/usr/share/hol88-2.02.19940316/Library/arith/solve.ml is in hol88-library-source 2.02.19940316-19.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | %****************************************************************************%
% FILE : solve.ml %
% DESCRIPTION : Functions for solving arithmetic formulae. %
% %
% READS FILES : <none> %
% WRITES FILES : <none> %
% %
% AUTHOR : R.J.Boulton %
% DATE : 19th April 1991 %
% %
% LAST MODIFIED : R.J.Boulton %
% DATE : 2nd July 1992 %
%****************************************************************************%
%----------------------------------------------------------------------------%
% INEQS_FALSE_CONV : conv %
% %
% Proves a conjunction of normalized inequalities is false, provided they %
% are unsatisfiable. Checks for any inequalities that can immediately be %
% shown to be false before calling VAR_ELIM. %
% %
% Example: %
% %
% INEQS_FALSE_CONV %
% "((2 + (2 * n)) <= (1 * m)) /\ %
% ((1 * m) <= (1 * n)) /\ %
% (0 <= (1 * n)) /\ %
% (0 <= (1 * m))" %
% ---> %
% |- (2 + (2 * n)) <= (1 * m) /\ %
% (1 * m) <= (1 * n) /\ %
% 0 <= (1 * n) /\ %
% 0 <= (1 * m) = %
% F %
%----------------------------------------------------------------------------%
let INEQS_FALSE_CONV tm =
(let ineqs = conjuncts tm
in let coeffsl = map coeffs_of_leq ineqs
in let falses = filter (\(const,bind). (null bind) & (const < 0)) coeffsl
in let th =
if (null falses)
then let var_names = setify (map fst (flat (map snd coeffsl)))
in let coeffsl' = (map (\v. (0, [(v,1)])) var_names) @ coeffsl
in let (_,f) = VAR_ELIM coeffsl'
in let axioms =
map (\v. SPEC (mk_num_var v) ZERO_LESS_EQ_ONE_TIMES)
var_names
in itlist PROVE_HYP axioms (f ())
else ASSUME (build_leq (hd falses))
in let th' = CONV_RULE LEQ_CONV th
in let th'' = DISCH (last ineqs) th'
in let conj_disch tm th = CONV_RULE IMP_IMP_CONJ_IMP_CONV (DISCH tm th)
in let th''' = itlist conj_disch (butlast ineqs) th''
in CONV_RULE IMP_F_EQ_F_CONV th'''
) ? failwith `INEQS_FALSE_CONV`;;
%----------------------------------------------------------------------------%
% DISJ_INEQS_FALSE_QCONV : conv %
% %
% Proves a disjunction of conjunctions of normalized inequalities is false, %
% provided each conjunction is unsatisfiable. %
%----------------------------------------------------------------------------%
letrec DISJ_INEQS_FALSE_QCONV tm =
(if (is_disj tm)
then ((RATOR_QCONV (RAND_QCONV INEQS_FALSE_CONV)) THENQC
OR_F_CONV THENQC
DISJ_INEQS_FALSE_QCONV) tm
else INEQS_FALSE_CONV tm
) ?\s qfailwith s `DISJ_INEQS_FALSE_QCONV`;;
%----------------------------------------------------------------------------%
% NOT_NOT_INTRO_CONV : conv %
% %
% "b" ---> |- b = ~~b provided b is of type ":bool". %
%----------------------------------------------------------------------------%
let NOT_NOT_INTRO_CONV tm =
(SYM ((NOT_NOT_NORM_CONV o mk_neg o mk_neg) tm)
) ? failwith `NOT_NOT_INTRO_CONV`;;
%----------------------------------------------------------------------------%
% Discriminator functions for T (true) and F (false) %
%----------------------------------------------------------------------------%
let is_T = let T = "T" in \tm. tm = T
and is_F = let F = "F" in \tm. tm = F;;
%----------------------------------------------------------------------------%
% NEGATE_CONV : conv -> conv %
% %
% Function for negating the operation of a conversion that proves a formula %
% to be either true or false. For example if `conv' proves "0 <= n" to be %
% equal to "T" then `NEGATE_CONV conv' will prove "~(0 <= n)" to be "F". %
% The function fails if the application of `conv' to the negation of the %
% formula does not yield either "T" or "F". %
% %
% If use of this function succeeds then the input term will necessarily have %
% been changed. Hence it does not need to be a QCONV. It can however take a %
% QCONV as its argument. %
%----------------------------------------------------------------------------%
let NEGATE_CONV qconv tm =
let neg = is_neg tm
in let th = QCONV qconv (if neg then (dest_neg tm) else (mk_neg tm))
in let r = rhs (concl th)
in let truth_th =
if (is_T r) then NOT_T_F
if (is_F r) then NOT_F_T
else failwith `NEGATE_CONV`
in let neg_fn = if neg then I else TRANS (NOT_NOT_INTRO_CONV tm)
in neg_fn (TRANS (AP_TERM "$~" th) truth_th);;
%----------------------------------------------------------------------------%
% DEPTH_FORALL_QCONV : conv -> conv %
% %
% DEPTH_FORALL_QCONV conv "!x1 ... xn. body" applies conv to "body" and %
% returns a theorem of the form: %
% %
% |- (!x1 ... xn. body) = (!x1 ... xn. body') %
%----------------------------------------------------------------------------%
letrec DEPTH_FORALL_QCONV conv tm =
if (is_forall tm)
then RAND_QCONV (ABS_QCONV (DEPTH_FORALL_QCONV conv)) tm
else conv tm;;
%----------------------------------------------------------------------------%
% FORALL_ARITH_CONV : conv %
% %
% Proof procedure for non-existential Presburger natural arithmetic %
% (+, * by a constant, numeric constants, numeric variables, <, <=, =, >=, > %
% ~, /\, \/, ==>, = (iff), ! (when in prenex normal form). %
% Expects formula in prenex normal form. %
% Subtraction and conditionals must have been eliminated. %
% SUC is allowed. %
% Boolean variables and constants are not allowed. %
% %
% The procedure will prove most formulae in the subset of arithmetic %
% specified above, but there is some incompleteness. However, this rarely %
% manifests itself in practice. It is therefore likely that if the procedure %
% cannot prove a formula in the subset, the formula is not valid. %
%----------------------------------------------------------------------------%
let FORALL_ARITH_CONV tm =
reset_multiplication_theorems ();
QCONV
(DEPTH_FORALL_QCONV
(NEGATE_CONV
((\tm. ARITH_FORM_NORM_QCONV tm ?\s qfailwith s
`FORALL_ARITH_CONV -- formula not in the allowed subset`) THENQC
(\tm. DISJ_INEQS_FALSE_QCONV tm ?\s qfailwith s
`FORALL_ARITH_CONV -- cannot prove formula`))) THENQC
REPEATQC FORALL_SIMP_CONV)
tm;;
|