This file is indexed.

/usr/share/perl5/Graph/TransitiveClosure/Matrix.pm is in libgraph-perl 1:0.96-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
package Graph::TransitiveClosure::Matrix;

use strict;

use Graph::AdjacencyMatrix;
use Graph::Matrix;

sub _new {
    my ($g, $class, $opt, $want_transitive, $want_reflexive, $want_path, $want_path_vertices) = @_;
    my $m = Graph::AdjacencyMatrix->new($g, %$opt);
    my @V = $g->vertices;
    my $am = $m->adjacency_matrix;
    my $dm; # The distance matrix.
    my $pm; # The predecessor matrix.
    my @di;
    my %di; @di{ @V } = 0..$#V;
    my @ai = @{ $am->[0] };
    my %ai = %{ $am->[1] };
    my @pi;
    my %pi;
    unless ($want_transitive) {
	$dm = $m->distance_matrix;
	@di = @{ $dm->[0] };
	%di = %{ $dm->[1] };
	$pm = Graph::Matrix->new($g);
	@pi = @{ $pm->[0] };
	%pi = %{ $pm->[1] };
	for my $u (@V) {
	    my $diu = $di{$u};
	    my $aiu = $ai{$u};
	    for my $v (@V) {
		my $div = $di{$v};
		my $aiv = $ai{$v};
		next unless
		    # $am->get($u, $v)
		    vec($ai[$aiu], $aiv, 1)
			;
		# $dm->set($u, $v, $u eq $v ? 0 : 1)
		$di[$diu]->[$div] = $u eq $v ? 0 : 1
		    unless
			defined
			    # $dm->get($u, $v)
			    $di[$diu]->[$div]
			    ;
		$pi[$diu]->[$div] = $v unless $u eq $v;
	    }
	}
    }
    # XXX (see the bits below): sometimes, being nice and clean is the
    # wrong thing to do.  In this case, using the public API for graph
    # transitive matrices and bitmatrices makes things awfully slow.
    # Instead, we go straight for the jugular of the data structures.
    for my $u (@V) {
	my $diu = $di{$u};
	my $aiu = $ai{$u};
	my $didiu = $di[$diu];
	my $aiaiu = $ai[$aiu];
	for my $v (@V) {
	    my $div = $di{$v};
	    my $aiv = $ai{$v};
	    my $didiv = $di[$div];
	    my $aiaiv = $ai[$aiv];
	    if (
		# $am->get($v, $u)
		vec($aiaiv, $aiu, 1)
		|| ($want_reflexive && $u eq $v)) {
		my $aivivo = $aiaiv;
		if ($want_transitive) {
		    if ($want_reflexive) {
			for my $w (@V) {
			    next if $w eq $u;
			    my $aiw = $ai{$w};
			    return 0
				if  vec($aiaiu, $aiw, 1) &&
				   !vec($aiaiv, $aiw, 1);
			}
			# See XXX above.
			# for my $w (@V) {
			#    my $aiw = $ai{$w};
			#    if (
			#	# $am->get($u, $w)
			#	vec($aiaiu, $aiw, 1)
			#	|| ($u eq $w)) {
			#	return 0
			#	    if $u ne $w &&
			#		# !$am->get($v, $w)
			#		!vec($aiaiv, $aiw, 1)
			#		    ;
			#	# $am->set($v, $w)
			#	vec($aiaiv, $aiw, 1) = 1
			#	    ;
			#     }
			# }
		    } else {
			# See XXX above.
			# for my $w (@V) {
			#     my $aiw = $ai{$w};
			#     if (
			#	# $am->get($u, $w)
			#	vec($aiaiu, $aiw, 1)
			#       ) {
			#	return 0
			#	    if $u ne $w &&
			#		# !$am->get($v, $w)
			#		!vec($aiaiv, $aiw, 1)
			#		    ;
			# 	# $am->set($v, $w)
			# 	vec($aiaiv, $aiw, 1) = 1
			# 	    ;
			#     }
			# }
			$aiaiv |= $aiaiu;
		    }
		} else {
		    if ($want_reflexive) {
			$aiaiv |= $aiaiu;
			vec($aiaiv, $aiu, 1) = 1;
			# See XXX above.
			# for my $w (@V) {
			#     my $aiw = $ai{$w};
			#     if (
			# 	# $am->get($u, $w)
			#	vec($aiaiu, $aiw, 1)
			#	|| ($u eq $w)) {
			#	# $am->set($v, $w)
			#	vec($aiaiv, $aiw, 1) = 1
			#	    ;
			#     }
			# }
		    } else {
			$aiaiv |= $aiaiu;
			# See XXX above.
			# for my $w (@V) {
			#    my $aiw = $ai{$w};
			#    if (
			#	# $am->get($u, $w)
			#	vec($aiaiu, $aiw, 1)
			#       ) {
			#	# $am->set($v, $w)
			#	vec($aiaiv, $aiw, 1) = 1
			#	    ;
			#     }
			# }
		    }
		}
		if ($aiaiv ne $aivivo) {
		    $ai[$aiv] = $aiaiv;
		    $aiaiu = $aiaiv if $u eq $v;
		}
	    }
	    if ($want_path && !$want_transitive) {
		for my $w (@V) {
		    my $aiw = $ai{$w};
		    next unless
			# See XXX above.
			# $am->get($v, $u)
			vec($aiaiv, $aiu, 1)
			    &&
			# See XXX above.
			# $am->get($u, $w)
			vec($aiaiu, $aiw, 1)
			    ;
		    my $diw = $di{$w};
		    my ($d0, $d1a, $d1b);
		    if (defined $dm) {
			# See XXX above.
			# $d0  = $dm->get($v, $w);
			# $d1a = $dm->get($v, $u) || 1;
			# $d1b = $dm->get($u, $w) || 1;
			$d0  = $didiv->[$diw];
			$d1a = $didiv->[$diu] || 1;
			$d1b = $didiu->[$diw] || 1;
		    } else {
			$d1a = 1;
			$d1b = 1;
		    }
		    my $d1 = $d1a + $d1b;
		    if (!defined $d0 || ($d1 < $d0)) {
			# print "d1 = $d1a ($v, $u) + $d1b ($u, $w) = $d1 ($v, $w) (".(defined$d0?$d0:"-").")\n";
			# See XXX above.
			# $dm->set($v, $w, $d1);
			$didiv->[$diw] = $d1;
			$pi[$div]->[$diw] = $pi[$div]->[$diu]
			    if $want_path_vertices;
		    }
		}
		# $dm->set($u, $v, 1)
		$didiu->[$div] = 1
		    if $u ne $v &&
		       # $am->get($u, $v)
		       vec($aiaiu, $aiv, 1)
			   &&
		       # !defined $dm->get($u, $v);
		       !defined $didiu->[$div];
	    }
	}
    }
    return 1 if $want_transitive;
    my %V; @V{ @V } = @V;
    $am->[0] = \@ai;
    $am->[1] = \%ai;
    if (defined $dm) {
	$dm->[0] = \@di;
	$dm->[1] = \%di;
    }
    if (defined $pm) {
	$pm->[0] = \@pi;
	$pm->[1] = \%pi;
    }
    bless [ $am, $dm, $pm, \%V ], $class;
}

