This file is indexed.

/usr/share/k3d/shaders/k3d_noises.h is in k3d-data 0.8.0.3-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/************************************************************************
 * noises.h - various noise-based patterns
 *
 * Author: Larry Gritz (gritzl@acm.org), though they're obvious to any
 *         experience shader writer.
 *
 * Reference:
 *   _Advanced RenderMan: Creating CGI for Motion Picture_, 
 *   by Anthony A. Apodaca and Larry Gritz, Morgan Kaufmann, 1999.
 *
 * $Revision: 1.7 $    $Date: 2006/03/17 17:31:39 $
 *
 ************************************************************************/


#ifndef NOISES_H
#define NOISES_H 1


#ifndef FILTERWIDTH_H
#include "k3d_filterwidth.h"    /* Needed for filterwidth and friends */
#endif

#ifndef PATTERNS_H
#include "k3d_patterns.h"    /* Needed for filteredabs */
#endif




#ifndef snoise
/*
 * Signed noise -- the original Perlin kind with range (-1,1) We prefer
 * signed noise to regular noise mostly because its average is zero.
 * We define three simple macros:
 *   snoise(p) - Perlin noise on either a 1-D (float) or 3-D (point) domain.
 *   snoisexy(x,y) - Perlin noise on a 2-D domain.
 *   vsnoise(p) - vector-valued Perlin noise on either 1-D or 3-D domain.
 */
#define snoise(p) (2 * (float noise(p)) - 1)
#endif

#define snoise2(x) (2.5*(noise(x)-0.5))   /* need to check this one */
#define snoisexy(x,y) (2 * (float noise(x,y)) - 1)
#define vsnoise(p) (2 * (vector noise(p)) - 1)
#define DNoise(x) ((2*(point noise(x))) - point(1,1,1))
#define fnoise(p,width) (noise(p) * (1-smoothstep (0.2,0.75,width)))
#define adjustNoise(x, y, minVal, maxVal) snoisexy (x,y) * ((maxVal)-(minVal)+(minVal))



/* uniformly distributed noise
 *
 */
#define udn(x,lo,hi) (smoothstep(.25, .75, noise(x)) * ((hi) - (lo)) + (lo))
#define udn2(x,y,lo,hi) (smoothstep(.25, .75, noise(x,y)) * ((hi)-(lo))+(lo))


/* If we know the filter size, we can crudely antialias snoise by fading
 * to its average value at approximately the Nyquist limit.
 */
#define filteredsnoise(p,width) (snoise(p) * (1-smoothstep (0.2,0.75,width)))
#define filteredvsnoise(p,width) (vsnoise(p) * (1-smoothstep (0.2,0.75,width)))



/* fractional Brownian motion
 * Inputs: 
 *    p, filtwidth   position and approximate inter-pixel spacing
 *    octaves        max # of octaves to calculate
 *    lacunarity     frequency spacing between successive octaves
 *    gain           scaling factor between successive octaves
 */
float fBm (point p; float filtwidth;
           uniform float octaves, lacunarity, gain)
{
    uniform float amp = 1;
    varying point pp = p;
    varying float sum = 0, fw = filtwidth;
    uniform float i;

    for (i = 0;  i < octaves;  i += 1) {
#pragma nolint
	sum += amp * filteredsnoise (pp, fw);
	amp *= gain;  pp *= lacunarity;  fw *= lacunarity;
    }
    return sum;
}


/* Typical use of fBm: */
#define fBm_default(p)  fBm (p, filterwidthp(p), 4, 2, 0.5)





/* A vector-valued antialiased fBm. */
vector
vfBm (point p; float filtwidth;
      uniform float octaves, lacunarity, gain)
{
    uniform float amp = 1;
    varying point pp = p;
    varying vector sum = 0;
    varying float fw = filtwidth;
    uniform float i;

    for (i = 0;  i < octaves;  i += 1) {
#pragma nolint
	sum += amp * filteredvsnoise (pp, fw);
	amp *= gain;  pp *= lacunarity;  fw *= lacunarity;
    }
    return sum;
}


