This file is indexed.

/usr/share/hol88-2.02.19940316/Library/pair/conv.ml is in hol88-library-source 2.02.19940316-19.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
% --------------------------------------------------------------------- %
% 		Copyright (c) Jim Grundy 1992				%
%               All rights reserved                                     %
%									%
% Jim Grundy, hereafter referred to as `the Author', retains the	%
% copyright and all other legal rights to the Software contained in	%
% this file, hereafter referred to as `the Software'.			%
% 									%
% The Software is made available free of charge on an `as is' basis.	%
% No guarantee, either express or implied, of maintenance, reliability	%
% or suitability for any purpose is made by the Author.			%
% 									%
% The user is granted the right to make personal or internal use	%
% of the Software provided that both:					%
% 1. The Software is not used for commercial gain.			%
% 2. The user shall not hold the Author liable for any consequences	%
%    arising from use of the Software.					%
% 									%
% The user is granted the right to further distribute the Software	%
% provided that both:							%
% 1. The Software and this statement of rights is not modified.		%
% 2. The Software does not form part or the whole of a system 		%
%    distributed for commercial gain.					%
% 									%
% The user is granted the right to modify the Software for personal or	%
% internal use provided that all of the following conditions are	%
% observed:								%
% 1. The user does not distribute the modified software. 		%
% 2. The modified software is not used for commercial gain.		%
% 3. The Author retains all rights to the modified software.		%
%									%
% Anyone seeking a licence to use this software for commercial purposes	%
% is invited to contact the Author.					%
% --------------------------------------------------------------------- %
% CONTENTS: conversions for moveing qantifiers about.			%
% --------------------------------------------------------------------- %
%$Id: conv.ml,v 3.1 1993/12/07 14:42:10 jg Exp $%

begin_section convsec;;

% ------------------------------------------------------------------------- %
% NOT_FORALL_THM = |- !f. ~(!x. f x) = (?x. ~f x)                   	    %
% ------------------------------------------------------------------------- %

    let NOT_FORALL_THM =
	let f = "f:*->bool" in
	let x = "x:*" in
	let t = mk_comb(f,x) in
	let all = mk_forall(x,t) and exists = mk_exists(x,mk_neg t) in
	let nott = ASSUME (mk_neg t) in
%WW%	let th1 = DISCH all (MP (NOT_ELIM nott) (SPEC x (ASSUME all))) in
	let imp1 = DISCH exists (CHOOSE (x, ASSUME exists) (NOT_INTRO th1)) in
	let th2 = CCONTR t 
%WW%   	    (MP (NOT_ELIM(ASSUME(mk_neg exists))) (EXISTS(exists,x)nott)) in
	let th3 = CCONTR exists 
%WW%   	    (MP (NOT_ELIM(ASSUME (mk_neg all))) (GEN x th2)) in
	let imp2 = DISCH (mk_neg all) th3 in
	    GEN f (IMP_ANTISYM_RULE imp2 imp1);;

% ------------------------------------------------------------------------- %
% NOT_EXISTS_THM = |- !f. ~(?x. f x) = (!x. ~f x)                   	    %
% ------------------------------------------------------------------------- %

    let NOT_EXISTS_THM =
	let f = "f:*->bool" in
	let x = "x:*" in
	let t = mk_comb(f,x) in
	let tm = mk_neg(mk_exists(x,t)) in
	let all = mk_forall(x,mk_neg t) in
	let asm1 = ASSUME t in
%WW%	let thm1 = MP (NOT_ELIM(ASSUME tm)) (EXISTS (rand tm, x) asm1) in
	let imp1 = DISCH tm (GEN x (NOT_INTRO (DISCH t thm1))) in
	let asm2 = ASSUME  all and asm3 = ASSUME (rand tm) in
	let thm2 = DISCH (rand tm) (CHOOSE (x,asm3) 
%WW%    	    (MP (NOT_ELIM(SPEC x asm2)) asm1)) in
	let imp2 = DISCH all (NOT_INTRO thm2) in
	    GEN f (IMP_ANTISYM_RULE imp1 imp2);;

% ------------------------------------------------------------------------- %
% NOT_PFORALL_CONV "~!p.t" = |- (~!p.t) = (?p.~t)                           %
% ------------------------------------------------------------------------- %

    let NOT_PFORALL_CONV tm =
	(let (p,_) = dest_pforall (dest_neg tm) in
	let f = rand (rand tm) in
	let th = ISPEC f NOT_FORALL_THM in
	let th1 = CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV
		    ETA_CONV)))) th in
	let th2 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV p))) th1 in
	    CONV_RULE
		(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
		th2
	) ? failwith `NOT_PFORALL_CONV: argyment must have the form "~!p.tm"`;;

% ------------------------------------------------------------------------- %
% NOT_PEXISTS_CONV "~?p.t" = |- (~?p.t) = (!p.~t)                           %
% ------------------------------------------------------------------------- %

    let NOT_PEXISTS_CONV tm =
	(let (p,_) = dest_pexists (dest_neg tm) in
	let f = rand (rand tm) in
	let th = ISPEC f NOT_EXISTS_THM in
	let th1 = CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV
		    ETA_CONV)))) th in
	let th2 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV p))) th1 in
	    CONV_RULE
		(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
		th2
	) ? failwith `NOT_PEXISTS_CONV: argyment must have the form "~!p.tm"`;;

% ------------------------------------------------------------------------- %
% PEXISTS_NOT_CONV "?p.~t" = |- (?p.~t) = (~!p.t)                           %
% ------------------------------------------------------------------------- %

    let PEXISTS_NOT_CONV tm =
	(let xtm = mk_pforall ((I # dest_neg) (dest_pexists tm)) in
	    SYM (NOT_PFORALL_CONV (mk_neg xtm))
	) ? failwith `PEXISTS_NOT_CONV: argument must have the form "?x.~tm"`;;

% ------------------------------------------------------------------------- %
% PFORALL_NOT_CONV "!p.~t" = |- (!p.~t) = (~?p.t)                           %
% ------------------------------------------------------------------------- %

    let PFORALL_NOT_CONV tm =
	(let xtm = mk_pexists ((I # dest_neg) (dest_pforall tm)) in
	    SYM (NOT_PEXISTS_CONV (mk_neg xtm))
	) ? failwith `PFORALL_NOT_CONV: argument must have the form "!x.~tm"`;;


% ------------------------------------------------------------------------- %
% FORALL_AND_THM |- !f g. (!x. f x /\ g x) = ((!x. f x) /\ (!x. g x))       %
% ------------------------------------------------------------------------- %

    let FORALL_AND_THM =
	let f = "f:*->bool" in
	let g = "g:*->bool" in
	let x = "x:*" in
	let th1 = ASSUME "!x:*. (f x) /\ (g x)" in
	let imp1 =
	    (uncurry CONJ) (((GEN x) # (GEN x)) (CONJ_PAIR (SPEC x th1))) in
	let th2 = ASSUME "(!x:*. f x) /\ (!x:*. g x)" in
	let imp2 =
	    GEN x ((uncurry CONJ) (((SPEC x) # (SPEC x)) (CONJ_PAIR th2)))
	in
	    GENL [f;g] (IMP_ANTISYM_RULE (DISCH_ALL imp1) (DISCH_ALL imp2));;

