrix coefficients a box at a time.  The data in {\tt values} is
 * ordered as in \Ref{HYPRE_SStructMatrixSetBoxValues}.
 *
 * NOTE: Users are required to set values on all processes that own the
 * associated variables.  This means that some data will be multiply defined.
 *
 * NOTE: The entries in this routine must all be of stencil type.  Also, they
 * must all represent couplings to the same variable type.
 *
 * If the matrix is complex, then {\tt values} consists of pairs of doubles
 * representing the real and imaginary parts of each complex value.
 *
 * @see HYPRE_SStructMatrixSetComplex
 **/
HYPRE_Int
HYPRE_SStructMatrixAddToBoxValues(HYPRE_SStructMatrix  matrix,
                                  HYPRE_Int            part,
                                  HYPRE_Int           *ilower,
                                  HYPRE_Int           *iupper,
                                  HYPRE_Int            var,
                                  HYPRE_Int            nentries,
                                  HYPRE_Int           *entries,
                                  double              *values);

/**
 * Get matrix coefficients a box at a time.  The data in {\tt values} is
 * ordered as in \Ref{HYPRE_SStructMatrixSetBoxValues}.
 *
 * NOTE: Users may get values on any process that owns the associated variables.
 *
 * NOTE: The entries in this routine must all be of stencil type.  Also, they
 * must all represent couplings to the same variable type.
 *
 * If the matrix is complex, then {\tt values} consists of pairs of doubles
 * representing the real and imaginary parts of each complex value.
 *
 * @see HYPRE_SStructMatrixSetComplex
 **/
HYPRE_Int
HYPRE_SStructMatrixGetBoxValues(HYPRE_SStructMatrix  matrix,
                                HYPRE_Int            part,
                                HYPRE_Int           *ilower,
                                HYPRE_Int           *iupper,
                                HYPRE_Int            var,
                                HYPRE_Int            nentries,
                                HYPRE_Int           *entries,
                                double              *values);

/**
 * Finalize the construction of the matrix before using.
 **/
HYPRE_Int
HYPRE_SStructMatrixAssemble(HYPRE_SStructMatrix matrix);

/**
 * Define symmetry properties for the stencil entries in the matrix.  The
 * boolean argument {\tt symmetric} is applied to stencil entries on part {\tt
 * part} that couple variable {\tt var} to variable {\tt to\_var}.  A value of
 * -1 may be used for {\tt part}, {\tt var}, or {\tt to\_var} to specify
 * ``all''.  For example, if {\tt part} and {\tt to\_var} are set to -1, then
 * the boolean is applied to stencil entries on all parts that couple variable
 * {\tt var} to all other variables.
 * 
 * By default, matrices are assumed to be nonsymmetric.  Significant
 * storage savings can be made if the matrix is symmetric.
 **/
HYPRE_Int
HYPRE_SStructMatrixSetSymmetric(HYPRE_SStructMatrix matrix,
                                HYPRE_Int           part,
                                HYPRE_Int           var,
                                HYPRE_Int           to_var,
                                HYPRE_Int           symmetric);

/**
 * Define symmetry properties for all non-stencil matrix entries.
 **/
HYPRE_Int
HYPRE_SStructMatrixSetNSSymmetric(HYPRE_SStructMatrix matrix,
                                  HYPRE_Int           symmetric);

/**
 * Set the storage type of the matrix object to be constructed.  Currently, {\tt
 * type} can be either {\tt HYPRE\_SSTRUCT} (the default), {\tt HYPRE\_STRUCT},
 * or {\tt HYPRE\_PARCSR}.
 *
 * @see HYPRE_SStructMatrixGetObject
 **/
HYPRE_Int
HYPRE_SStructMatrixSetObjectType(HYPRE_SStructMatrix  matrix,
                                 HYPRE_Int            type);

/**
 * Get a reference to the constructed matrix object.
 *
 * @see HYPRE_SStructMatrixSetObjectType
 **/
HYPRE_Int
HYPRE_SStructMatrixGetObject(HYPRE_SStructMatrix   matrix,
                             void                **object);

/**
 * Set the matrix to be complex.
 **/
HYPRE_Int
HYPRE_SStructMatrixSetComplex(HYPRE_SStructMatrix matrix);

/**
 * Print the matrix to file.  This is mainly for debugging purposes.
 **/
HYPRE_Int
HYPRE_SStructMatrixPrint(const char          *filename,
                         HYPRE_SStructMatrix  matrix,
                         HYPRE_Int            all);