/* Typical use of vfBm: */
#define vfBm_default(p)  vfBm (p, filterwidthp(p), 4, 2, 0.5)



/* The stuff that Ken Musgrave calls "VLNoise" */
#define VLNoise(Pt,scale) (snoise(vsnoise(Pt)*scale+Pt))
#define filteredVLNoise(Pt,fwidth,scale) \
            (filteredsnoise(filteredvsnoise(Pt,fwidth)*scale+Pt,fwidth))


float
VLfBm (point p; float filtwidth;
       uniform float octaves, lacunarity, gain, scale)
{
    uniform float amp = 1;
    varying point pp = p;
    varying float sum = 0;
    varying float fw = filtwidth;
    uniform float i;

    for (i = 0;  i < octaves;  i += 1) {
#pragma nolint
	sum += amp * filteredVLNoise (pp, fw, scale);
	amp *= gain;  pp *= lacunarity;  fw *= lacunarity;
    }
    return sum;
}


/* Typical use of vfBm: */
#define VLfBm_default(p)      VLfBm (p, filterwidthp(p), 4, 2, 0.5, 1.0)




/* Antialiased turbulence.  Watch out -- the abs() call introduces infinite
 * frequency content, which makes our antialiasing efforts much trickier!
 */
float turbulence (point p; float filtwidth;
                  uniform float octaves, lacunarity, gain)
{
    extern float du, dv;   /* Needed for filterwidth macro */
    uniform float amp = 1;
    varying point pp = p;
    varying float sum = 0, fw = filtwidth;
    uniform float i;

    for (i = 0;  i < octaves;  i += 1) {
#pragma nolint
	float n = filteredsnoise (pp, fw);
	sum += amp * filteredabs (n, fw);
	amp *= gain;  pp *= lacunarity;  fw *= lacunarity;
    }
    return sum;
}


/* Typical use of turbulence: */
#define turbulence_default(p)  turbulence (p, filterwidthp(p), 4, 2, 0.5)




/***************************************************************************
 * Voronoi cell noise (a.k.a. Worley noise) functions
 *
 * These functions assume that space is filled with "features" (points
 * of interest).  There are interestingpatterns we can make by
 * figuring out which feature we are closest to, or to what extent
 * we're on the boundary between two features.  Several varieties of
 * these computations are below, categorized by the dimension of their
 * domains, and the number of close features they are interested in.
 *
 * All these functions have similar inputs:
 *   P      - position to test (for 3-D varieties; 2-D varieties use ss,tt)
 *   jitter - how much to jitter the cell center positions (1 is typical,
 *             smaller values make a more regular pattern, larger values
 *             make a more jagged pattern; use jitter >1 at your risk!).
 * And outputs:
 *   f_n    - distance to the nth nearest feature (f1 is closest, f2 is
 *            the distance to the 2nd closest, etc.)
 *   pos_n  - the position of the nth nearest feature.  For 2-D varieties,
 *            these are instead spos_n and tpos_n.
 ***************************************************************************/

/* Voronoi cell noise (a.k.a. Worley noise) -- 3-D, 1-feature version. */
void
voronoi_f1_3d (point P;
	       float jitter;
	       output float f1;
	       output point pos1;
    )
{
    point thiscell = point (floor(xcomp(P))+0.5, floor(ycomp(P))+0.5,
			    floor(zcomp(P))+0.5);
    f1 = 1000;
    uniform float i, j, k;
    for (i = -1;  i <= 1;  i += 1) {
        for (j = -1;  j <= 1;  j += 1) {
            for (k = -1;  k <= 1;  k += 1) {
		point testcell = thiscell + vector(i,j,k);
                point pos = testcell + 
		            jitter * (vector cellnoise (testcell) - 0.5);
		vector offset = pos - P;
                float dist = offset . offset; /* actually dist^2 */
                if (dist < f1) {
                    f1 = dist;  pos1 = pos;
                }
            }
	}
    }
    f1 = sqrt(f1);
}