% ------------------------------------------------------------------------- %
% PFORALL_AND_CONV "!x. P /\ Q" = |- (!x. P /\ Q) = (!x.P) /\ (!x.Q)        %
% ------------------------------------------------------------------------- %

    let PFORALL_AND_CONV tm =
	(let (x,(P,Q)) = (I # dest_conj) (dest_pforall tm) in
	let f = mk_pabs(x,P) in
	let g = mk_pabs(x,Q) in
	let th = ISPECL [f;g] FORALL_AND_THM in
	let th1 =
	    CONV_RULE
		(RATOR_CONV (RAND_CONV (RAND_CONV
		    (PALPHA_CONV x))))
		th in
	let th2 =
	    CONV_RULE
		(RATOR_CONV (RAND_CONV (RAND_CONV (PABS_CONV 
		    (RATOR_CONV (RAND_CONV PBETA_CONV))))))
		    th1 in
	let th3 =
	    CONV_RULE
		(RATOR_CONV (RAND_CONV (RAND_CONV (PABS_CONV 
		    (RAND_CONV PBETA_CONV)))))
		    th2 in
	let th4 =
	    CONV_RULE
		(RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
		th3 in
	    (CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV)))) th4
	) ? failwith
	    `PFORALL_AND_CONV: argument must have the form "!p. P /\\ Q"`;;

% ------------------------------------------------------------------------- %
% EXISTS_OR_THM |- !f g. (?x. f x \/ g x) = ((?x. f x) \/ (?x. g x))        %
% ------------------------------------------------------------------------- %

    let EXISTS_OR_THM =
	let f = "f:*->bool" in
	let g = "g:*->bool" in
	let x = "x:*" in
	let P = mk_comb(f,x) in
	let Q = mk_comb(g,x) in
	let tm = mk_pexists (x,mk_disj(P,Q)) in
	let ep = mk_exists(x,P) and eq = mk_exists(x,Q) in
	let Pth = EXISTS(ep,x)(ASSUME P) and Qth = EXISTS(eq,x)(ASSUME Q) in
	let thm1 = DISJ_CASES_UNION (ASSUME(mk_disj(P,Q))) Pth Qth in
	let imp1 = DISCH tm (CHOOSE (x,ASSUME tm) thm1) in
	let t1 = DISJ1 (ASSUME P) Q and t2 = DISJ2 P (ASSUME Q) in
	let th1 = EXISTS(tm,x) t1 and th2 = EXISTS(tm,x) t2 in
	let e1 = CHOOSE (x,ASSUME ep) th1 and e2 = CHOOSE (x,ASSUME eq) th2 in
	let thm2 = DISJ_CASES (ASSUME(mk_disj(ep,eq))) e1 e2 in
	let imp2 = DISCH (mk_disj(ep,eq)) thm2 in
	    GENL [f;g] (IMP_ANTISYM_RULE imp1 imp2);;

% ------------------------------------------------------------------------- %
% PEXISTS_OR_CONV "?x. P \/ Q" = |- (?x. P \/ Q) = (?x.P) \/ (?x.Q)         %
% ------------------------------------------------------------------------- %

    let PEXISTS_OR_CONV tm =
	(let (x,(P,Q)) = (I # dest_disj) (dest_pexists tm) in
	let f = mk_pabs(x,P) in
	let g = mk_pabs(x,Q) in
	let th = ISPECL [f;g] EXISTS_OR_THM in
	let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV
	    (PALPHA_CONV x))))) th in
	let th2 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (PABS_CONV 
	    (RATOR_CONV (RAND_CONV PBETA_CONV))))))) th1 in
	let th3 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (PABS_CONV 
	    (RAND_CONV PBETA_CONV)))))) th2 in
	let th4 = (CONV_RULE (RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV 
	    ETA_CONV))))) th3 in
	    (CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV)))) th4
	) ? failwith
	    `PEXISTS_OR_CONV: argument must have the form "?p. P \\/ Q"`;;

% ------------------------------------------------------------------------- %
% AND_PFORALL_CONV "(!x. P) /\ (!x. Q)" = |- (!x.P)/\(!x.Q) = (!x. P /\ Q)  %
% ------------------------------------------------------------------------- %

    let AND_PFORALL_CONV tm =
	(let (x,P),(y,Q) = (dest_pforall # dest_pforall) (dest_conj tm) in
	if (not (x=y)) then fail else
	let f = mk_pabs (x,P) in
	let g = mk_pabs (x,Q) in
	let th = SYM (ISPECL [f;g] FORALL_AND_THM) in
	let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV 
	    (RAND_CONV ETA_CONV)))))) th in
	let th2 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV 
	    (RAND_CONV ETA_CONV))))) th1 in
	let th3 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th2 in
	let th4 = (CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV
	    (RATOR_CONV (RAND_CONV PBETA_CONV)))))) th3
	in
	    (CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV
		PBETA_CONV))))) th4
	) ? failwith
	    `AND_PFORALL_CONV: arguments must have form "(!p.P)/\\(!p.Q)"`;;

% ------------------------------------------------------------------------- %
% LEFT_AND_FORALL_THM = |- !f Q. (!x. f x) /\ Q = (!x. f x /\ Q)            %
% ------------------------------------------------------------------------- %

    let LEFT_AND_FORALL_THM =
	let x = "x:*" in
	let f = "f:*->bool" in
	let Q = "Q:bool" in
	let th1 = ASSUME "(!x:*. f x) /\ Q" in
	let imp1 = GEN x ((uncurry CONJ) ((SPEC x # I) (CONJ_PAIR th1))) in
	let th2 = ASSUME "!x:*. f x /\ Q" in
	let imp2 = (uncurry CONJ) ((GEN x # I) (CONJ_PAIR (SPEC x th2))) in
	    GENL [Q;f] (IMP_ANTISYM_RULE (DISCH_ALL imp1) (DISCH_ALL imp2));;

% ------------------------------------------------------------------------- %
% LEFT_AND_PFORALL_CONV "(!x.P) /\  Q" =                                    %
%   |- (!x.P) /\ Q = (!x'. P[x'/x] /\ Q)                                    %
% ------------------------------------------------------------------------- %

    let LEFT_AND_PFORALL_CONV tm =
	(let (x,P),Q = (dest_pforall # I) (dest_conj tm) in
	let f = mk_pabs(x,P) in
	let th = ISPECL [Q;f] LEFT_AND_FORALL_THM in
	let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV
	    (RAND_CONV ETA_CONV)))))) th in
	let th2 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th1
	in
	    (CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RATOR_CONV (RAND_CONV
		PBETA_CONV)))))) th2
	) ? failwith `LEFT_AND_PFORALL_CONV: expecting "(!p.P) /\\ Q"`;;

% ------------------------------------------------------------------------- %
% RIGHT_AND_FORALL_THM = |- !P g. P /\ (!x. g x) = (!x. P /\ g x)           %
% ------------------------------------------------------------------------- %

    let RIGHT_AND_FORALL_THM =
	let x = "x:*" in
	let P = "P:bool" in
	let g = "g:*->bool" in
	let th1 = ASSUME "P /\ (!x:*. g x)" in
	let imp1 = GEN x ((uncurry CONJ) ((I # SPEC x) (CONJ_PAIR th1))) in
	let th2 = ASSUME "!x:*. P /\ g x" in
	let imp2 = (uncurry CONJ) ((I # GEN x) (CONJ_PAIR (SPEC x th2))) in
	    GENL [P;g] (IMP_ANTISYM_RULE (DISCH_ALL imp1) (DISCH_ALL imp2));;

