This file is indexed.

/usr/share/k3d/shaders/k3d_patterns.h is in k3d-data 0.8.0.3-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/************************************************************************
 * patterns.h - Some handy functions for various patterns.  Wherever
 *              possible, antialiased versions will also be given.
 *
 * Author: Larry Gritz (gritzl@acm.org)
 *
 * Reference:
 *   _Advanced RenderMan: Creating CGI for Motion Picture_, 
 *   by Anthony A. Apodaca and Larry Gritz, Morgan Kaufmann, 1999.
 *
 * $Revision: 1.2 $    $Date: 2006/03/17 16:00:41 $
 *
 ************************************************************************/



#ifndef PATTERNS_H
#define PATTERNS_H 1

#include "k3d_filterwidth.h"
#include "k3d_functions.h"



/* Antialiased abs().  
 * Compute the box filter of abs(t) from x-dx/2 to x+dx/2.
 * Hinges on the realization that the indefinite integral of abs(x) is 
 * sign(x) * 1/2 x*x;
 */
float filteredabs (float x, dx)
{
    float integral (float t) {
	return sign(t) * 0.5 * t*t;
    }

    float x0 = x - 0.5*dx;
    float x1 = x0 + dx;
    return (integral(x1) - integral(x0)) / dx;
}




/* Antialiased smoothstep(e0,e1,x).  
 * Compute the box filter of smoothstep(e0,e1,t) from x-dx/2 to x+dx/2.
 * Strategy: divide domain into 3 regions: t < e0, e0 <= t <= e1,
 * and t > e1.  Region 1 has integral 0.  Region 2 is computed by
 * analytically integrating smoothstep, which is -2t^3+3t^2.  Region 3
 * is trivially 1.
 */
float filteredsmoothstep (float e0, e1, x, dx)
{
    float integral (float t) {
	return -0.5*t*t * (t*t + t);
    }

    /* Compute x0, x1 bounding region of integration, and normalize so that
     * e0==0, e1==1
     */
    float edgediff = e1 - e0;
    float x0 = (x-e0)/edgediff;
    float fw = dx / edgediff;
    x0 -= 0.5*fw;
    float x1 = x0 + fw;

    /* Region 1 always contributes nothing */
    float int = 0;
    /* Region 2 - compute integral in region between 0 and 1 */
    if (x0 < 1 && x1 > 0)
	int += integral(min(x1,1)) - integral(max(x0,0));
    /* Region 3 - is 1.0 */
    if (x1 > 1)
	int += x1-max(1,x0);
    return int / fw;
}



/* A 1-D pulse pattern:  return 1 if edge0 <= x <= edge1, otherwise 0 */
float pulse(float edge0, edge1, x)
{
    return step(edge0,x) - step(edge1,x);
}



float filteredpulse (float edge0, edge1, x, dx)
{
    float x0 = x - dx/2;
    float x1 = x0 + dx;
    return max (0, (min(x1,edge1)-max(x0,edge0)) / dx);
}



/* A pulse train: a signal that repeats with a given period, and is
 * 0 when 0 <= mod(x,period) < edge, and 1 when mod(x,period) > edge.
 */
float pulsetrain (float edge, period, x)
{
    return pulse (edge, period, mod(x,period));
}


/* Filtered pulse train: it's not as simple as just returning the mod
 * of filteredpulse -- you have to take into account that the filter may
 * cover multiple pulses in the train.
 * Strategy: consider the function that is the integral of the pulse
 * train from 0 to x. Just subtract!
 */
float filteredpulsetrain (float edge, period, x, dx)
{
    /* First, normalize so period == 1 and our domain of interest is > 0 */
    float w = dx/period;
    float x0 = x/period - w/2;
    float x1 = x0+w;
    float nedge = edge / period;   /* normalized edge value */

    /* Definite integral of normalized pulsetrain from 0 to t */
    float integral (float t) { 
        extern float nedge;
        return ((1-nedge)*floor(t) + max(0,t-floor(t)-nedge));
    }

