/usr/share/perl5/Bio/Tree/Statistics.pm is in libbio-perl-perl 1.6.923-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 | #
# BioPerl module for Bio::Tree::Statistics
#
# Please direct questions and support issues to <bioperl-l@bioperl.org>
#
# Cared for by Jason Stajich <jason@bioperl.org>
#
# Copyright Jason Stajich
#
# You may distribute this module under the same terms as perl itself
# POD documentation - main docs before the code
=head1 NAME
Bio::Tree::Statistics - Calculate certain statistics for a Tree
=head1 SYNOPSIS
use Bio::Tree::Statistics;
=head1 DESCRIPTION
This should be where Tree statistics are calculated. It was
previously where statistics from a Coalescent simulation.
It now contains several methods for calculating L<Tree-Trait
statistics>.
=head1 FEEDBACK
=head2 Mailing Lists
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to
the Bioperl mailing list. Your participation is much appreciated.
bioperl-l@bioperl.org - General discussion
http://bioperl.org/wiki/Mailing_lists - About the mailing lists
=head2 Support
Please direct usage questions or support issues to the mailing list:
I<bioperl-l@bioperl.org>
rather than to the module maintainer directly. Many experienced and
reponsive experts will be able look at the problem and quickly
address it. Please include a thorough description of the problem
with code and data examples if at all possible.
=head2 Reporting Bugs
Report bugs to the Bioperl bug tracking system to help us keep track
of the bugs and their resolution. Bug reports can be submitted via
the web:
https://redmine.open-bio.org/projects/bioperl/
=head1 AUTHOR - Jason Stajich
Email jason AT bioperl.org
=head1 CONTRIBUTORS
Heikki Lehvaslaiho, heikki at bioperl dot org
=head1 APPENDIX
The rest of the documentation details each of the object methods.
Internal methods are usually preceded with a _
=cut
# Let the code begin...
package Bio::Tree::Statistics;
use strict;
use base qw(Bio::Root::Root);
=head2 new
Title : new
Usage : my $obj = Bio::Tree::Statistics->new();
Function: Builds a new Bio::Tree::Statistics object
Returns : Bio::Tree::Statistics
Args :
=head2 assess_bootstrap
Title : assess_bootstrap
Usage : my $tree_with_bs = $stats->assess_bootstrap(\@bs_trees);
Function: Calculates the bootstrap for internal nodes based on
Returns : L<Bio::Tree::TreeI>
Args : Arrayref of L<Bio::Tree::TreeI>s
=cut
sub assess_bootstrap{
my ($self,$bs_trees,$guide_tree) = @_;
my @consensus;
# internal nodes are defined by their children
my (%lookup,%internal);
my $i = 0;
for my $tree ( $guide_tree, @$bs_trees ) {
# Do this as a top down approach, can probably be
# improved by caching internal node states, but not going
# to worry about it right now.
my @allnodes = $tree->get_nodes;
my @internalnodes = grep { ! $_->is_Leaf } @allnodes;
for my $node ( @internalnodes ) {
my @tips = sort map { $_->id }
grep { $_->is_Leaf() } $node->get_all_Descendents;
my $id = "(".join(",", @tips).")";
if( $i == 0 ) {
$internal{$id} = $node->internal_id;
} else {
$lookup{$id}++;
}
}
$i++;
}
my @save;
for my $l ( keys %lookup ) {
if( defined $internal{$l} ) {#&& $lookup{$l} > $min_seen ) {
my $intnode = $guide_tree->find_node(-internal_id => $internal{$l});
$intnode->bootstrap(sprintf("%d",100 * $lookup{$l} / $i));
}
}
return $guide_tree;
}
=head2 cherries
Example : cherries($tree, $node);
Description: Count number of paired leaf nodes
in a binary tree
Returns : integer
Exceptions :
Args : 1. Bio::Tree::TreeI object
2. Bio::Tree::NodeI object within the tree, optional
Commonly used statistics assume a binary tree, but this methods
returns a value even for trees with polytomies.
=cut
sub cherries ($;$) {
my $self = shift;
my $tree = shift;
my $node = shift || $tree->get_root_node;
my $cherries = 0;
my @descs = $node->each_Descendent;
if ($descs[0]->is_Leaf and $descs[1]->is_Leaf) {
if ($descs[3]) { #polytomy at leaf level
$cherries = 0;
} else {
$cherries = 1;
}
} else {
# recurse
foreach my $desc (@descs) {
$cherries += $self->cherries($tree, $desc);
}
}
return $cherries;
}
=head2 Tree-Trait statistics
The following methods produce descriptors of trait distribution among
leaf nodes within the trees. They require that a trait has been set
for each leaf node. The tag methods of Bio::Tree::Node are used to
store them as key/value pairs. In this way, one tree can store more
than one trait.
