This file is indexed.

/usr/include/bse/bsemathsignal.hh is in libbse-dev 0.7.8-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
// Licensed GNU LGPL v2.1 or later: http://www.gnu.org/licenses/lgpl.html
#ifndef __BSE_SIGNAL_H__
#define __BSE_SIGNAL_H__
#include <bse/bsemath.hh>
#include <bse/bseglobals.hh>
#include <bse/bsetype.hh> // for BseMusicalTuningType
G_BEGIN_DECLS
/**
 * smallest value of a signal sample, greater than zero
 */
#define BSE_SIGNAL_EPSILON      (1.15e-14)      /* 1.16415321826934814453125e-9 ~= 1/2^33 */
/**
 * maximum value of a signal sample
 */
#define BSE_SIGNAL_KAPPA        (1.5)
/**
 * Catch edges in sync signals.
 * sync signals should be constant, do comparing against
 * an epsilon just hurts speed in the common case.
 */
#define BSE_SIGNAL_RAISING_EDGE(v1,v2)	((v1) < (v2))
/**
 * Inverse variant of BSE_SIGNAL_RAISING_EDGE().
 */
#define BSE_SIGNAL_FALLING_EDGE(v1,v2)	((v1) > (v2))
/**
 * Value changes in signals which represent frequencies.
 */
#define BSE_SIGNAL_FREQ_CHANGED(v1,v2)	(fabs ((v1) - (v2)) > 1e-7)
/**
 * Inverse variant of BSE_SIGNAL_FREQ_CHANGED().
 */
#define BSE_SIGNAL_FREQ_EQUALS(v1,v2)	(!BSE_SIGNAL_FREQ_CHANGED (v1, v2))
/**
 * Value changes in signals which represent modulation.
 */
#define BSE_SIGNAL_MOD_CHANGED(v1,v2)	(fabs ((v1) - (v2)) > 1e-8)
/**
 * Value changes in signals which represent dB ranges.
 */
#define BSE_SIGNAL_GAIN_CHANGED(v1,v2)	(fabs ((v1) - (v2)) > 1e-8)
/**
 * Convert between literal frequencies and signal values.
 */
#define BSE_SIGNAL_TO_FREQ_FACTOR	(BSE_MAX_FREQUENCY)
#define BSE_SIGNAL_FROM_FREQ_FACTOR	(1.0 / BSE_MAX_FREQUENCY)
#define BSE_SIGNAL_TO_FREQ(value)	(BSE_FREQ_FROM_VALUE (value))
#define BSE_SIGNAL_FROM_FREQ(freq)	(BSE_VALUE_FROM_FREQ (freq))
#define BSE_SIGNAL_CLIP(v)      bse_signal_value_clip (v)
static inline double   bse_signal_value_clip (register double x)  G_GNUC_CONST;
static inline double G_GNUC_CONST
bse_signal_value_clip (register double x)
{
  if (G_UNLIKELY (x > 1.0))
    return 1.0;
  if (G_UNLIKELY (x < -1.0))
    return -1.0;
  return x;
}
/* --- frequency modulation --- */
typedef struct {
  gfloat	fm_strength;		/* linear: 0..1, exponential: n_octaves */
  guint		exponential_fm : 1;
  gfloat	signal_freq;		/* for ifreq == NULL (as BSE_SIGNAL_FROM_FREQ) */
  gint		fine_tune;		/* -100..+100 */
} BseFrequencyModulator;
void	bse_frequency_modulator	(const BseFrequencyModulator	*fm,
				 guint				 n_values,
				 const gfloat			*ifreq,
				 const gfloat			*ifmod,
				 gfloat				*fm_buffer);
/* --- windows --- */
double	bse_window_bartlett	(double x);	/* narrowest */
double	bse_window_blackman	(double x);
double	bse_window_cos		(double x);
double	bse_window_hamming	(double x);
double	bse_window_sinc		(double x);
double	bse_window_rect		(double x);	/* widest */
/* --- function approximations --- */
/**
 * @param x	x as in atan(x)
 *
 * Fast atan(x)/(PI/2) approximation, with maximum error < 0.01 and
 * bse_approx_atan1(0)==0, according to the formula:
 * n1 = -0.41156875521951602506487246309908;
 * n2 = -1.0091272542790025586079663559158;
 * d1 = 0.81901156857081841441890603235599;
 * d2 = 1.0091272542790025586079663559158;
 * positive_atan1(x) = 1 + (n1 * x + n2) / ((1 + d1 * x) * x + d2);
 */
static inline double	bse_approx_atan1 	  (register double x)  G_GNUC_CONST;
/**
 * @param boost_amount	boost amount between [0..1]
 * @return		prescale factor for bse_approx_atan1()
 *
 * Calculate the prescale factor for bse_approx_atan1(x*prescale) from
 * a linear boost factor, where 0.5 amounts to prescale=1.0, 1.0 results
 * in maximum boost and 0.0 results in maximum attenuation.
