/usr/share/perl5/Graph/BitMatrix.pm is in libgraph-perl 1:0.96-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | package Graph::BitMatrix;
use strict;
# $SIG{__DIE__ } = sub { use Carp; confess };
# $SIG{__WARN__} = sub { use Carp; confess };
sub _V () { 2 } # Graph::_V()
sub _E () { 3 } # Graph::_E()
sub _i () { 3 } # Index to path.
sub _s () { 4 } # Successors / Path to Index.
sub new {
my ($class, $g, %opt) = @_;
my @V = $g->vertices;
my $V = @V;
my $Z = "\0" x (($V + 7) / 8);
my %V; @V{ @V } = 0 .. $#V;
my $bm = bless [ [ ( $Z ) x $V ], \%V ], $class;
my $bm0 = $bm->[0];
my $connect_edges;
if (exists $opt{connect_edges}) {
$connect_edges = $opt{connect_edges};
delete $opt{connect_edges};
}
$connect_edges = 1 unless defined $connect_edges;
Graph::_opt_unknown(\%opt);
if ($connect_edges) {
# for (my $i = 0; $i <= $#V; $i++) {
# my $u = $V[$i];
# for (my $j = 0; $j <= $#V; $j++) {
# vec($bm0->[$i], $j, 1) = 1 if $g->has_edge($u, $V[$j]);
# }
# }
my $Vi = $g->[_V]->[_i];
my $Ei = $g->[_E]->[_i];
if ($g->is_undirected) {
for my $e (keys %{ $Ei }) {
my ($i0, $j0) = @{ $Ei->{ $e } };
my $i1 = $V{ $Vi->{ $i0 } };
my $j1 = $V{ $Vi->{ $j0 } };
vec($bm0->[$i1], $j1, 1) = 1;
vec($bm0->[$j1], $i1, 1) = 1;
}
} else {
for my $e (keys %{ $Ei }) {
my ($i0, $j0) = @{ $Ei->{ $e } };
vec($bm0->[$V{ $Vi->{ $i0 } }], $V{ $Vi->{ $j0 } }, 1) = 1;
}
}
}
return $bm;
}
sub set {
my ($m, $u, $v) = @_;
my ($i, $j) = map { $m->[1]->{ $_ } } ($u, $v);
vec($m->[0]->[$i], $j, 1) = 1 if defined $i && defined $j;
}
sub unset {
my ($m, $u, $v) = @_;
my ($i, $j) = map { $m->[1]->{ $_ } } ($u, $v);
vec($m->[0]->[$i], $j, 1) = 0 if defined $i && defined $j;
}
sub get {
my ($m, $u, $v) = @_;
my ($i, $j) = map { $m->[1]->{ $_ } } ($u, $v);
defined $i && defined $j ? vec($m->[0]->[$i], $j, 1) : undef;
}
sub set_row {
my ($m, $u) = splice @_, 0, 2;
my $m0 = $m->[0];
my $m1 = $m->[1];
my $i = $m1->{ $u };
return unless defined $i;
for my $v (@_) {
my $j = $m1->{ $v };
vec($m0->[$i], $j, 1) = 1 if defined $j;
}
}
sub unset_row {
my ($m, $u) = splice @_, 0, 2;
my $m0 = $m->[0];
my $m1 = $m->[1];
my $i = $m1->{ $u };
return unless defined $i;
for my $v (@_) {
my $j = $m1->{ $v };
vec($m0->[$i], $j, 1) = 0 if defined $j;
}
}
sub get_row {
my ($m, $u) = splice @_, 0, 2;
my $m0 = $m->[0];
my $m1 = $m->[1];
my $i = $m1->{ $u };
return () x @_ unless defined $i;
my @r;
for my $v (@_) {
my $j = $m1->{ $v };
push @r, defined $j ? (vec($m0->[$i], $j, 1) ? 1 : 0) : undef;
}
return @r;
}
sub vertices {
my ($m, $u, $v) = @_;
keys %{ $m->[1] };
}
1;
__END__
=pod
=head1 NAME
Graph::BitMatrix - create and manipulate a V x V bit matrix of graph G
=head1 SYNOPSIS
use Graph::BitMatrix;
use Graph::Directed;
my $g = Graph::Directed->new;
$g->add_...(); # build $g
my $m = Graph::BitMatrix->new($g, %opt);
$m->get($u, $v)
$m->set($u, $v)
$m->unset($u, $v)
$m->get_row($u, $v1, $v2, ..., $vn)
$m->set_row($u, $v1, $v2, ..., $vn)
$m->unset_row($u, $v1, $v2, ..., $vn)
$a->vertices()
=head1 DESCRIPTION
This class enables creating bit matrices that compactly describe
the connected of the graphs.
=head2 Class Methods
=over 4
=item new($g)
Create a bit matrix from a Graph $g. The C<%opt>, if present,
can have the following options:
=over 8
=item *
connect_edges
If true or if not present, set the bits in the bit matrix that
correspond to edges. If false, do not set any bits. In either
case the bit matrix of V x V bits is allocated.
=back
=back
=head2 Object Methods
=over 4
=item get($u, $v)
Return true if the bit matrix has a "one bit" between the vertices
$u and $v; in other words, if there is (at least one) a vertex going from
$u to $v. If there is no vertex and therefore a "zero bit", return false.
=item set($u, $v)
Set the bit between the vertices $u and $v; in other words, connect
the vertices $u and $v by an edge. The change does not get mirrored
back to the original graph. Returns nothing.
=item unset($u, $v)
Unset the bit between the vertices $u and $v; in other words, disconnect
the vertices $u and $v by an edge. The change does not get mirrored
back to the original graph. Returns nothing.
=item get_row($u, $v1, $v2, ..., $vn)
Test the row at vertex C<u> for the vertices C<v1>, C<v2>, ..., C<vn>
Returns a list of I<n> truth values.
=item set_row($u, $v1, $v2, ..., $vn)
Sets the row at vertex C<u> for the vertices C<v1>, C<v2>, ..., C<vn>,
in other words, connects the vertex C<u> to the vertices C<vi>.
The changes do not get mirrored back to the original graph.
Returns nothing.
=item unset_row($u, $v1, $v2, ..., $vn)
Unsets the row at vertex C<u> for the vertices C<v1>, C<v2>, ..., C<vn>,
in other words, disconnects the vertex C<u> from the vertices C<vi>.
The changes do not get mirrored back to the original graph.
Returns nothing.
=item vertices
Return the list of vertices in the bit matrix.
=back
=head1 ALGORITHM
The algorithm used to create the matrix is two nested loops, which is
O(V**2) in time, and the returned matrices are O(V**2) in space.
=head1 AUTHOR AND COPYRIGHT
Jarkko Hietaniemi F<jhi@iki.fi>
=head1 LICENSE
This module is licensed under the same terms as Perl itself.
=cut
|