Trees have method add_traits() to set trait values from a file. See the
add_trait() method in L<Bio::Tree::TreeFunctionsI>.
=head2 fitch
Example : fitch($tree, $key, $node);
Description: Calculates Parsimony Score (PS) and internal trait
values using the Fitch 1971 parsimony algorithm for
the subtree a defined by the (internal) node.
Node defaults to the root.
Returns : true on success
Exceptions : leaf nodes have to have the trait defined
Args : 1. Bio::Tree::TreeI object
2. trait name string
3. Bio::Tree::NodeI object within the tree, optional
Runs first L<fitch_up> that calculates parsimony scores and then
L<fitch_down> that should resolve most of the trait/character state
ambiguities.
Fitch, W.M., 1971. Toward defining the course of evolution: minimal
change for a specific tree topology. Syst. Zool. 20, 406-416.
You can access calculated parsimony values using:
$score = $node->->get_tag_values('ps_score');
and the trait value with:
$traitvalue = $node->->get_tag_values('ps_trait'); # only the first
@traitvalues = $node->->get_tag_values('ps_trait');
Note that there can be more that one trait value, especially for the
root node.
=cut
sub fitch {
my $self = shift;
my $tree = shift;
my $key = shift || $self->throw("Trait name is needed");
my $node = shift || $tree->get_root_node;
$self->fitch_up($tree, $key, $node);
$self->fitch_down($tree, $node);
}
=head2 ps
Example : ps($tree, $key, $node);
Description: Calculates Parsimony Score (PS) from Fitch 1971
parsimony algorithm for the subtree as defined
by the (internal) node.
Node defaults to the root.
Returns : integer, 1 < PS < n, where n is number of branches
Exceptions : leaf nodes have to have the trait defined
Args : 1. Bio::Tree::TreeI object
2. trait name string
3. Bio::Tree::NodeI object within the tree, optional
This is the first half of the Fitch algorithm that is enough for
calculating the resolved parsimony values. The trait/chararacter
states are commonly left in ambiguous state. To resolve them, run
L<fitch_down>.
=cut
sub ps { shift->fitch_up(@_) }
=head2 fitch_up
Example : fitch_up($tree, $key, $node);
Description: Calculates Parsimony Score (PS) from the Fitch 1971
parsimony algorithm for the subtree as defined
by the (internal) node.
Node defaults to the root.
Returns : integer, 1< PS < n, where n is number of branches
Exceptions : leaf nodes have to have the trait defined
Args : 1. Bio::Tree::TreeI object
2. trait name string
3. Bio::Tree::NodeI object within the tree, optional
This is a more generic name for L<ps> and indicates that it performs
the first bottom-up tree traversal that calculates the parsimony score
but usually leaves trait/character states ambiguous. If you are
interested in internal trait states, running L<fitch_down> should
resolve most of the ambiguities.
=cut
sub fitch_up {
my $self = shift;
my $tree = shift;
my $key = shift || $self->throw("Trait name is needed");
my $node = shift || $tree->get_root_node;
if ($node->is_Leaf) {
$self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key")
unless $node->has_tag($key);
$node->set_tag_value('ps_trait', $node->get_tag_values($key) );
$node->set_tag_value('ps_score', 0 );
return; # end of recursion
}
foreach my $child ($node->each_Descendent) {
$self->fitch_up($tree, $key, $child);
}
my %intersection;
my %union;
my $score;
foreach my $child ($node->each_Descendent) {
foreach my $trait ($child->get_tag_values('ps_trait') ) {
$intersection{$trait}++ if $union{$trait};
$union{$trait}++;
}
$score += $child->get_tag_values('ps_score');
}
if (keys %intersection) {
$node->set_tag_value('ps_trait', keys %intersection);
$node->set_tag_value('ps_score', $score);
} else {
$node->set_tag_value('ps_trait', keys %union);
$node->set_tag_value('ps_score', $score+1);
}
if ($self->verbose) {
print "-- node --------------------------\n";
print "iID: ", $node->internal_id, " (", $node->id, ")\n";
print "Trait: ", join (', ', $node->get_tag_values('ps_trait') ), "\n";
print "length :", scalar($node->get_tag_values('ps_score')) , "\n";
}
return scalar $node->get_tag_values('ps_score');
}
=head2 fitch_down
Example : fitch_down($tree, $node);
Description: Runs the second pass from Fitch 1971
parsimony algorithm to resolve ambiguous
trait states left by first pass.
by the (internal) node.