 */
double			bse_approx_atan1_prescale (double	   boost_amount);
/**
 * @param x	x within [0..1]
 * @return	y for circle approximation within [0..1]
 *
 * Fast approximation of the upper right quadrant of a circle.
 * Errors at x=0 and x=1 are zero, for the rest of the curve, the error
 * wasn't minimized, but distributed to best fit the curverture of a
 * quarter circle. The maximum error is below 0.092.
 */
static inline double	bse_approx_qcircle1	  (register double x)  G_GNUC_CONST;
/**
 * @param x	x within [0..1]
 * @return	y for circle approximation within [0..1]
 *
 * Fast approximation of the upper left quadrant of a circle.
 * Errors at x=0 and x=1 are zero, for the rest of the curve, the error
 * wasn't minimized, but distributed to best fit the curverture of a
 * quarter circle. The maximum error is below 0.092.
 */
static inline double	bse_approx_qcircle2	  (register double x)  G_GNUC_CONST;
/**
 * @param x	x within [0..1]
 * @return	y for circle approximation within [0..1]
 *
 * Fast approximation of the lower left quadrant of a circle.
 * Errors at x=0 and x=1 are zero, for the rest of the curve, the error
 * wasn't minimized, but distributed to best fit the curverture of a
 * quarter circle. The maximum error is below 0.092.
 */
static inline double	bse_approx_qcircle3	  (register double x)  G_GNUC_CONST;
/**
 * @param x	x within [0..1]
 * @return	y for circle approximation within [0..1]
 *
 * Fast approximation of the lower right quadrant of a circle.
 * Errors at x=0 and x=1 are zero, for the rest of the curve, the error
 * wasn't minimized, but distributed to best fit the curverture of a
 * quarter circle. The maximum error is below 0.092.
 */
static inline double	bse_approx_qcircle4	  (register double x)  G_GNUC_CONST;
/**
 * @param ex	exponent within [-127..+127]
 * @return	y approximating 2^ex
 *
 * Fast approximation of 2 raised to the power of ex.
 * Within -1..+1, the error stays below 0.01275 which corresponds to a sample
 * precision of 6.2 bit, the average error amounts to 0.001914.
 * For integer values of @a ex (i.e. @a ex - floor (@a ex) -> 0), the error
 * approaches zero. On a 2GHz machine, execution takes roughly 12.81 ns.
 */
static inline double    bse_approx2_exp2        (float ex)      G_GNUC_CONST;
/**
 * @param ex	exponent within [-127..+127]
 * @return	y approximating 2^ex
 *
 * Fast approximation of 2 raised to the power of ex.
 * Within -1..+1, the error stays below 0.001123415 which corresponds to a sample
 * precision of 9.7 bit, the average error amounts to 0.000133.
 * For integer values of @a ex (i.e. @a ex - floor (@a ex) -> 0), the error
 * approaches zero. On a 2GHz machine, execution takes roughly 13.74 ns.
 */
static inline double    bse_approx3_exp2        (float ex)      G_GNUC_CONST;
/**
 * @param ex	exponent within [-127..+127]
 * @return	y approximating 2^ex
 *
 * Fast approximation of 2 raised to the power of ex.
 * Within -1..+1, the error stays below 7.876055e-05 which corresponds to a sample
 * precision of 13.6 bit, the average error amounts to 7.7012792e-06.
 * For integer values of @a ex (i.e. @a ex - floor (@a ex) -> 0), the error
 * approaches zero. On a 2GHz machine, execution takes roughly 16.46 ns.
 */
static inline double    bse_approx4_exp2        (float ex)      G_GNUC_CONST;
/**
 * @param ex	exponent within [-127..+127]
 * @return	y approximating 2^ex
 *
 * Fast approximation of 2 raised to the power of ex.