% ------------------------------------------------------------------------- %
% RIGHT_AND_PFORALL_CONV "P /\ (!x.Q)" =                                    %
%   |-  P /\ (!x.Q) = (!x'. P /\ Q[x'/x])                                   %
% ------------------------------------------------------------------------- %

    let RIGHT_AND_PFORALL_CONV tm =
	(let P,(x,Q) = (I # dest_pforall) (dest_conj tm) in
	let g = mk_pabs(x,Q) in
	let th = (ISPECL [P; g] RIGHT_AND_FORALL_THM) in
	let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV
	    ETA_CONV))))) th in
	let th2 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th1 in
	    CONV_RULE
		(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
		th2
	) ? failwith `RIGHT_AND_PFORALL_CONV: expecting "P /\\ (!p.Q)"`;;

% ------------------------------------------------------------------------- %
% OR_PEXISTS_CONV "(?x. P) \/ (?x. Q)" = |- (?x.P) \/ (?x.Q) = (?x. P \/ Q) %
% ------------------------------------------------------------------------- %

    let OR_PEXISTS_CONV tm =
	(let (x,P),(y,Q) = (dest_pexists # dest_pexists) (dest_disj tm) in
	if (not (x=y)) then fail else
	let f = mk_pabs (x,P) in
	let g = mk_pabs (x,Q) in
	let th = SYM (ISPECL [f;g] EXISTS_OR_THM) in
	let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV 
	    (RAND_CONV ETA_CONV)))))) th in
	let th2 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV 
	    (RAND_CONV ETA_CONV))))) th1 in
	let th3 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th2 in
	let th4 = (CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV
	    (RATOR_CONV (RAND_CONV PBETA_CONV)))))) th3
	in
	    (CONV_RULE (RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV
		PBETA_CONV))))) th4
	) ? failwith
	    `OR_PEXISTS_CONV: arguments must have form "(!p.P) \\/ (!p.Q)"`;;

% ------------------------------------------------------------------------- %
% LEFT_OR_EXISTS_THM = |- (?x. f x) \/ Q = (?x. f x \/ Q)                   %
% ------------------------------------------------------------------------- %

    let LEFT_OR_EXISTS_THM =
	let x = "x:*" in
	let Q = "Q:bool" in
	let f = "f:*->bool" in
	let P = mk_comb (f,x) in
	let ep = mk_exists(x,P) in
	let tm = mk_disj (ep,Q) in
	let otm = mk_exists (x,(mk_disj(P,Q))) in
	let t1 = DISJ1 (ASSUME P) Q and t2 = DISJ2 P (ASSUME Q) in
	let th1 = EXISTS(otm,x) t1 and th2 = EXISTS(otm,x) t2 in
	let thm1 = DISJ_CASES (ASSUME tm) (CHOOSE(x,ASSUME ep)th1) th2 in
	let imp1 = DISCH tm thm1 in
	let Pth = EXISTS(ep,x)(ASSUME P) and Qth = ASSUME Q in
	let thm2 = DISJ_CASES_UNION (ASSUME(mk_disj(P,Q))) Pth Qth in
	let imp2 = DISCH otm (CHOOSE (x,ASSUME otm) thm2) in
	    GENL [Q;f] (IMP_ANTISYM_RULE imp1 imp2);;

% ------------------------------------------------------------------------- %
% LEFT_OR_PEXISTS_CONV "(?x.P) \/  Q" =                                     %
%   |- (?x.P) \/ Q = (?x'. P[x'/x] \/ Q)                                    %
% ------------------------------------------------------------------------- %

    let LEFT_OR_PEXISTS_CONV tm =
	(let (x,P),Q = (dest_pexists # I) (dest_disj tm) in
	let f = mk_pabs(x,P) in
	let th = ISPECL [Q;f] LEFT_OR_EXISTS_THM in
	let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV
	    (RAND_CONV ETA_CONV)))))) th in
	let th2 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th1
	in
	    CONV_RULE
		(RAND_CONV (RAND_CONV (PABS_CONV (RATOR_CONV (RAND_CONV
		    PBETA_CONV)))))
		th2
	) ? failwith `LEFT_OR_PEXISTS_CONV: expecting "(?p.P) \\/ Q"`;;

% ------------------------------------------------------------------------- %
% RIGHT_OR_EXISTS_THM = |- P \/ (?x. g x) = (?x. P \/ g x)                  %
% ------------------------------------------------------------------------- %

    let RIGHT_OR_EXISTS_THM =
	let x = "x:*" in
	let P = "P:bool" in
	let g = "g:*->bool" in
	let Q = mk_comb (g,x) in
	let eq = mk_exists(x,Q) in
	let tm = mk_disj (P,eq) in
	let otm = mk_exists (x,(mk_disj(P,Q))) in
	let t1 = DISJ1 (ASSUME P) Q and t2 = DISJ2 P (ASSUME Q) in
	let th1 = EXISTS(otm,x) t1 and th2 = EXISTS(otm,x) t2 in
	let thm1 = DISJ_CASES (ASSUME tm) th1 (CHOOSE(x,ASSUME eq)th2) in
	let imp1 = DISCH tm thm1 in
	let Qth = EXISTS(eq,x)(ASSUME Q) and Pth = ASSUME P in
	let thm2 = DISJ_CASES_UNION (ASSUME(mk_disj(P,Q))) Pth Qth in
	let imp2 = DISCH otm (CHOOSE (x,ASSUME otm)  thm2) in
	    GENL [P;g] (IMP_ANTISYM_RULE imp1 imp2);;

% ------------------------------------------------------------------------- %
% RIGHT_OR_PEXISTS_CONV "P \/ (?x.Q)" =                                     %
%   |-  P \/ (?x.Q) = (?x'. P \/ Q[x'/x])                                   %
% ------------------------------------------------------------------------- %

    let RIGHT_OR_PEXISTS_CONV tm =
	(let P,(x,Q) = (I # dest_pexists) (dest_disj tm) in
	let g = mk_pabs(x,Q) in
	let th = (ISPECL [P; g] RIGHT_OR_EXISTS_THM) in
	let th1 = (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV
	    ETA_CONV))))) th in
	let th2 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th1 in
	    CONV_RULE
		(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
		th2
	) ? failwith `RIGHT_OR_PEXISTS_CONV: expecting "P \\/ (?p.Q)"`;;
	
% ------------------------------------------------------------------------- %
% BOTH_EXISTS_AND_THM = |- !P Q. (?x. P /\ Q) = (?x. P) /\ (?x. Q)          %
% ------------------------------------------------------------------------- %

    let BOTH_EXISTS_AND_THM =
	let x = "x:*" in
	let P = "P:bool" in
	let Q = "Q:bool" in
	let t = mk_conj(P,Q) in
	let exi = mk_exists(x,t) in
	let (t1,t2) = CONJ_PAIR (ASSUME t) in
	let t11 = EXISTS ((mk_exists(x,P)),x) t1 in
	let t21 = EXISTS ((mk_exists(x,Q)),x) t2 in
	let imp1 =
	    DISCH_ALL
		(CHOOSE (x, ASSUME (mk_exists(x,mk_conj(P,Q)))) (CONJ t11 t21))
	in
	let th21 = EXISTS (exi,x) (CONJ (ASSUME P) (ASSUME Q)) in
	let th22 = CHOOSE(x,ASSUME(mk_exists(x,P))) th21 in
	let th23 = CHOOSE(x,ASSUME(mk_exists(x,Q))) th22 in
	let (u1,u2) =
	    CONJ_PAIR (ASSUME (mk_conj(mk_exists(x,P),mk_exists(x,Q)))) in
	let th24 = PROVE_HYP u1 (PROVE_HYP u2 th23) in
	let imp2 = DISCH_ALL th24 in
	    GENL [P;Q] (IMP_ANTISYM_RULE imp1 imp2) ;;