    /* Now we want to integrate the normalized pulsetrain over [x0,x1] */
    return (integral(x1) - integral(x0)) / w;
}



float
smoothpulse (float e0, e1, e2, e3, x)
{
    return smoothstep(e0,e1,x) - smoothstep(e2,e3,x);
}


float
filteredsmoothpulse (float e0, e1, e2, e3, x, dx)
{
    return filteredsmoothstep(e0,e1,x,dx) - filteredsmoothstep(e2,e3,x,dx);
}



/* A pulse train of smoothsteps: a signal that repeats with a given
 * period, and is 0 when 0 <= mod(x/period,1) < edge, and 1 when
 * mod(x/period,1) > edge.  
 */
float smoothpulsetrain (float e0, e1, e2, e3, period, x)
{
    return smoothpulse (e0, e1, e2, e3, mod(x,period));
}



/* varyEach takes a computed color, then tweaks each indexed item
 * separately to add some variation.  Hue, saturation, and lightness
 * are all independently controlled.  Hue adds, but saturation and
 * lightness multiply.
 */
color varyEach (color Cin; float index, varyhue, varysat, varylum;)
{
    /* Convert to "hsl" space, it's more convenient */
    color Chsl = ctransform ("hsl", Cin);
    float h = comp(Chsl,0), s = comp(Chsl,1), l = comp(Chsl,2);
    /* Modify Chsl by adding Cvary scaled by our separate h,s,l controls */
    h += varyhue * (cellnoise(index+3)-0.5);
    s *= 1 - varysat * (cellnoise(index-14)-0.5);
    l *= 1 - varylum * (cellnoise(index+37)-0.5);
    Chsl = color (mod(h,1), clamp(s,0,1), clamp(l,0,1));
    /* Clamp hsl and transform back to rgb space */
    return ctransform ("hsl", "rgb", clamp(Chsl,color 0, color 1));
}



/* Given 2-D texture coordinates ss,tt and their filter widths ds, dt,
 * and the width and height of the grooves between tiles (assuming that
 * tile spacing is 1.0), figure out which (integer indexed) tile we are
 * on and what coordinates (on [0,1]) within our individual tile we are
 * shading.
 */
float
tilepattern (float ss, tt, ds, dt;
	     float groovewidth, grooveheight;
	     output float swhichtile, twhichtile;
	     output float stile, ttile;)
{
    swhichtile = floor (ss);
    twhichtile = floor (tt);
    stile = ss - swhichtile;
    ttile = tt - twhichtile;

    return filteredpulsetrain (groovewidth, 1, ss+groovewidth/2, ds)
             * filteredpulsetrain (grooveheight, 1, tt+grooveheight/2, dt);
}



/* basic brick tiling pattern --
 *   inputs:
 *      x, y                    positions on a 2-D surface
 *      tilewidth, tileheight   dimensions of each tile
 *      rowstagger              how much does each row stagger relative to
 *                                   the previous row
 *      rowstaggervary          how much should rowstagger randomly vary
 *      jaggedfreq, jaggedamp   adds noise to the edge between the tiles
 *   outputs:
 *      row, column             index which tile the sample is in
 *      xtile, ytile            position within this tile (0-1)
 */
void basicbrick (float x, y;
		uniform float tilewidth, tileheight;
		uniform float rowstagger, rowstaggervary;
		uniform float jaggedfreq, jaggedamp;
		output float column, row;
		output float xtile, ytile;
    )
{
    point PP;
    float scoord = x, tcoord = y;

    if (jaggedamp != 0.0) {
	/* Make the shapes of the bricks vary just a bit */
	PP = point noise (x*jaggedfreq/tilewidth, y*jaggedfreq/tileheight);
	scoord += jaggedamp * xcomp (PP);
	tcoord += jaggedamp * ycomp (PP);
    }

    xtile = scoord / tilewidth;
    ytile = tcoord / tileheight;
    row = floor (ytile);   /* which brick row? */

    /* Shift the columns randomly by row */
    xtile += mod (rowstagger * row, 1);
    xtile += rowstaggervary * (noise (row+0.5) - 0.5);

    column = floor (xtile);
    xtile -= column;
    ytile -= row;
}



#endif /* defined(PATTERNS_H) */