 * Within -1..+1, the error stays below 4.60807023e-06 which corresponds to a sample
 * precision of 17.7 bit, the average error amounts to 3.842199e-07.
 * For integer values of @a ex (i.e. @a ex - floor (@a ex) -> 0), the error
 * approaches zero. On a 2GHz machine, execution takes roughly 18.51 ns.
 */
static inline double    bse_approx5_exp2        (float ex)      G_GNUC_CONST;
/**
 * @param ex	exponent within [-127..+127]
 * @return	y approximating 2^ex
 *
 * Fast approximation of 2 raised to the power of ex.
 * Within -1..+1, the error stays below 2.5505813e-07 which corresponds to a sample
 * precision of 21.9 bit, the average error amounts to 2.1028377e-08.
 * For integer values of @a ex (i.e. @a ex - floor (@a ex) -> 0), the error
 * approaches zero. On a 2GHz machine, execution takes roughly 21.84 ns.
 */
static inline double    bse_approx6_exp2        (float ex)      G_GNUC_CONST;
/**
 * @param ex	exponent within [-127..+127]
 * @return	y approximating 2^ex
 *
 * Fast approximation of 2 raised to the power of ex.
 * Within -1..+1, the error stays below 4.1074325e-08 which corresponds to a sample
 * precision of 24.5 bit, the average error amounts to 7.7448985e-09.
 * For integer values of @a ex (i.e. @a ex - floor (@a ex) -> 0), the error
 * approaches zero. On a 2GHz machine, execution takes roughly 23.79 ns.
 */
static inline double    bse_approx7_exp2        (float ex)      G_GNUC_CONST;
/**
 * @param ex	exponent within [-127..+127]
 * @return	y approximating 2^ex
 *
 * Fast approximation of 2 raised to the power of ex.
 * Within -1..+1, the error stays below 4.1074325e-08 which corresponds to a sample
 * precision of 24.5 bit, the average error amounts to 7.6776048e-09.
 * Note that there is no significant precision increment over bse_approx7_exp2().
 * For integer values of @a ex (i.e. @a ex - floor (@a ex) -> 0), the error
 * approaches zero. On a 2GHz machine, execution takes roughly 26.59 ns.
 */
static inline double    bse_approx8_exp2        (float ex)      G_GNUC_CONST;
/**
 * @param ex	exponent within [-127..+127]
 * @return	y approximating 2^ex
 *
 * Fast approximation of 2 raised to the power of ex.
 * Within -1..+1, the error stays below 4.1074325e-08 which corresponds to a sample
 * precision of 24.5 bit, the average error amounts to 7.677515903e-09.
 * Note that there is no significant precision increment over bse_approx7_exp2().
 * For integer values of @a ex (i.e. @a ex - floor (@a ex) -> 0), the error
 * approaches zero. On a 2GHz machine, execution takes roughly 29.40 ns.
 */
static inline double    bse_approx9_exp2        (float ex)      G_GNUC_CONST;
/**
 * @param x	exponent within [-127..+127]
 * @return	y approximating tanh(x)
 *
 * Fast approximation of the hyperbolic tangent of x.
 * Within -1..+1, the error stays below 0.00436 which corresponds to a sample
 * precision of 7.8 bit, the average error amounts to 0.00069220.
 * On a 2GHz machine, execution takes roughly 24.48 ns.
 */
static inline double    bse_approx2_tanh        (float x)       G_GNUC_CONST;
/**
 * @param x	exponent within [-127..+127]
 * @return	y approximating tanh(x)
 *
 * Fast approximation of the hyperbolic tangent of x.
 * Within -1..+1, the error stays below 0.0003857 which corresponds to a sample
 * precision of 7.8 bit, the average error amounts to 0.00004827.
 * On a 2GHz machine, execution takes roughly 25.78 ns.
 */
static inline double    bse_approx3_tanh        (float x)       G_GNUC_CONST;
/**
 * @param x	exponent within [-127..+127]
 * @return	y approximating tanh(x)
 *
 * Fast approximation of the hyperbolic tangent of x.
 * Within -1..+1, the error stays below 2.7017507e-05 which corresponds to a sample
 * precision of 15.1 bit, the average error amounts to 2.799594e-06.