Node defaults to the root.
Returns : true
Exceptions : dies unless the trait is defined in all nodes
Args : 1. Bio::Tree::TreeI object
2. Bio::Tree::NodeI object within the tree, optional
Before running this method you should have ran L<fitch_up> (alias to
L<ps> ). Note that it is not guaranteed that all states are completely
resolved.
=cut
sub fitch_down {
my $self = shift;
my $tree = shift;
my $node = shift || $tree->get_root_node;
my $key = 'ps_trait';
$self->throw ("ERROR: ". $node->internal_id. " needs a value for $key")
unless $node->has_tag($key);
my $nodev;
foreach my $trait ($node->get_tag_values($key) ) {
$nodev->{$trait}++;
}
foreach my $child ($node->each_Descendent) {
next if $child->is_Leaf; # end of recursion
my $intersection;
foreach my $trait ($child->get_tag_values($key) ) {
$intersection->{$trait}++ if $nodev->{$trait};
}
$self->fitch_down($tree, $child);
$child->set_tag_value($key, keys %$intersection);
}
return 1; # success
}
=head2 persistence
Example : persistence($tree, $node);
Description: Calculates the persistence
for node in the subtree defined by the (internal)
node. Node defaults to the root.
Returns : int, number of generations trait value has to remain same
Exceptions : all the nodes need to have the trait defined
Args : 1. Bio::Tree::TreeI object
2. Bio::Tree::NodeI object within the tree, optional
Persistence measures the stability that the trait value has in a
tree. It expresses the number of generations the trait value remains
the same. All the decendants of the root in the same generation have
to share the same value.
Depends on Fitch's parsimony score (PS).
=cut
sub _persistence {
my $self = shift;
my $tree = shift;
my $node = shift;
my $value = shift || $self->throw("Value is needed");
my $key = 'ps_trait';
$self->throw("Node is needed") unless $node->isa('Bio::Tree::NodeI');
return 0 unless $node->get_tag_values($key) eq $value; # wrong value
return 1 if $node->is_Leaf; # end of recursion
my $persistence = 10000000; # an arbitrarily large number
foreach my $child ($node->each_Descendent) {
my $pers = $self->_persistence($tree, $child, $value);
$persistence = $pers if $pers < $persistence;
}
return $persistence + 1;
}
sub persistence {
my $self = shift;
my $tree = shift;
my $node = shift || $tree->get_root_node;
$self->throw("Node is needed") unless $node->isa('Bio::Tree::NodeI');
my $key = 'ps_trait';
my $value = $node->get_tag_values($key);
#calculate
my $persistence = $self->_persistence($tree, $node, $value);
$node->set_tag_value('persistance', $persistence);
return $persistence;
}
=head2 count_subclusters
Example : count_clusters($tree, $node);
Description: Calculates the number of sub-clusters
in the subtree defined by the (internal)
node. Node defaults to the root.
Returns : int, count
Exceptions : all the nodes need to have the trait defined
Args : 1. Bio::Tree::TreeI object
2. Bio::Tree::NodeI object within the tree, optional
Depends on Fitch's parsimony score (PS).
=cut
sub _count_subclusters {
my $self = shift;
my $tree = shift;
my $node = shift;
my $value = shift || $self->throw("Value is needed");
my $key = 'ps_trait';
$self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key")
unless $node->has_tag($key);
if ($node->get_tag_values($key) eq $value) {
if ($node->get_tag_values('ps_score') == 0) {
return 0;
} else {
my $count = 0;
foreach my $child ($node->each_Descendent) {
$count += $self->_count_subclusters($tree, $child, $value);
}
return $count;
}
}
return 1;
}
sub count_subclusters {
my $self = shift;
my $tree = shift;
my $node = shift || $tree->get_root_node;
$self->throw("Node is needed") unless $node->isa('Bio::Tree::NodeI');
my $key = 'ps_trait';
my $value = $node->get_tag_values($key);
return $self->_count_subclusters($tree, $node, $value);
}
=head2 count_leaves
Example : count_leaves($tree, $node);
Description: Calculates the number of leaves with same trait
value as root in the subtree defined by the (internal)
node. Requires an unbroken line of identical trait values.
Node defaults to the root.
Returns : int, number of leaves with this trait value
Exceptions : all the nodes need to have the trait defined
Args : 1. Bio::Tree::TreeI object
2. Bio::Tree::NodeI object within the tree, optional
Depends on Fitch's parsimony score (PS).