/* Voronoi cell noise (a.k.a. Worley noise) -- 3-D, 2-feature version. */
void
voronoi_f1f2_3d (point P;
		 float jitter;
		 output float f1;  output point pos1;
		 output float f2;  output point pos2;
    )
{
    point thiscell = point (floor(xcomp(P))+0.5, floor(ycomp(P))+0.5,
			    floor(zcomp(P))+0.5);
    f1 = f2 = 1000;
    uniform float i, j, k;
    for (i = -1;  i <= 1;  i += 1) {
        for (j = -1;  j <= 1;  j += 1) {
            for (k = -1;  k <= 1;  k += 1) {
		point testcell = thiscell + vector(i,j,k);
                point pos = testcell + 
		            jitter * (vector cellnoise (testcell) - 0.5);
		vector offset = pos - P;
                float dist = offset . offset; /* actually dist^2 */
                if (dist < f1) {
                    f2 = f1;  pos2 = pos1;
                    f1 = dist;  pos1 = pos;
                } else if (dist < f2) {
                    f2 = dist;  pos2 = pos;
		}
            }
	}
    }
    f1 = sqrt(f1);  f2 = sqrt(f2);
}


/* Voronoi cell noise (a.k.a. Worley noise) -- 2-D, 1-feature version. */
void
voronoi_f1_2d (float ss, tt;
	       float jitter;
	       output float f1;
	       output float spos1, tpos1;
    )
{
    float sthiscell = floor(ss)+0.5, tthiscell = floor(tt)+0.5;
    f1 = 1000;
    uniform float i, j;
    for (i = -1;  i <= 1;  i += 1) {
	float stestcell = sthiscell + i;
        for (j = -1;  j <= 1;  j += 1) {
	    float ttestcell = tthiscell + j;
	    float spos = stestcell +
		     jitter * (float cellnoise(stestcell, ttestcell) - 0.5);
	    float tpos = ttestcell +
		 jitter * (float cellnoise(stestcell+23, ttestcell-87) - 0.5);
	    float soffset = spos - ss;
	    float toffset = tpos - tt;
	    float dist = soffset*soffset + toffset*toffset;
	    if (dist < f1) {
		f1 = dist;
		spos1 = spos;  tpos1 = tpos;
	    }
	}
    }
    f1 = sqrt(f1);
}


/* Voronoi cell noise (a.k.a. Worley noise) -- 2-D, 2-feature version. */
void
voronoi_f1f2_2d (float ss, tt;
		 float jitter;
		 output float f1;
		 output float spos1, tpos1;
		 output float f2;
		 output float spos2, tpos2;
    )
{
    float sthiscell = floor(ss)+0.5, tthiscell = floor(tt)+0.5;
    f1 = f2 = 1000;
    uniform float i, j;
    for (i = -1;  i <= 1;  i += 1) {
	float stestcell = sthiscell + i;
        for (j = -1;  j <= 1;  j += 1) {
	    float ttestcell = tthiscell + j;
	    float spos = stestcell +
		   jitter * (cellnoise(stestcell, ttestcell) - 0.5);
	    float tpos = ttestcell +
		   jitter * (cellnoise(stestcell+23, ttestcell-87) - 0.5);
	    float soffset = spos - ss;
	    float toffset = tpos - tt;
	    float dist = soffset*soffset + toffset*toffset;
	    if (dist < f1) {
		f2 = f1;  spos2 = spos1;  tpos2 = tpos1;
		f1 = dist;  spos1 = spos;  tpos1 = tpos;
	    } else if (dist < f2) {
		f2 = dist;
		spos2 = spos;  tpos2 = tpos;
	    }
	}
    }
    f1 = sqrt(f1);  f2 = sqrt(f2);
}


#endif /* NOISES_H */