% ------------------------------------------------------------------------- %
% LEFT_EXISTS_AND_THM = |- !Q f. (?x. f x /\ Q) = (?x. f x) /\ Q            %
% ------------------------------------------------------------------------- %

    let LEFT_EXISTS_AND_THM =
	let x = "x:*" in
	let f = "f:*->bool" in
	let P = mk_comb (f,x) in
	let Q = "Q:bool" in
	let t = mk_conj(P,Q) in
	let exi = mk_exists(x,t) in
	let (t1,t2) = CONJ_PAIR (ASSUME t) in
	let t11 = EXISTS ((mk_exists(x,P)),x) t1 in
	let imp1 =
	    DISCH_ALL
		(CHOOSE
		    (x, ASSUME (mk_exists(x,mk_conj(P,Q))))
		    (CONJ t11 t2)) in
	let th21 = EXISTS (exi,x) (CONJ (ASSUME P) (ASSUME Q)) in
	let th22 = CHOOSE(x,ASSUME(mk_exists(x,P))) th21 in
	let (u1,u2) = CONJ_PAIR (ASSUME (mk_conj(mk_exists(x,P),Q))) in
	let th23 = PROVE_HYP u1 (PROVE_HYP u2 th22) in
	let imp2 = DISCH_ALL th23 in
	    GENL [Q;f] (IMP_ANTISYM_RULE imp1 imp2) ;;

% ------------------------------------------------------------------------- %
% RIGHT_EXISTS_AND_THM = |- !P g. (?x. P /\ g x) = P /\ (?x. g x)           %
% ------------------------------------------------------------------------- %

    let RIGHT_EXISTS_AND_THM =
	let x = "x:*" in
	let P = "P:bool" in
	let g = "g:*->bool" in
	let Q = mk_comb(g,x) in
	let t = mk_conj(P,Q) in
	let exi = mk_exists(x,t) in
	let (t1,t2) = CONJ_PAIR (ASSUME t) in
	let t21 = EXISTS ((mk_exists(x,Q)),x) t2 in
	let imp1 =
	    DISCH_ALL
		(CHOOSE
		    (x, ASSUME (mk_exists(x,mk_conj(P,Q))))
		    (CONJ t1 t21)) in
	let th21 = EXISTS (exi,x) (CONJ (ASSUME P) (ASSUME Q)) in
	let th22 = CHOOSE(x,ASSUME(mk_exists(x,Q))) th21 in
	let (u1,u2) = CONJ_PAIR (ASSUME (mk_conj(P,mk_exists(x,Q)))) in
	let th23 = PROVE_HYP u1 (PROVE_HYP u2 th22) in
	let imp2 = DISCH_ALL th23 in
	    GENL [P;g] (IMP_ANTISYM_RULE imp1 imp2) ;;

% ------------------------------------------------------------------------- %
% PEXISTS_AND_CONV : move existential quantifier into conjunction.          %
%                                                                           %
% A call to PEXISTS_AND_CONV "?x. P /\ Q"  returns:                         %
%                                                                           %
%    |- (?x. P /\ Q) = (?x.P) /\ Q        [x not free in Q]                 %
%    |- (?x. P /\ Q) = P /\ (?x.Q)        [x not free in P]                 %
%    |- (?x. P /\ Q) = (?x.P) /\ (?x.Q)   [x not free in P /\ Q]            %
% ------------------------------------------------------------------------- %

    let PEXISTS_AND_CONV tm =
	(let (x,(P,Q)) = (I # dest_conj) (dest_pexists tm) ?
	    failwith `expecting "?x. P /\\ Q"` in
	let oP = occs_in x P and oQ =  occs_in x Q in
	    if (oP & oQ) then
		failwith `bound pair occurs in both conjuncts`
	    else if ((not oP) & (not oQ)) then
		let th1 =
		    INST_TYPE
			[(type_of x, mk_vartype `*`)]
			BOTH_EXISTS_AND_THM in
		let th2 = SPECL [P;Q] th1 in
		let th3 =
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th2 in
		let th4 =
		    CONV_RULE
			(RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
			    (PALPHA_CONV x)))))
			th3 in
		let th5 =
		    CONV_RULE
			(RAND_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th4
		in
		    th5
	    else if oP then % not free in Q %
		let f = mk_pabs(x,P) in
		let th1 = ISPECL [Q;f] LEFT_EXISTS_AND_THM in
		let th2 =
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th1 in
		let th3 = 
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV 
			    (PABS_CONV (RATOR_CONV (RAND_CONV PBETA_CONV))))))
			th2 in
		let th4 = 
		    CONV_RULE
			(RAND_CONV
			    (RATOR_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
			th3
		in
		    th4
	    else % not free in P%
		let g = mk_pabs(x,Q) in
		let th1 = ISPECL [P;g] RIGHT_EXISTS_AND_THM in
		let th2 =
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th1 in
		let th3 = 
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV 
			    (PABS_CONV (RAND_CONV PBETA_CONV)))))
			th2 in
		let th4 = 
		    CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))) th3
		in
		    th4
	) ?\st failwith `PEXISTS_AND_CONV: `^st;;

% ------------------------------------------------------------------------- %
% AND_PEXISTS_CONV "(?x.P) /\ (?x.Q)" = |- (?x.P) /\ (?x.Q) = (?x. P /\ Q)  %
% ------------------------------------------------------------------------- %

    let AND_PEXISTS_CONV tm =
	(let ((x,P),(y,Q)) = (dest_pexists # dest_pexists) (dest_conj tm)
	    ? failwith `expecting "(?x.P) /\\ (?x.Q)"`
	in
	    if not (x=y) then
		failwith `expecting "(?x.P) /\\ (?x.Q)"`
	    else if (occs_in x P) or (occs_in x Q) then
		failwith `"` ^ (fst(dest_var x)) ^ `" free in conjunct(s)`
	    else
		SYM (PEXISTS_AND_CONV (mk_pexists (x,mk_conj(P,Q))))
	) ?\st failwith `AND_EXISTS_CONV: ` ^ st;;

% ------------------------------------------------------------------------- %
% LEFT_AND_PEXISTS_CONV "(?x.P) /\  Q" =                                    %
%   |- (?x.P) /\ Q = (?x'. P[x'/x] /\ Q)                                    %
% ------------------------------------------------------------------------- %
     
    let LEFT_AND_PEXISTS_CONV tm =
	(let ((x,P),Q) = (dest_pexists # I) (dest_conj tm) in
	let f = mk_pabs(x,P) in
	let th1 = SYM (ISPECL [Q;f] LEFT_EXISTS_AND_THM) in
	let th2 =
	    CONV_RULE   
		(RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
		    ETA_CONV)))))
		th1 in
	let th3 = (CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x)))) th2 in
	let th4 =
	    CONV_RULE
		(RAND_CONV (RAND_CONV (PABS_CONV (RATOR_CONV (RAND_CONV
		    PBETA_CONV)))))
		th3
	in
	    th4
	) ? failwith `LEFT_AND_PEXISTS_CONV: expecting "(?x.P) /\\ Q"`;;