 * On a 2GHz machine, execution takes roughly 28.41 ns.
 */
static inline double    bse_approx4_tanh        (float x)       G_GNUC_CONST;
/**
 * @param x	exponent within [-127..+127]
 * @return	y approximating tanh(x)
 *
 * Fast approximation of the hyperbolic tangent of x.
 * Within -1..+1, the error stays below 1.582042006e-06 which corresponds to a sample
 * precision of 19.2 bit, the average error amounts to 1.42780810e-07.
 * On a 2GHz machine, execution takes roughly 30.35 ns.
 */
static inline double    bse_approx5_tanh        (float x)       G_GNUC_CONST;
/**
 * @param x	exponent within [-127..+127]
 * @return	y approximating tanh(x)
 *
 * Fast approximation of the hyperbolic tangent of x.
 * Within -1..+1, the error stays below 9.7878796e-08 which corresponds to a sample
 * precision of 23.2 bit, the average error amounts to 1.3016999e-08.
 * On a 2GHz machine, execution takes roughly 34.29 ns.
 */
static inline double    bse_approx6_tanh        (float x)       G_GNUC_CONST;
/**
 * @param x	exponent within [-127..+127]
 * @return	y approximating tanh(x)
 *
 * Fast approximation of the hyperbolic tangent of x.
 * Within -1..+1, the error stays below 4.4375671e-08 which corresponds to a sample
 * precision of 24.4 bit, the average error amounts to 9.5028421e-09.
 * On a 2GHz machine, execution takes roughly 36.86 ns.
 */
static inline double    bse_approx7_tanh        (float x)       G_GNUC_CONST;
/**
 * @param x	exponent within [-127..+127]
 * @return	y approximating tanh(x)
 *
 * Fast approximation of the hyperbolic tangent of x.
 * Within -1..+1, the error stays below 4.4375671e-08 which corresponds to a sample
 * precision of 24.4 bit, the average error amounts to 9.49155722e-09.
 * Note that there is no significant precision increment over bse_approx7_tanh().
 * On a 2GHz machine, execution takes roughly 42.03 ns.
 */
static inline double    bse_approx8_tanh        (float x)       G_GNUC_CONST;
/**
 * @param x	exponent within [-127..+127]
 * @return	y approximating tanh(x)
 *
 * Fast approximation of the hyperbolic tangent of x.
 * Within -1..+1, the error stays below 4.4375671e-08 which corresponds to a sample
 * precision of 24.4 bit, the average error amounts to 9.49141881e-09.
 * Note that there is no significant precision increment over bse_approx7_tanh().
 * On a 2GHz machine, execution takes roughly 43.83 ns.
 */
static inline double    bse_approx9_tanh        (float x)       G_GNUC_CONST;
/**
 * @param value		value to saturate
 * @param limit		limit not to be exceeded by value
 * @return		@a value bounded by -limit and @a limit
 *
 * Clamp @a value within -limit and +limit. Limiting is performed
 * by floating point operations only, thus executing faster than
 * condition based branching code on most modern architectures.
 * On a 2GHz machine, execution takes roughly 6.86 ns.
 */
static inline double    bse_saturate_hard       (double value,
                                                 double limit)  G_GNUC_CONST;
/**
 * @param value		value to saturate
 * @param limit		limit not to be exceeded by value
 * @return		@a value bounded by -limit and @a limit
 *
 * Clamp @a value within -limit and +limit. Limiting is performed
 * by executing conditions and branches, so it will probably run
 * slower than bse_saturate_hard() on many machines.
 * On a 2GHz machine, execution takes roughly 8.29 ns.
 */
static inline double    bse_saturate_branching (double value,
                                                double limit)   G_GNUC_CONST;
/* --- semitone factors (for +-11 octaves) --- */
const double* bse_semitone_table_from_tuning (BseMusicalTuningType musical_tuning); /* returns [-132..+132] */
double        bse_transpose_factor           (BseMusicalTuningType musical_tuning,
                                              int                  index /* [-132..+132] */);
/* --- cents (1/100th of a semitone) --- */
double                  bse_cent_tune (double fine_tune);
/**
 * @param fine_tune	fine tuning in cent between -100 and 100
 * @return		a factor corresponding to this
 *
 * This function computes a factor which corresponds to a given fine tuning in
 * cent.  The result can be used as factor for the frequency or the play speed.