=cut
sub _count_leaves {
my $self = shift;
my $tree = shift;
my $node = shift || $tree->get_root_node;
my $value = shift;
my $key = 'ps_trait';
$self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key")
unless $node->has_tag($key);
if ($node->get_tag_values($key) eq $value) {
#print $node->id, ": ", $node->get_tag_values($key), "\n";
return 1 if $node->is_Leaf; # end of recursion
my $count = 0;
foreach my $child ($node->each_Descendent) {
$count += $self->_count_leaves($tree, $child, $value);
}
return $count;
}
return 0;
}
sub count_leaves {
my $self = shift;
my $tree = shift;
my $node = shift || $tree->get_root_node;
$self->throw("Node is needed") unless $node->isa('Bio::Tree::NodeI');
my $key = 'ps_trait';
my $value = $node->get_tag_values($key);
return $self->_count_leaves($tree, $node, $value);
}
=head2 phylotype_length
Example : phylotype_length($tree, $node);
Description: Sums up the branch lengths within phylotype
exluding the subclusters where the trait values
are different
Returns : float, length
Exceptions : all the nodes need to have the trait defined
Args : 1. Bio::Tree::TreeI object
2. Bio::Tree::NodeI object within the tree, optional
Depends on Fitch's parsimony score (PS).
=cut
sub _phylotype_length {
my $self = shift;
my $tree = shift;
my $node = shift;
my $value = shift;
my $key = 'ps_trait';
$self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key")
unless $node->has_tag($key);
return 0 if $node->get_tag_values($key) ne $value;
return $node->branch_length if $node->is_Leaf; # end of recursion
my $length = 0;
foreach my $child ($node->each_Descendent) {
my $sub_len = $self->_phylotype_length($tree, $child, $value);
$length += $sub_len;
$length += $child->branch_length if not $child->is_Leaf and $sub_len;
}
return $length;
}
sub phylotype_length {
my $self = shift;
my $tree = shift;
my $node = shift || $tree->get_root_node;
my $key = 'ps_trait';
my $value = $node->get_tag_values($key);
return $self->_phylotype_length($tree, $node, $value);
}
=head2 sum_of_leaf_distances
Example : sum_of_leaf_distances($tree, $node);
Description: Sums up the branch lengths from root to leaf
exluding the subclusters where the trait values
are different
Returns : float, length
Exceptions : all the nodes need to have the trait defined
Args : 1. Bio::Tree::TreeI object
2. Bio::Tree::NodeI object within the tree, optional
Depends on Fitch's parsimony score (PS).
=cut
sub _sum_of_leaf_distances {
my $self = shift;
my $tree = shift;
my $node = shift;
my $value = shift;
my $key = 'ps_trait';
$self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key")
unless $node->has_tag($key);
return 0 if $node->get_tag_values($key) ne $value;
#return $node->branch_length if $node->is_Leaf; # end of recursion
return 0 if $node->is_Leaf; # end of recursion
my $length = 0;
foreach my $child ($node->each_Descendent) {
$length += $self->_count_leaves($tree, $child, $value) * $child->branch_length +
$self->_sum_of_leaf_distances($tree, $child, $value);
}
return $length;
}
sub sum_of_leaf_distances {
my $self = shift;
my $tree = shift;
my $node = shift || $tree->get_root_node;
my $key = 'ps_trait';
my $value = $node->get_tag_values($key);
return $self->_sum_of_leaf_distances($tree, $node, $value);
}
=head2 genetic_diversity
Example : genetic_diversity($tree, $node);
Description: Diversity is the sum of root to leaf distances
within the phylotype normalised by number of leaf
nodes
Returns : float, value of genetic diversity
Exceptions : all the nodes need to have the trait defined
Args : 1. Bio::Tree::TreeI object
2. Bio::Tree::NodeI object within the tree, optional
Depends on Fitch's parsimony score (PS).
=cut
sub genetic_diversity {
my $self = shift;
my $tree = shift;
my $node = shift || $tree->get_root_node;
return $self->sum_of_leaf_distances($tree, $node) /
$self->count_leaves($tree, $node);
}
=head2 statratio
Example : statratio($tree, $node);
Description: Ratio of the stem length and the genetic diversity of the
phylotype L<genetic_diversity>
Returns : float, separation score
Exceptions : all the nodes need to have the trait defined
Args : 1. Bio::Tree::TreeI object
2. Bio::Tree::NodeI object within the tree, optional
Statratio gives a measure of separation and variability within the phylotype.
Larger values identify more rapidly evolving and recent phylotypes.
Depends on Fitch's parsimony score (PS).