% ------------------------------------------------------------------------- %
% RIGHT_AND_PEXISTS_CONV "P /\ (?x.Q)" =                                    %
%   |- P /\ (?x.Q) = (?x'. P /\ (Q[x'/x])                                   %
% ------------------------------------------------------------------------- %

    let RIGHT_AND_PEXISTS_CONV tm =
	(let (P,(x,Q)) = (I # dest_pexists) (dest_conj tm) in
	let g = mk_pabs(x,Q) in
	let th1 = SYM (ISPECL [P;g] RIGHT_EXISTS_AND_THM) in
	let th2 =
	    CONV_RULE
		(RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
		th1 in
	let th3 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th2 in
	let th4 =
	    CONV_RULE
		(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
		th3
	in
	    th4
	) ? failwith `RIGHT_AND_EXISTS_CONV: expecting "P /\\ (?x.Q)"`;;

% ------------------------------------------------------------------------- %
% BOTH_FORALL_OR_THM = |- !P Q. (!x. P \/ Q) = (!x. P) \/ (!x. Q)           %
% ------------------------------------------------------------------------- %

    let BOTH_FORALL_OR_THM =
	let x = "x:*" in
	let P = "P:bool" in
	let Q = "Q:bool" in
	let imp11 = DISCH_ALL (SPEC x (ASSUME (mk_forall(x,P)))) in
	let imp12 = DISCH_ALL (GEN x (ASSUME P)) in
	let fath = IMP_ANTISYM_RULE imp11 imp12 in
	let th1 = REFL (mk_forall(x, mk_disj (P,Q))) in
	let th2 =
	    CONV_RULE (RAND_CONV (K (INST [(mk_disj(P,Q),P)] fath))) th1 in
	let th3 =
	    CONV_RULE (RAND_CONV (RATOR_CONV (RAND_CONV (K (SYM fath))))) th2 in
	let th4 =
	    CONV_RULE (RAND_CONV (RAND_CONV (K (SYM (INST [(Q,P)] fath))))) th3 
	in
	    GENL [P;Q] th4 ;;

% ------------------------------------------------------------------------- %
% LEFT_FORALL_OR_THM = |- !Q f. (!x. f x \/ Q) = (!x. f x) \/ Q             %
% ------------------------------------------------------------------------- %

    let LEFT_FORALL_OR_THM =
	let x = "x:*" in
	let f = "f:*->bool" in
	let P = mk_comb (f,x) in
	let Q = "Q:bool" in
	let tm = (mk_forall(x,mk_disj(P,Q))) in
	let thm1 = SPEC x (ASSUME tm) in
%WW%	let thm2 = CONTR P (MP (NOT_ELIM(ASSUME (mk_neg Q))) (ASSUME Q)) in
	let thm3 = DISJ1 (GEN x (DISJ_CASES thm1 (ASSUME P) thm2)) Q in
	let thm4 = DISJ2 (mk_forall(x,P)) (ASSUME Q) in
	let imp1 = DISCH tm (DISJ_CASES (SPEC Q EXCLUDED_MIDDLE) thm4 thm3) in
	let thm5 = SPEC x (ASSUME (mk_forall(x,P))) in
	let thm6 = ASSUME Q in
	let imp2 =
	    (DISCH_ALL (GEN x (DISJ_CASES_UNION
				 (ASSUME (mk_disj(mk_forall(x,P),Q)))
				 thm5
				 thm6)))
	in
	    GENL [Q;f] (IMP_ANTISYM_RULE imp1 imp2);;

% ------------------------------------------------------------------------- %
% RIGHT_FORALL_OR_THM = |- !P g. (!x. P \/ g x) = P \/ (!x. g x)            %
% ------------------------------------------------------------------------- %

    let RIGHT_FORALL_OR_THM =
	let x = "x:*" in
	let P = "P:bool" in
	let g = "g:*->bool" in
	let Q = mk_comb(g,x) in
	let tm = (mk_forall(x,mk_disj(P,Q))) in
	let thm1 = SPEC x (ASSUME tm) in
%WW%	let thm2 = CONTR Q (MP (NOT_ELIM (ASSUME (mk_neg P))) (ASSUME P)) in
	let thm3 = DISJ2 P (GEN x (DISJ_CASES thm1 thm2 (ASSUME Q))) in
	let thm4 = DISJ1 (ASSUME P) (mk_forall(x,Q)) in
	let imp1 = DISCH tm (DISJ_CASES (SPEC P EXCLUDED_MIDDLE) thm4 thm3) in
	let thm5 = ASSUME P in
	let thm6 = SPEC x (ASSUME (mk_forall(x,Q))) in
	let imp2 =
	    (DISCH_ALL (GEN x (DISJ_CASES_UNION
				 (ASSUME (mk_disj(P,mk_forall(x,Q))))
				 thm5
				 thm6)))
	in
	    GENL [P;g] (IMP_ANTISYM_RULE imp1 imp2);;

% ------------------------------------------------------------------------- %
% PFORALL_OR_CONV : move universal quantifier into disjunction.             %
%                                                                           %
% A call to PFORALL_OR_CONV "!x. P \/ Q"  returns:                          %
%                                                                           %
%   |- (!x. P \/ Q) = (!x.P) \/ Q        [if x not free in Q]               %
%   |- (!x. P \/ Q) = P \/ (!x.Q)        [if x not free in P]               %
%   |- (!x. P \/ Q) = (!x.P) \/ (!x.Q)   [if x free in neither P nor Q]     %
% ------------------------------------------------------------------------- %

    let PFORALL_OR_CONV tm =
	(let (x,(P,Q)) = (I # dest_disj) (dest_pforall tm) ?
	    failwith `expecting "!x. P \\/ Q"` in
	let oP = occs_in x P and oQ =  occs_in x Q in
	    if (oP & oQ) then
		failwith `bound pair occurs in both conjuncts`
	    else if ((not oP) & (not oQ)) then
		let th1 =
		    INST_TYPE
			[(type_of x, mk_vartype `*`)]
			BOTH_FORALL_OR_THM in
		let th2 = SPECL [P;Q] th1 in
		let th3 =
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th2 in
		let th4 =
		    CONV_RULE
			(RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
			    (PALPHA_CONV x)))))
			th3 in
		let th5 =
		    CONV_RULE
			(RAND_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th4
		in
		    th5
	    else if oP then % not free in Q %
		let f = mk_pabs(x,P) in
		let th1 = ISPECL [Q;f] LEFT_FORALL_OR_THM in
		let th2 =
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th1 in
		let th3 = 
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV 
			    (PABS_CONV (RATOR_CONV (RAND_CONV PBETA_CONV)))))) 
			th2 in
		let th4 = 
		    CONV_RULE
			(RAND_CONV
			    (RATOR_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
			th3
		in
		    th4
	    else % not free in P%
		let g = mk_pabs(x,Q) in
		let th1 = ISPECL [P;g] RIGHT_FORALL_OR_THM in
		let th2 =
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th1 in
		let th3 = 
		    (CONV_RULE (RATOR_CONV (RAND_CONV (RAND_CONV 
			(PABS_CONV (RAND_CONV PBETA_CONV)))))) 
			th2 in
		let th4 = 
		    (CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
			th3
		in
		    th4
	) ?\st failwith `PFORALL_OR_CONV: `^st;;