 * It is a faster alternative to bse_cent_tune(), and can only deal with
 * integer values between -100 and 100. The input is always CLAMPed to ensure
 * that it lies in this range.
 */
static inline double	bse_cent_tune_fast (int fine_tune /* -100..+100 */)   G_GNUC_CONST;
/* --- implementation details --- */
static inline double  G_GNUC_CONST
bse_approx_atan1 (register double x)
{
  if (x < 0)	/* make use of -atan(-x)==atan(x) */
    {
      register double numerator, denominator = -1.0;
      denominator += x * 0.81901156857081841441890603235599; /* d1 */
      numerator = x * 0.41156875521951602506487246309908; /* -n1 */
      denominator *= x;
      numerator  += -1.0091272542790025586079663559158; /* n2 */
      denominator += 1.0091272542790025586079663559158; /* d2 */
      return -1.0 - numerator / denominator;
    }
  else
    {
      register double numerator, denominator = 1.0;
      denominator += x * 0.81901156857081841441890603235599; /* d1 */
      numerator = x * -0.41156875521951602506487246309908; /* n1 */
      denominator *= x;
      numerator  += -1.0091272542790025586079663559158; /* n2 */
      denominator += 1.0091272542790025586079663559158; /* d2 */
      return 1.0 + numerator / denominator;
    }
  /* atan1_positive(x)=1+(x*-0.411568755219516-1.009127254279)/((1+x*0.81901156857)*x+1.009127254279)
   * atan1(x)=x<0 ? -atan1_positive(-x) : atan1_positive(x)
   */
}
static inline double	G_GNUC_CONST
bse_approx_qcircle1 (register double x)
{
  double numerator = 1.20460124790369468987715633298929 * x - 1.20460124790369468987715633298929;
  double denominator = x - 1.20460124790369468987715633298929;
  /* R1(x)=(1.2046012479036946898771563 * x - 1.2046012479036946898771563) / (x - 1.2046012479036946898771563) */
  return numerator / denominator;
}
static inline double	G_GNUC_CONST
bse_approx_qcircle2 (register double x)
{
  double numerator = 1.20460124790369468987715633298929*x;
  double denominator = x + 0.20460124790369468987715633298929;
  /* R2(x)=1.2046012479036946898771563*x/(x + 0.2046012479036946898771563) */
  return numerator / denominator;
}
static inline double	G_GNUC_CONST
bse_approx_qcircle3 (register double x)
{
  double numerator = 0.20460124790369468987715633298929 - 0.20460124790369468987715633298929 * x;
  double denominator = x + 0.20460124790369468987715633298929;
  /* R3(x)=(0.2046012479036946898771563 - 0.2046012479036946898771563 * x) / (x + 0.2046012479036946898771563) */
  return numerator / denominator;
}
static inline double	G_GNUC_CONST
bse_approx_qcircle4 (register double x)
{
  double numerator = -0.20460124790369468987715633298929 * x;
  double denominator = x - 1.20460124790369468987715633298929;
  /* R4(x)=-0.2046012479036946898771563 * x / (x - 1.2046012479036946898771563) */
  return numerator / denominator;
}
static inline double G_GNUC_CONST
bse_approx2_exp2 (float ex)
{
  register BseFloatIEEE754 fp = { 0, };
  register int i = bse_ftoi (ex);
  fp.mpn.biased_exponent = BSE_FLOAT_BIAS + i;
  register double x = ex - i;
  return fp.v_float * (1.0 + x * (0.69314718055994530941723212145818 +
                                  x * (0.24022650695910071233355126316333)));
}
static inline double G_GNUC_CONST
bse_approx3_exp2 (float ex)
{
  register BseFloatIEEE754 fp = { 0, };
  register int i = bse_ftoi (ex);
  fp.mpn.biased_exponent = BSE_FLOAT_BIAS + i;
  register double x = ex - i;
  return fp.v_float * (1.0 + x * (0.69314718055994530941723212145818 +
                                  x * (0.24022650695910071233355126316333 +
                                       x * (0.055504108664821579953142263768622))));
  /* exp2frac(x)=x-ftoi(x)
   * exp2a3(x)=2**ftoi(x)*(1+exp2frac(x)*(0.6931471805599453+exp2frac(x)*(0.2402265069591+exp2frac(x)*0.0555041086648)))
   */
}
static inline double G_GNUC_CONST
bse_approx4_exp2 (float ex)
{