=cut
sub statratio {
my $self = shift;
my $tree = shift;
my $node = shift || $tree->get_root_node;
my $div = $self->genetic_diversity($tree, $node);
return 0 if $div == 0;
return $node->branch_length / $div;
}
=head2 ai
Example : ai($tree, $key, $node);
Description: Calculates the Association Index (AI) of Whang et
al. 2001 for the subtree defined by the (internal)
node. Node defaults to the root.
Returns : real
Exceptions : leaf nodes have to have the trait defined
Args : 1. Bio::Tree::TreeI object
2. trait name string
3. Bio::Tree::NodeI object within the tree, optional
Association index (AI) gives a more fine grained results than PS since
the result is a real number. ~0 E<lt>= AI.
Wang, T.H., Donaldson, Y.K., Brettle, R.P., Bell, J.E., Simmonds, P.,
2001. Identification of shared populations of human immunodeficiency
Virus Type 1 infecting microglia and tissue macrophages outside the
central nervous system. J. Virol. 75 (23), 11686-11699.
=cut
sub _node_ai {
my $self = shift;
my $node = shift;
my $key = shift;
my $traits;
my $leaf_count = 0;
for my $desc ( $node->get_all_Descendents ) {
next unless $desc->is_Leaf;
$leaf_count++;
$self->throw ("Node ". $desc->id. " needs a value for trait [$key]")
unless $desc->has_tag($key);
my $trait = $desc->get_tag_values($key);
$traits->{$trait}++;
}
my $most_common = 0;
foreach ( keys %$traits) {
$most_common = $traits->{$_} if $traits->{$_} > $most_common;
}
return sprintf "%1.6f", (1 - ($most_common/$leaf_count) ) / (2**($leaf_count-1) );
}
sub ai {
my $self = shift;
my $tree = shift;
my $key = shift || $self->throw("Trait name is needed");
my $start_node = shift || $tree->get_root_node;
return unless $start_node;
my $sum = 0;
for my $node ( $start_node->get_all_Descendents ) {
next if $node->is_Leaf;
$sum += $self->_node_ai($node, $key);
}
return $sum;
}
=head2 mc
Example : mc($tree, $key, $node);
Description: Calculates the Monophyletic Clade (MC) size statistics
for the subtree a defined by the (internal) node.
Node defaults to the root;
Returns : hashref with trait values as keys
Exceptions : leaf nodes have to have the trait defined
Args : 1. Bio::Tree::TreeI object
2. trait name string
3. Bio::Tree::NodeI object within the tree, optional
Monophyletic Clade (MC) size statistics by Salemi at al 2005. It is
calculated for each trait value. 1 E<lt>= MC E<lt>= nx, where nx is the
number of tips with value x:
pick the internal node with maximim value for
number of of tips with only trait x
MC was defined by Parker et al 2008.
Salemi, M., Lamers, S.L., Yu, S., de Oliveira, T., Fitch, W.M., McGrath, M.S.,
2005. Phylodynamic analysis of Human Immunodeficiency Virus Type 1 in
distinct brain compartments provides a model for the neuropathogenesis of
AIDS. J. Virol. 79 (17), 11343-11352.
Parker, J., Rambaut A., Pybus O., 2008. Correlating viral phenotypes
with phylogeny: Accounting for phylogenetic uncertainty Infection,
Genetics and Evolution 8 (2008), 239-246.
=cut
sub _node_mc {
my $self = shift;
my $node = shift;
my $key = shift;
my $traits;
my $leaf_count = 0;
for my $node2 ( $node->get_all_Descendents ) {
next unless $node2->is_Leaf;
$leaf_count++;
my $trait = $node2->get_tag_values($key);
$traits->{$trait}++;
}
return $traits;
}
sub mc {
my $self = shift;
my $tree = shift;
my $key = shift || die "Trait name is needed";
my $start_node = shift || $tree->get_root_node;
return unless $start_node;
my $sum; # hashref, keys are trait values
my $keys; # hashref, keys are trait values
foreach my $node ( $start_node->get_all_Descendents ) {
next if $node->is_Leaf;
my $traits = $self->_node_mc($node, $key);
if (scalar keys %$traits == 1) {
my ($value) = keys %$traits;
no warnings;
$sum->{$value} = $traits->{$value}
if $sum->{$value} < $traits->{$value};
} else {
map { $keys->{$_} = 1 } keys %$traits;
}
}
# check for cases where there are no clusters
foreach my $value (keys %$keys) {
$sum->{$value} = 1 unless defined $sum->{$value};
}
return $sum;
}
1;
|