% ------------------------------------------------------------------------- %
% OR_PFORALL_CONV "(!x.P) \/ (!x.Q)" = |- (!x.P) \/ (!x.Q) = (!x. P \/ Q)   %
% ------------------------------------------------------------------------- %

    let OR_PFORALL_CONV tm =
	(let ((x,P),(y,Q)) = (dest_pforall # dest_pforall) (dest_disj tm)
	    ? failwith `expecting "(!x.P) \\/ (!x.Q)"`
	in
	    if not (x=y) then
		failwith `expecting "(!x.P) \\/ (!x.Q)"`
	    else if (occs_in x P) or (occs_in x Q) then
		failwith `"` ^ (fst(dest_var x)) ^ `" free in disjuncts(s)`
	    else
		SYM (PFORALL_OR_CONV (mk_pforall (x,mk_disj(P,Q))))
	) ?\st failwith `OR_FORALL_CONV: ` ^ st;;

% ------------------------------------------------------------------------- %
% LEFT_OR_PFORALL_CONV "(!x.P) \/  Q" =                                     %
%   |- (!x.P) \/ Q = (!x'. P[x'/x] \/ Q)                                    %
% ------------------------------------------------------------------------- %
     
    let LEFT_OR_PFORALL_CONV tm =
	(let ((x,P),Q) = (dest_pforall # I) (dest_disj tm) in
	let f = mk_pabs(x,P) in
	let th1 = SYM (ISPECL [Q;f] LEFT_FORALL_OR_THM) in
	let th2 =
	    CONV_RULE
		(RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
		    ETA_CONV)))))
		th1 in
	let th3 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th2 in
	let th4 =
	    CONV_RULE
		(RAND_CONV (RAND_CONV (PABS_CONV (RATOR_CONV (RAND_CONV
		    PBETA_CONV)))))
		th3
	in
	    th4
	) ? failwith `LEFT_OR_PFORALL_CONV: expecting "(!x.P) \\/ Q"`;;

% ------------------------------------------------------------------------- %
% RIGHT_OR_PFORALL_CONV "P \/ (!x.Q)" =                                     %
%   |- P \/ (!x.Q) = (!x'. P \/ (Q[x'/x])                                   %
% ------------------------------------------------------------------------- %

    let RIGHT_OR_PFORALL_CONV tm =
	(let (P,(x,Q)) = (I # dest_pforall) (dest_disj tm) in
	let g = mk_pabs(x,Q) in
	let th1 = SYM (ISPECL [P;g] RIGHT_FORALL_OR_THM) in
	let th2 =
	    CONV_RULE
		(RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
		th1 in
	let th3 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th2 in
	let th4 =
	    CONV_RULE
		(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
		th3
	in
	    th4
	) ? failwith `RIGHT_OR_FORALL_CONV: expecting "P \\/ (!x.Q)"`;;

% ------------------------------------------------------------------------- %
% BOTH_FORALL_IMP_THM = |- (!x. P ==> Q) = ((?x.P) ==> (!x.Q))              %
% ------------------------------------------------------------------------- %

    let BOTH_FORALL_IMP_THM =
	let x = "x:*" in
	let P = "P:bool" in
	let Q = "Q:bool" in
	let tm = mk_forall(x, mk_imp (P, Q)) in
	let asm = mk_exists(x,P) in
	let th1 = GEN x (CHOOSE(x,ASSUME asm)(UNDISCH(SPEC x (ASSUME tm)))) in
	let imp1 = DISCH tm (DISCH asm th1) in
	let cncl = rand(concl imp1) in
	let th2 = SPEC x (MP (ASSUME cncl) (EXISTS (asm,x) (ASSUME P))) in
	let imp2 = DISCH cncl (GEN x (DISCH P th2)) in
	    GENL [P;Q] (IMP_ANTISYM_RULE imp1 imp2) ;;

% ------------------------------------------------------------------------- %
% LEFT_FORALL_IMP_THM = |- (!x. P[x]==>Q) = ((?x.P[x]) ==> Q)               %
% ------------------------------------------------------------------------- %

    let LEFT_FORALL_IMP_THM =
	let x = "x:*" in
	let f = "f:*->bool" in
	let P = mk_comb(f,x) in
	let Q = "Q:bool" in
	let tm = mk_forall(x, mk_imp (P, Q)) in
	let asm = mk_exists(x,P) in
	let th1 = CHOOSE(x,ASSUME asm)(UNDISCH(SPEC x (ASSUME tm))) in
	let imp1 = DISCH tm (DISCH asm th1) in
	let cncl = rand(concl imp1) in
	let th2 = MP (ASSUME cncl) (EXISTS (asm,x) (ASSUME P)) in
	let imp2 = DISCH cncl (GEN x (DISCH P th2)) in
	    GENL [Q;f] (IMP_ANTISYM_RULE imp1 imp2) ;;

% ------------------------------------------------------------------------- %
% RIGHT_FORALL_IMP_THM = |- (!x. P==>Q[x]) = (P ==> (!x.Q[x]))              %
% ------------------------------------------------------------------------- %

    let RIGHT_FORALL_IMP_THM =
	let x = "x:*" in
	let P = "P:bool" in
	let g = "g:*->bool" in
	let Q = mk_comb (g,x) in
	let tm = mk_forall(x, mk_imp (P, Q)) in
	let imp1 = DISCH P(GEN x(UNDISCH(SPEC x(ASSUME tm)))) in
	let cncl = concl imp1 in
	let imp2 = GEN x (DISCH P(SPEC x(UNDISCH (ASSUME cncl)))) in
	    GENL [P;g] (IMP_ANTISYM_RULE (DISCH tm imp1) (DISCH cncl imp2)) ;;

% ------------------------------------------------------------------------- %
% BOTH_EXISTS_IMP_THM = |- (?x. P ==> Q) = ((!x.P) ==> (?x.Q))              %
% ------------------------------------------------------------------------- %

    let BOTH_EXISTS_IMP_THM =
	let x = "x:*" in
	let P = "P:bool" in
	let Q = "Q:bool" in
	let tm = mk_exists(x, mk_imp (P, Q)) in
	let eQ = mk_exists(x,Q) in
	let aP = mk_forall(x,P) in
	let thm1 = EXISTS(eQ,x)(UNDISCH(ASSUME(mk_imp(P,Q)))) in
	let thm2 = DISCH aP (PROVE_HYP (SPEC x (ASSUME aP)) thm1) in
	let imp1 = DISCH tm (CHOOSE(x,ASSUME tm) thm2) in
	let thm2 = CHOOSE(x,UNDISCH (ASSUME (rand(concl imp1)))) (ASSUME Q) in
	let thm3 = DISCH P (PROVE_HYP (GEN x (ASSUME P)) thm2) in
	let imp2 = DISCH (rand(concl imp1)) (EXISTS(tm,x) thm3) in
	    GENL [P;Q] (IMP_ANTISYM_RULE imp1 imp2) ;;