  register BseFloatIEEE754 fp = { 0, };
  register int i = bse_ftoi (ex);
  fp.mpn.biased_exponent = BSE_FLOAT_BIAS + i;
  register double x = ex - i;
  return fp.v_float * (1.0 + x * (0.69314718055994530941723212145818 +
                                  x * (0.24022650695910071233355126316333 +
                                       x * (0.055504108664821579953142263768622 +
                                            x * (0.0096181291076284771619790715736589)))));
  /* ftoi(x)=int(x<-0.0 ? x - 0.5 : x + 0.5)
   * exp2frac(x)=x-ftoi(x)
   * exp2a4(x)=2**ftoi(x)*(1+exp2frac(x)*(0.6931471805599453+exp2frac(x)*(0.2402265069591+exp2frac(x)*(0.0555041086648+exp2frac(x)*0.009618129107628477))))
   */
}
static inline double G_GNUC_CONST
bse_approx5_exp2 (float ex)
{
  register BseFloatIEEE754 fp = { 0, };
  register int i = bse_ftoi (ex);
  fp.mpn.biased_exponent = BSE_FLOAT_BIAS + i;
  register double x = ex - i;
  return fp.v_float * (1.0 + x * (0.69314718055994530941723212145818 +
                                  x * (0.24022650695910071233355126316333 +
                                       x * (0.055504108664821579953142263768622 +
                                            x * (0.0096181291076284771619790715736589 +
                                                 x * (0.0013333558146428443423412221987996))))));
}
static inline double G_GNUC_CONST
bse_approx6_exp2 (float ex)
{
  register BseFloatIEEE754 fp = { 0, };
  register int i = bse_ftoi (ex);
  fp.mpn.biased_exponent = BSE_FLOAT_BIAS + i;
  register double x = ex - i;
  return fp.v_float * (1.0 + x * (0.69314718055994530941723212145818 +
                                  x * (0.24022650695910071233355126316333 +
                                       x * (0.055504108664821579953142263768622 +
                                            x * (0.0096181291076284771619790715736589 +
                                                 x * (0.0013333558146428443423412221987996 +
                                                      x * (0.00015403530393381609954437097332742)))))));
}
static inline double G_GNUC_CONST
bse_approx7_exp2 (float ex)
{
  register BseFloatIEEE754 fp = { 0, };
  register int i = bse_ftoi (ex);
  fp.mpn.biased_exponent = BSE_FLOAT_BIAS + i;
  register double x = ex - i;
  return fp.v_float * (1.0 + x * (0.69314718055994530941723212145818 +
                                  x * (0.24022650695910071233355126316333 +
                                       x * (0.055504108664821579953142263768622 +
                                            x * (0.0096181291076284771619790715736589 +
                                                 x * (0.0013333558146428443423412221987996 +
                                                      x * (0.00015403530393381609954437097332742 +
                                                           x * (0.00001525273380405984028002543901201))))))));
}
static inline double G_GNUC_CONST
bse_approx8_exp2 (float ex)
{
  register BseFloatIEEE754 fp = { 0, };
  register int i = bse_ftoi (ex);
  fp.mpn.biased_exponent = BSE_FLOAT_BIAS + i;
  register double x = ex - i;
  return fp.v_float * (1.0 + x * (0.69314718055994530941723212145818 +
                                  x * (0.24022650695910071233355126316333 +
                                       x * (0.055504108664821579953142263768622 +
                                            x * (0.0096181291076284771619790715736589 +
                                                 x * (0.0013333558146428443423412221987996 +
                                                      x * (0.00015403530393381609954437097332742 +
                                                           x * (0.00001525273380405984028002543901201 +
                                                                x * (0.0000013215486790144309488403758228288)))))))));
}
static inline double G_GNUC_CONST