/*@}*/

/*--------------------------------------------------------------------------
 *--------------------------------------------------------------------------*/

/**
 * @name SStruct Vectors
 **/
/*@{*/

struct hypre_SStructVector_struct;
/**
 * The vector object.
 **/
typedef struct hypre_SStructVector_struct *HYPRE_SStructVector;

/**
 * Create a vector object.
 **/
HYPRE_Int
HYPRE_SStructVectorCreate(MPI_Comm              comm,
                          HYPRE_SStructGrid     grid,
                          HYPRE_SStructVector  *vector);

/**
 * Destroy a vector object.
 **/
HYPRE_Int
HYPRE_SStructVectorDestroy(HYPRE_SStructVector vector);

/**
 * Prepare a vector object for setting coefficient values.
 **/
HYPRE_Int
HYPRE_SStructVectorInitialize(HYPRE_SStructVector vector);

/**
 * Set vector coefficients index by index.
 *
 * NOTE: For better efficiency, use \Ref{HYPRE_SStructVectorSetBoxValues} to set
 * coefficients a box at a time.
 *
 * NOTE: Users are required to set values on all processes that own the
 * associated variables.  This means that some data will be multiply defined.
 *
 * If the vector is complex, then {\tt value} consists of a pair of doubles
 * representing the real and imaginary parts of the complex value.
 *
 * @see HYPRE_SStructVectorSetComplex
 **/
HYPRE_Int
HYPRE_SStructVectorSetValues(HYPRE_SStructVector  vector,
                             HYPRE_Int            part,
                             HYPRE_Int           *index,
                             HYPRE_Int            var,
                             double              *value);

/**
 * Add to vector coefficients index by index.
 *
 * NOTE: For better efficiency, use \Ref{HYPRE_SStructVectorAddToBoxValues} to
 * set coefficients a box at a time.
 *
 * NOTE: Users are required to set values on all processes that own the
 * associated variables.  This means that some data will be multiply defined.
 *
 * If the vector is complex, then {\tt value} consists of a pair of doubles
 * representing the real and imaginary parts of the complex value.
 *
 * @see HYPRE_SStructVectorSetComplex
 **/
HYPRE_Int
HYPRE_SStructVectorAddToValues(HYPRE_SStructVector  vector,
                               HYPRE_Int            part,
                               HYPRE_Int           *index,
                               HYPRE_Int            var,
                               double              *value);

/**
 * Add finite element vector coefficients index by index.  The layout of the
 * data in {\tt values} is determined by the routine
 * \Ref{HYPRE_SStructGridSetFEMOrdering}.
 *
 * If the vector is complex, then {\tt values} consists of pairs of doubles
 * representing the real and imaginary parts of each complex value.
 *
 * @see HYPRE_SStructVectorSetComplex
 **/
HYPRE_Int
HYPRE_SStructVectorAddFEMValues(HYPRE_SStructVector  vector,
                                HYPRE_Int            part,
                                HYPRE_Int           *index,
                                double              *values);

/**
 * Get vector coefficients index by index.  Users must first call the routine
 * \Ref{HYPRE_SStructVectorGather} to ensure that data owned by multiple
 * processes is correct.
 *
 * NOTE: For better efficiency, use \Ref{HYPRE_SStructVectorGetBoxValues} to get
 * coefficients a box at a time.
 *
 * NOTE: Users may only get values on processes that own the associated
 * variables.
 *
 * If the vector is complex, then {\tt value} consists of a pair of doubles
 * representing the real and imaginary parts of the complex value.
 *
 * @see HYPRE_SStructVectorSetComplex
 **/
HYPRE_Int
HYPRE_SStructVectorGetValues(HYPRE_SStructVector  vector,
                             HYPRE_Int            part,
                             HYPRE_Int           *index,
                             HYPRE_Int            var,
                             double              *value);

/**
 * Get finite element vector coefficients index by index.  The layout of the
 * data in {\tt values} is determined by the routine
 * \Ref{HYPRE_SStructGridSetFEMOrdering}.  Users must first call the routine
 * \Ref{HYPRE_SStructVectorGather} to ensure that data owned by multiple
 * processes is correct.
 *
 * If the vector is complex, then {\tt values} consists of pairs of doubles
 * representing the real and imaginary parts of each complex value.
 *
 * @see HYPRE_SStructVectorSetComplex
 **/
HYPRE_Int
HYPRE_SStructVectorGetFEMValues(HYPRE_SStructVector  vector,
                                HYPRE_Int            part,
                                HYPRE_Int           *index,
                                double              *values);

