This file is indexed.

/usr/include/dune/localfunctions/lagrange/q2/q2localbasis.hh is in libdune-localfunctions-dev 2.2.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
// -*- tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=2 sw=2 sts=2:
#ifndef DUNE_Q2_LOCALBASIS_HH
#define DUNE_Q2_LOCALBASIS_HH

#include <dune/common/fmatrix.hh>

#include <dune/localfunctions/common/localbasis.hh>

namespace Dune 
{
/**@ingroup LocalBasisImplementation
   \brief Lagrange shape functions of order 2 on the reference cube

   Also known as \f$Q^2\f$.

   \tparam D Type to represent the field in the domain.
   \tparam R Type to represent the field in the range.
   \tparam dim Dimension of the reference cube

   \nosubgrouping
 */
template<class D, class R, int dim>
class Q2LocalBasis
{
public:
  typedef LocalBasisTraits<D,dim,Dune::FieldVector<D,dim>,R,1,Dune::FieldVector<R,1>,
      Dune::FieldMatrix<R,1,dim> > Traits;

  //! \brief number of shape functions
  unsigned int size () const
  {
      int size = 1;
      for (int i=0; i<dim; i++)
          size *= 3;
      return size;
  }

  //! \brief Evaluate all shape functions
  inline void evaluateFunction (const typename Traits::DomainType& in,
      std::vector<typename Traits::RangeType>& out) const
  {
    out.resize(size());

    // Evaluate the Lagrange functions
    array<array<R,3>, dim> X;
    
    for (size_t i=0; i<dim; i++) {
            X[i][0] =  R(2)*in[i]*in[i] - R(3)*in[i]+R(1);
            X[i][1] = -R(4)*in[i]*in[i] + R(4)*in[i];
            X[i][2] =  R(2)*in[i]*in[i] -   in[i];
    }
        

    // Compute function values: they are products of 1d Lagrange function values
    for (size_t i=0; i<out.size(); i++) {
            
        out[i] = 1;
                
        // Construct the i-th Lagrange point
        size_t ternary = i;
        for (int j=0; j<dim; j++) {
                    
            int digit = ternary%3;
            ternary /= 3;
                    
            // Multiply the 1d Lagrange shape functions together
            out[i] *= X[j][digit];
                    
        }
                    
    }

  }

  //! \brief Evaluate Jacobian of all shape functions
  inline void
  evaluateJacobian (const typename Traits::DomainType& in,         // position
      std::vector<typename Traits::JacobianType>& out) const      // return value
  {
    out.resize(size());
    
    // Evaluate the 1d Lagrange functions and their derivatives
    array<array<R,3>, dim> X, DX;
    
    for (size_t i=0; i<dim; i++) {
            X[i][0] =  R(2)*in[i]*in[i] - R(3)*in[i]+R(1);
            X[i][1] = -R(4)*in[i]*in[i] + R(4)*in[i];
            X[i][2] =  R(2)*in[i]*in[i] -   in[i];
            
            DX[i][0] =  R(4)*in[i] - R(3);
            DX[i][1] = -R(8)*in[i] + R(4);
            DX[i][2] =  R(4)*in[i] - R(1);
    }
        
    
    // Compute the derivatives by deriving the products of 1d Lagrange functions
    for (size_t i=0; i<out.size(); i++) {
            
        // Computing the j-th partial derivative
        for (int j=0; j<dim; j++) {
            
            out[i][0][j] = 1;
                
            // Loop over the 'dim' terms in the product rule
            size_t ternary = i;
            for (int k=0; k<dim; k++) {
                    
                int digit = ternary%3;
                ternary /= 3;
                
                out[i][0][j] *= (k==j) ? DX[k][digit] : X[k][digit];
                    
            }
            
        }
                    
    }



  }

  //! \brief Polynomial order of the shape functions
  unsigned int order () const
  {
    return 2;
  }
};
}
#endif