% ------------------------------------------------------------------------- %
% LEFT_EXISTS_IMP_THM = |- (?x. P[x] ==> Q) = ((!x.P[x]) ==> Q)             %
% ------------------------------------------------------------------------- %

    let LEFT_EXISTS_IMP_THM =
	let x = "x:*" in
	let f = "f:*->bool" in
	let P = mk_comb(f,x) in
	let Q = "Q:bool" in
	let tm = mk_exists(x, mk_imp (P, Q)) in
	let allp = mk_forall(x,P) in
	let th1 = SPEC x (ASSUME allp) in
	let thm1 = MP (ASSUME(mk_imp(P,Q))) th1 in
	let imp1 = DISCH tm (CHOOSE(x,ASSUME tm)(DISCH allp thm1)) in
	let otm = rand(concl imp1) in
	let thm2 = EXISTS(tm,x)(DISCH P (UNDISCH(ASSUME otm))) in
	let nex =  mk_exists(x,mk_neg P) in
	let asm1 = EXISTS (nex, x) (ASSUME (mk_neg P)) in
%WW%	let th2 = CCONTR P (MP (NOT_ELIM(ASSUME (mk_neg nex))) asm1) in
%WW%	let th3 = CCONTR nex (MP (NOT_ELIM(ASSUME(mk_neg allp)))(GEN x th2)) in
	let thm4 = DISCH P (CONTR Q (UNDISCH (ASSUME (mk_neg P)))) in
	let thm5 = CHOOSE(x,th3)(EXISTS(tm,x)thm4) in
	let thm6 = DISJ_CASES (SPEC allp EXCLUDED_MIDDLE) thm2 thm5 in
	let imp2 = DISCH otm thm6 in
	    GENL [Q; f] (IMP_ANTISYM_RULE imp1 imp2) ;;

% ------------------------------------------------------------------------- %
% RIGHT_EXISTS_IMP_THM = |- (?x. P ==> Q[x]) = (P ==> (?x.Q[x]))            %
% ------------------------------------------------------------------------- %

    let RIGHT_EXISTS_IMP_THM =
	let x = "x:*" in
	let P = "P:bool" in
	let g = "g:*->bool" in
	let Q = mk_comb (g,x) in
	let tm = mk_exists(x, mk_imp (P, Q)) in
	let thm1 = EXISTS (mk_exists(x,Q),x) (UNDISCH(ASSUME(mk_imp(P,Q)))) in
	let imp1 = DISCH tm (CHOOSE(x,ASSUME tm) (DISCH P thm1)) in
	let thm2 = UNDISCH (ASSUME (rand(concl imp1))) in
	let thm3 = CHOOSE (x,thm2) (EXISTS (tm,x) (DISCH P (ASSUME Q))) in
	let thm4 = EXISTS(tm,x)(DISCH P(CONTR Q(UNDISCH(ASSUME(mk_neg P))))) in
	let thm5 = DISJ_CASES (SPEC P EXCLUDED_MIDDLE) thm3 thm4 in
	let imp2 = (DISCH(rand(concl imp1)) thm5) in
	    GENL [P;g] (IMP_ANTISYM_RULE imp1 imp2) ;;

% ------------------------------------------------------------------------- %
% PFORALL_IMP_CONV, implements the following axiom schemes.                 %
%                                                                           %
%       |- (!x. P==>Q[x]) = (P ==> (!x.Q[x]))     [x not free in P]         %
%                                                                           %
%       |- (!x. P[x]==>Q) = ((?x.P[x]) ==> Q)     [x not free in Q]         %
%                                                                           %
%       |- (!x. P==>Q) = ((?x.P) ==> (!x.Q))      [x not free in P==>Q]     %
% ------------------------------------------------------------------------- %

    let PFORALL_IMP_CONV tm =
	(let (x,(P,Q)) = (I # dest_imp) (dest_pforall tm) ?
	    failwith `expecting "?x. P ==> Q"` in
	let oP = occs_in x P and oQ =  occs_in x Q in
	    if (oP & oQ) then
		failwith `bound pair occurs in both sides of "==>"`
	    else if ((not oP) & (not oQ)) then
		let th1 =
		    INST_TYPE
			[(type_of x, mk_vartype `*`)]
			BOTH_FORALL_IMP_THM in
		let th2 = SPECL [P;Q] th1 in
		let th3 =
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th2 in
		let th4 =
		    CONV_RULE
			(RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
			    (PALPHA_CONV x)))))
			th3 in
		let th5 =
		    CONV_RULE
			(RAND_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th4
		in
		    th5
	    else if oP then % not free in Q %
		let f = mk_pabs(x,P) in
		let th1 = ISPECL [Q;f] LEFT_FORALL_IMP_THM in
		let th2 =
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th1 in
		let th3 = 
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV 
			    (PABS_CONV (RATOR_CONV (RAND_CONV PBETA_CONV)))))) 
			th2 in
		let th4 = 
		    CONV_RULE
			(RAND_CONV
			    (RATOR_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
			th3
		in
		    th4
	    else % not free in P%
		let g = mk_pabs(x,Q) in
		let th1 = ISPECL [P;g] RIGHT_FORALL_IMP_THM in
		let th2 =
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th1 in
		let th3 = 
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV (PABS_CONV
			    (RAND_CONV PBETA_CONV)))))
			th2 in
		let th4 = 
		    CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))) th3
		in
		    th4
	) ?\st failwith `PFORALL_IMP_CONV: `^st;;

% ------------------------------------------------------------------------- %
% LEFT_IMP_PEXISTS_CONV "(?x.P) ==>  Q" =                                   %
%   |- ((?x.P) ==> Q) = (!x'. P[x'/x] ==> Q)                                %
% ------------------------------------------------------------------------- %

    let LEFT_IMP_PEXISTS_CONV tm =
	(let (x,P),Q = (dest_pexists # I) (dest_imp tm) in
	let f = mk_pabs(x,P) in
	let th = SYM (ISPECL [Q;f] LEFT_FORALL_IMP_THM) in
	let th1 =
	    CONV_RULE
		(RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV
		    (RAND_CONV ETA_CONV)))))
		th in
	let th2 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th1
	in
	    CONV_RULE
		(RAND_CONV (RAND_CONV (PABS_CONV
		    (RATOR_CONV (RAND_CONV PBETA_CONV)))))
		th2
	) ? failwith `LEFT_IMP_PEXISTS_CONV: expecting "(?p.P) ==> Q"`;;

% ------------------------------------------------------------------------- %
% RIGHT_IMP_PFORALL_CONV "P ==> (!x.Q)" =                                   %
%   |- (P ==> (!x.Q)) = (!x'. P ==> (Q[x'/x])                               %
% ------------------------------------------------------------------------- %

    let RIGHT_IMP_PFORALL_CONV tm =
	(let (P,(x,Q)) = (I # dest_pforall) (dest_imp tm) in
	let g = mk_pabs(x,Q) in
	let th1 = SYM (ISPECL [P;g] RIGHT_FORALL_IMP_THM) in
	let th2 =
	    CONV_RULE
		(RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
		th1 in
	let th3 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th2 in
	let th4 =
	    CONV_RULE
		(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
		th3
	in
	    th4
	) ? failwith `RIGHT_IMP_FORALL_CONV: expecting "P ==> (!x.Q)"`;;