bse_approx9_exp2 (float ex)
{
  register BseFloatIEEE754 fp = { 0, };
  register int i = bse_ftoi (ex);
  fp.mpn.biased_exponent = BSE_FLOAT_BIAS + i;
  register double x = ex - i;
  return fp.v_float * (1.0 + x * (0.69314718055994530941723212145818 +
                                  x * (0.24022650695910071233355126316333 +
                                       x * (0.055504108664821579953142263768622 +
                                            x * (0.0096181291076284771619790715736589 +
                                                 x * (0.0013333558146428443423412221987996 +
                                                      x * (0.00015403530393381609954437097332742 +
                                                           x * (0.00001525273380405984028002543901201 +
                                                                x * (0.0000013215486790144309488403758228288 +
                                                                     x * 0.00000010178086009239699727490007597745)))))))));
}
static inline double G_GNUC_CONST
bse_approx2_tanh (float x)
{
  if (G_UNLIKELY (x < -20))
    return -1;
  if (G_UNLIKELY (x > 20))
    return 1;
  register double bpot = bse_approx2_exp2 (x * BSE_2_DIV_LN2);
  return (bpot - 1) / (bpot + 1);
}
static inline double G_GNUC_CONST
bse_approx3_tanh (float x)
{
  if (G_UNLIKELY (x < -20))
    return -1;
  if (G_UNLIKELY (x > 20))
    return 1;
  register double bpot = bse_approx3_exp2 (x * BSE_2_DIV_LN2);
  return (bpot - 1) / (bpot + 1);
}
static inline double G_GNUC_CONST
bse_approx4_tanh (float x)
{
  if (G_UNLIKELY (x < -20))
    return -1;
  if (G_UNLIKELY (x > 20))
    return 1;
  register double bpot = bse_approx4_exp2 (x * BSE_2_DIV_LN2);
  return (bpot - 1) / (bpot + 1);
  /* tanha4(x)=x<-20 ? -1 : x>20 ? 1 : (exp2a4(x*2.885390081777926814719849362)-1) / (exp2a4(x*2.885390081777926814719849362)+1) */
}
static inline double G_GNUC_CONST
bse_approx5_tanh (float x)
{
  if (G_UNLIKELY (x < -20))
    return -1;
  if (G_UNLIKELY (x > 20))
    return 1;
  register double bpot = bse_approx5_exp2 (x * BSE_2_DIV_LN2);
  return (bpot - 1) / (bpot + 1);
}
static inline double G_GNUC_CONST
bse_approx6_tanh (float x)
{
  if (G_UNLIKELY (x < -20))
    return -1;
  if (G_UNLIKELY (x > 20))
    return 1;
  register double bpot = bse_approx6_exp2 (x * BSE_2_DIV_LN2);
  return (bpot - 1) / (bpot + 1);
}
static inline double G_GNUC_CONST
bse_approx7_tanh (float x)
{
  if (G_UNLIKELY (x < -20))
    return -1;
  if (G_UNLIKELY (x > 20))
    return 1;
  register double bpot = bse_approx7_exp2 (x * BSE_2_DIV_LN2);
  return (bpot - 1) / (bpot + 1);
}
static inline double G_GNUC_CONST
bse_approx8_tanh (float x)
{
  if (G_UNLIKELY (x < -20))
    return -1;
  if (G_UNLIKELY (x > 20))
    return 1;
  register double bpot = bse_approx8_exp2 (x * BSE_2_DIV_LN2);
  return (bpot - 1) / (bpot + 1);
}
static inline double G_GNUC_CONST
bse_approx9_tanh (float x)
{
  if (G_UNLIKELY (x < -20))
    return -1;
  if (G_UNLIKELY (x > 20))
    return 1;
  register double bpot = bse_approx9_exp2 (x * BSE_2_DIV_LN2);
  return (bpot - 1) / (bpot + 1);
}
static inline double G_GNUC_CONST
bse_saturate_hard (double value,
                   double limit)
{
  register double v1 = fabsf (value + limit);
  register double v2 = fabsf (value - limit);
  return 0.5 * (v1 - v2); /* CLAMP() without branching */
}
static inline double G_GNUC_CONST
bse_saturate_branching (double value,
                        double limit)
{
  if (G_UNLIKELY (value >= limit))
    return limit;
  if (G_UNLIKELY (value <= limit))
    return -limit;
  return value;
}
void    _bse_init_signal (void);
extern const double * const bse_cent_table;
static inline double G_GNUC_CONST
bse_cent_tune_fast (int fine_tune)
{
  return bse_cent_table[CLAMP (fine_tune, -100, 100)];
}
G_END_DECLS
#endif /* __BSE_SIGNAL_H__ */