/**
 * Set vector coefficients a box at a time.  The data in {\tt values} is ordered
 * as follows:
 *
   \begin{verbatim}
   m = 0;
   for (k = ilower[2]; k <= iupper[2]; k++)
      for (j = ilower[1]; j <= iupper[1]; j++)
         for (i = ilower[0]; i <= iupper[0]; i++)
         {
            values[m] = ...;
            m++;
         }
   \end{verbatim}
 *
 * NOTE: Users are required to set values on all processes that own the
 * associated variables.  This means that some data will be multiply defined.
 *
 * If the vector is complex, then {\tt values} consists of pairs of doubles
 * representing the real and imaginary parts of each complex value.
 *
 * @see HYPRE_SStructVectorSetComplex
 **/
HYPRE_Int
HYPRE_SStructVectorSetBoxValues(HYPRE_SStructVector  vector,
                                HYPRE_Int            part,
                                HYPRE_Int           *ilower,
                                HYPRE_Int           *iupper,
                                HYPRE_Int            var,
                                double              *values);

/**
 * Add to vector coefficients a box at a time.  The data in {\tt values} is
 * ordered as in \Ref{HYPRE_SStructVectorSetBoxValues}.
 *
 * NOTE: Users are required to set values on all processes that own the
 * associated variables.  This means that some data will be multiply defined.
 *
 * If the vector is complex, then {\tt values} consists of pairs of doubles
 * representing the real and imaginary parts of each complex value.
 *
 * @see HYPRE_SStructVectorSetComplex
 **/
HYPRE_Int
HYPRE_SStructVectorAddToBoxValues(HYPRE_SStructVector  vector,
                                  HYPRE_Int            part,
                                  HYPRE_Int           *ilower,
                                  HYPRE_Int           *iupper,
                                  HYPRE_Int            var,
                                  double              *values);

/**
 * Get vector coefficients a box at a time.  The data in {\tt values} is ordered
 * as in \Ref{HYPRE_SStructVectorSetBoxValues}.  Users must first call the
 * routine \Ref{HYPRE_SStructVectorGather} to ensure that data owned by multiple
 * processes is correct.
 *
 * NOTE: Users may only get values on processes that own the associated
 * variables.
 *
 * If the vector is complex, then {\tt values} consists of pairs of doubles
 * representing the real and imaginary parts of each complex value.
 *
 * @see HYPRE_SStructVectorSetComplex
 **/
HYPRE_Int
HYPRE_SStructVectorGetBoxValues(HYPRE_SStructVector  vector,
                                HYPRE_Int            part,
                                HYPRE_Int           *ilower,
                                HYPRE_Int           *iupper,
                                HYPRE_Int            var,
                                double              *values);

/**
 * Finalize the construction of the vector before using.
 **/
HYPRE_Int
HYPRE_SStructVectorAssemble(HYPRE_SStructVector vector);

/**
 * Gather vector data so that efficient {\tt GetValues} can be done.  This
 * routine must be called prior to calling {\tt GetValues} to ensure that
 * correct and consistent values are returned, especially for non cell-centered
 * data that is shared between more than one processor.
 **/
HYPRE_Int
HYPRE_SStructVectorGather(HYPRE_SStructVector vector);

/**
 * Set the storage type of the vector object to be constructed.  Currently, {\tt
 * type} can be either {\tt HYPRE\_SSTRUCT} (the default), {\tt HYPRE\_STRUCT},
 * or {\tt HYPRE\_PARCSR}.
 *
 * @see HYPRE_SStructVectorGetObject
 **/
HYPRE_Int
HYPRE_SStructVectorSetObjectType(HYPRE_SStructVector  vector,
                                 HYPRE_Int            type);

/**
 * Get a reference to the constructed vector object.
 *
 * @see HYPRE_SStructVectorSetObjectType
 **/
HYPRE_Int
HYPRE_SStructVectorGetObject(HYPRE_SStructVector   vector,
                             void                **object);

/**
 * Set the vector to be complex.
 **/
HYPRE_Int
HYPRE_SStructVectorSetComplex(HYPRE_SStructVector vector);

/**
 * Print the vector to file.  This is mainly for debugging purposes.
 **/
HYPRE_Int
HYPRE_SStructVectorPrint(const char          *filename,
                         HYPRE_SStructVector  vector,
                         HYPRE_Int            all);

/*@}*/
/*@}*/

/*--------------------------------------------------------------------------
 *--------------------------------------------------------------------------*/

#ifdef __cplusplus
}
#endif

#endif