sub new {
    my ($class, $g, %opt) = @_;
    my %am_opt = (distance_matrix => 1);
    if (exists $opt{attribute_name}) {
	$am_opt{attribute_name} = $opt{attribute_name};
	delete $opt{attribute_name};
    }
    if ($opt{distance_matrix}) {
	$am_opt{distance_matrix} = $opt{distance_matrix};
    }
    delete $opt{distance_matrix};
    if (exists $opt{path}) {
	$opt{path_length}   = $opt{path};
	$opt{path_vertices} = $opt{path};
	delete $opt{path};
    }
    my $want_path_length;
    if (exists $opt{path_length}) {
	$want_path_length = $opt{path_length};
	delete $opt{path_length};
    }
    my $want_path_vertices;
    if (exists $opt{path_vertices}) {
	$want_path_vertices = $opt{path_vertices};
	delete $opt{path_vertices};
    }
    my $want_reflexive;
    if (exists $opt{reflexive}) {
	$want_reflexive = $opt{reflexive};
	delete $opt{reflexive};
    }
    my $want_transitive;
    if (exists $opt{is_transitive}) {
	$want_transitive = $opt{is_transitive};
	$am_opt{is_transitive} = $want_transitive;
	delete $opt{is_transitive};
    }
    die "Graph::TransitiveClosure::Matrix::new: Unknown options: @{[map { qq['$_' => $opt{$_}]} keys %opt]}"
	if keys %opt;
    $want_reflexive = 1 unless defined $want_reflexive;
    my $want_path = $want_path_length || $want_path_vertices;
    # $g->expect_dag if $want_path;
    _new($g, $class,
	 \%am_opt,
	 $want_transitive, $want_reflexive,
	 $want_path, $want_path_vertices);
}

sub has_vertices {
    my $tc = shift;
    for my $v (@_) {
	return 0 unless exists $tc->[3]->{ $v };
    }
    return 1;
}

sub is_reachable {
    my ($tc, $u, $v) = @_;
    return undef unless $tc->has_vertices($u, $v);
    return 1 if $u eq $v;
    $tc->[0]->get($u, $v);
}

sub is_transitive {
    if (@_ == 1) {	# Any graph.
	__PACKAGE__->new($_[0], is_transitive => 1);	# Scary.
    } else {		# A TC graph.
	my ($tc, $u, $v) = @_;
	return undef unless $tc->has_vertices($u, $v);
	$tc->[0]->get($u, $v);
    }
}

sub vertices {
    my $tc = shift;
    values %{ $tc->[3] };
}

sub path_length {
    my ($tc, $u, $v) = @_;
    return undef unless $tc->has_vertices($u, $v);
    return 0 if $u eq $v;
    $tc->[1]->get($u, $v);
}

sub path_predecessor {
    my ($tc, $u, $v) = @_;
    return undef if $u eq $v;
    return undef unless $tc->has_vertices($u, $v);
    $tc->[2]->get($u, $v);
}

sub path_vertices {
    my ($tc, $u, $v) = @_;
    return unless $tc->is_reachable($u, $v);
    return wantarray ? () : 0 if $u eq $v;
    my @v = ( $u );
    while ($u ne $v) {
	last unless defined($u = $tc->path_predecessor($u, $v));
	push @v, $u;
    }
    $tc->[2]->set($u, $v, [ @v ]) if @v;
    return @v;
}