% ------------------------------------------------------------------------- %
% PEXISTS_IMP_CONV, implements the following axiom schemes.                 %
%                                                                           %
%       |- (?x. P==>Q[x]) = (P ==> (?x.Q[x]))     [x not free in P]         %
%                                                                           %
%       |- (?x. P[x]==>Q) = ((!x.P[x]) ==> Q)     [x not free in Q]         %
%                                                                           %
%       |- (?x. P==>Q) = ((!x.P) ==> (?x.Q))      [x not free in P==>Q]     %
% ------------------------------------------------------------------------- %

    let PEXISTS_IMP_CONV tm =
	(let (x,(P,Q)) = (I # dest_imp) (dest_pexists tm) ?
	    failwith `expecting "?x. P ==> Q"` in
	let oP = occs_in x P and oQ =  occs_in x Q in
	    if (oP & oQ) then
		failwith `bound pair occurs in both sides of "==>"`
	    else if ((not oP) & (not oQ)) then
		let th1 =
		    INST_TYPE
			[(type_of x, mk_vartype `*`)]
			BOTH_EXISTS_IMP_THM in
		let th2 = SPECL [P;Q] th1 in
		let th3 =
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th2 in
		let th4 =
		    CONV_RULE
			(RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
			    (PALPHA_CONV x)))))
			th3 in
		let th5 =
		    CONV_RULE
			(RAND_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th4
		in
		    th5
	    else if oP then % not free in Q %
		let f = mk_pabs(x,P) in
		let th1 = ISPECL [Q;f] LEFT_EXISTS_IMP_THM in
		let th2 =
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th1 in
		let th3 = 
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV 
			    (PABS_CONV (RATOR_CONV (RAND_CONV PBETA_CONV))))))
			th2 in
		let th4 = 
		    CONV_RULE
			(RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
			    ETA_CONV))))
			th3
		in
		    th4
	    else % not free in P%
		let g = mk_pabs(x,Q) in
		let th1 = ISPECL [P;g] RIGHT_EXISTS_IMP_THM in
		let th2 =
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV (PALPHA_CONV x))))
			th1 in
		let th3 = 
		    CONV_RULE
			(RATOR_CONV (RAND_CONV (RAND_CONV 
			    (PABS_CONV (RAND_CONV PBETA_CONV)))))
			th2 in
		let th4 = 
		    CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))) th3
		in
		    th4
	) ?\st failwith `PEXISTS_IMP_CONV: `^st;;

% ------------------------------------------------------------------------- %
% LEFT_IMP_PFORALL_CONV "(!x. t1[x]) ==> t2" =                              %
%   |- (!x. t1[x]) ==> t2 = (?x'. t1[x'] ==> t2)                            %
% ------------------------------------------------------------------------- %

    let LEFT_IMP_PFORALL_CONV tm =
	(let ((x,P),Q) = (dest_pforall # I) (dest_imp tm) in
	let f = mk_pabs(x,P) in
	let th1 = SYM (ISPECL [Q;f] LEFT_EXISTS_IMP_THM) in
	let th2 =
	    CONV_RULE
		(RATOR_CONV (RAND_CONV (RATOR_CONV (RAND_CONV (RAND_CONV
		    ETA_CONV)))))
		th1 in
	let th3 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th2 in
	let th4 =
	    CONV_RULE
		(RAND_CONV (RAND_CONV (PABS_CONV
		    (RATOR_CONV (RAND_CONV PBETA_CONV)))))
		th3
	in
	    th4
	) ? failwith `LEFT_IMP_PFORALL_CONV: expecting "(!x.P) ==> Q"`;;

% ------------------------------------------------------------------------- %
% RIGHT_IMP_EXISTS_CONV "t1 ==> (?x. t2)" =                                 %
%   |- (t1 ==> ?x. t2) = (?x'. t1 ==> t2[x'/x])                             %
% ------------------------------------------------------------------------- %

    let RIGHT_IMP_PEXISTS_CONV tm =
	(let (P,(x,Q)) = (I # dest_pexists) (dest_imp tm) in
	let g = mk_pabs(x,Q) in
	let th1 = SYM (ISPECL [P;g] RIGHT_EXISTS_IMP_THM) in
	let th2 =
	    CONV_RULE
		(RATOR_CONV (RAND_CONV (RAND_CONV (RAND_CONV ETA_CONV))))
		th1 in
	let th3 = CONV_RULE (RAND_CONV (RAND_CONV (PALPHA_CONV x))) th2 in
	let th4 =
	    CONV_RULE
		(RAND_CONV (RAND_CONV (PABS_CONV (RAND_CONV PBETA_CONV))))
		th3
	in
	    th4
	) ? failwith `RIGHT_IMP_PEXISTS_CONV: expecting "P ==> (!x.Q)"`;;

    (
	NOT_PFORALL_CONV,
	NOT_PEXISTS_CONV,
	PEXISTS_NOT_CONV,
	PFORALL_NOT_CONV,
	PFORALL_AND_CONV,
	PEXISTS_OR_CONV,
	AND_PFORALL_CONV,
	LEFT_AND_PFORALL_CONV,
	RIGHT_AND_PFORALL_CONV,
	OR_PEXISTS_CONV,
	LEFT_OR_PEXISTS_CONV,
	RIGHT_OR_PEXISTS_CONV,
	PEXISTS_AND_CONV,
	AND_PEXISTS_CONV,
	LEFT_AND_PEXISTS_CONV,
	RIGHT_AND_PEXISTS_CONV,
	PFORALL_OR_CONV,
	OR_PFORALL_CONV,
	LEFT_OR_PFORALL_CONV,
	RIGHT_OR_PFORALL_CONV,
	PFORALL_IMP_CONV,
	LEFT_IMP_PEXISTS_CONV,
	RIGHT_IMP_PFORALL_CONV,
	PEXISTS_IMP_CONV,
	LEFT_IMP_PFORALL_CONV,
	RIGHT_IMP_PEXISTS_CONV
    );;
end_section convsec;;
let (
	NOT_PFORALL_CONV,
	NOT_PEXISTS_CONV,
	PEXISTS_NOT_CONV,
	PFORALL_NOT_CONV,
	PFORALL_AND_CONV,
	PEXISTS_OR_CONV,
	AND_PFORALL_CONV,
	LEFT_AND_PFORALL_CONV,
	RIGHT_AND_PFORALL_CONV,
	OR_PEXISTS_CONV,
	LEFT_OR_PEXISTS_CONV,
	RIGHT_OR_PEXISTS_CONV,
	PEXISTS_AND_CONV,
	AND_PEXISTS_CONV,
	LEFT_AND_PEXISTS_CONV,
	RIGHT_AND_PEXISTS_CONV,
	PFORALL_OR_CONV,
	OR_PFORALL_CONV,
	LEFT_OR_PFORALL_CONV,
	RIGHT_OR_PFORALL_CONV,
	PFORALL_IMP_CONV,
	LEFT_IMP_PEXISTS_CONV,
	RIGHT_IMP_PFORALL_CONV,
	PEXISTS_IMP_CONV,
	LEFT_IMP_PFORALL_CONV,
	RIGHT_IMP_PEXISTS_CONV
    ) = it;;