1;
__END__
=pod

=head1 NAME

Graph::TransitiveClosure::Matrix - create and query transitive closure of graph

=head1 SYNOPSIS

    use Graph::TransitiveClosure::Matrix;
    use Graph::Directed; # or Undirected

    my $g  = Graph::Directed->new;
    $g->add_...(); # build $g

    # Compute the transitive closure matrix.
    my $tcm = Graph::TransitiveClosure::Matrix->new($g);

    # Being reflexive is the default,
    # meaning that null transitions are included.
    my $tcm = Graph::TransitiveClosure::Matrix->new($g, reflexive => 1);
    $tcm->is_reachable($u, $v)

    # is_reachable(u, v) is always reflexive.
    $tcm->is_reachable($u, $v)

    # The reflexivity of is_transitive(u, v) depends of the reflexivity
    # of the transitive closure.
    $tcg->is_transitive($u, $v)

    my $tcm = Graph::TransitiveClosure::Matrix->new($g, path_length => 1);
    my $n = $tcm->path_length($u, $v)

    my $tcm = Graph::TransitiveClosure::Matrix->new($g, path_vertices => 1);
    my @v = $tcm->path_vertices($u, $v)

    my $tcm =
        Graph::TransitiveClosure::Matrix->new($g,
                                              attribute_name => 'length');
    my $n = $tcm->path_length($u, $v)

    my @v = $tcm->vertices

=head1 DESCRIPTION

You can use C<Graph::TransitiveClosure::Matrix> to compute the
transitive closure matrix of a graph and optionally also the minimum
paths (lengths and vertices) between vertices, and after that query
the transitiveness between vertices by using the C<is_reachable()> and
C<is_transitive()> methods, and the paths by using the
C<path_length()> and C<path_vertices()> methods.

If you modify the graph after computing its transitive closure,
the transitive closure and minimum paths may become invalid.

=head1 Methods

=head2 Class Methods

=over 4

=item new($g)

Construct the transitive closure matrix of the graph $g.

=item new($g, options)

Construct the transitive closure matrix of the graph $g with options
as a hash. The known options are

=over 8

=item C<attribute_name> => I<attribute_name>

By default the edge attribute used for distance is C<w>.  You can
change that by giving another attribute name with the C<attribute_name>
attribute to the new() constructor.

=item reflexive => boolean

By default the transitive closure matrix is not reflexive: that is,
the adjacency matrix has zeroes on the diagonal.  To have ones on
the diagonal, use true for the C<reflexive> option.

B<NOTE>: this behaviour has changed from Graph 0.2xxx: transitive
closure graphs were by default reflexive.

=item path_length => boolean

By default the path lengths are not computed, only the boolean transitivity.
By using true for C<path_length> also the path lengths will be computed,
they can be retrieved using the path_length() method.

=item path_vertices => boolean

By default the paths are not computed, only the boolean transitivity.
By using true for C<path_vertices> also the paths will be computed,
they can be retrieved using the path_vertices() method.

=back

=back

=head2 Object Methods

=over 4

=item is_reachable($u, $v)

Return true if the vertex $v is reachable from the vertex $u,
or false if not.

=item path_length($u, $v)

Return the minimum path length from the vertex $u to the vertex $v,
or undef if there is no such path.

=item path_vertices($u, $v)

Return the minimum path (as a list of vertices) from the vertex $u to
the vertex $v, or an empty list if there is no such path, OR also return
an empty list if $u equals $v.

=item has_vertices($u, $v, ...)

Return true if the transitive closure matrix has all the listed vertices,
false if not.

=item is_transitive($u, $v)

Return true if the vertex $v is transitively reachable from the vertex $u,
false if not.

=item vertices

Return the list of vertices in the transitive closure matrix.

=item path_predecessor

Return the predecessor of vertex $v in the transitive closure path
going back to vertex $u.

=back

=head1 RETURN VALUES

For path_length() the return value will be the sum of the appropriate
attributes on the edges of the path, C<weight> by default.  If no
attribute has been set, one (1) will be assumed.

If you try to ask about vertices not in the graph, undefs and empty
lists will be returned.

=head1 ALGORITHM

The transitive closure algorithm used is Warshall and Floyd-Warshall
for the minimum paths, which is O(V**3) in time, and the returned
matrices are O(V**2) in space.

=head1 SEE ALSO

L<Graph::AdjacencyMatrix>

=head1 AUTHOR AND COPYRIGHT

Jarkko Hietaniemi F<jhi@iki.fi>

=head1 LICENSE

This module is licensed under the same terms as Perl itself.

=cut