This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/knuth-bendix/group.ml is in hol88-contrib-source 2.02.19940316-19.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
% group.ml. Some examples from the original paper by 
  Knuth and Bendix. The standard group theory example
  is test1.
%
new_theory `group`;;

let ftype = ":*";;
curry new_infix    `op`   ":^ftype -> ^ftype -> ^ftype" ;;
curry new_constant `inv`  ":^ftype -> ^ftype";;
curry new_constant `flip` ":^ftype -> ^ftype";;
curry new_constant `un`   ":^ftype -> ^ftype";;
curry new_constant `two`  ":^ftype -> ^ftype";;
curry new_constant `i`    ftype;;
curry new_constant `Id`   ftype;;


let op = curry mk_const `op` ":^ftype -> ^ftype -> ^ftype" ;;
let inv = curry mk_const `inv` ":^ftype -> ^ftype";;
let flip = curry mk_const `flip` ":^ftype -> ^ftype";;
let un = curry mk_const `un` ":^ftype -> ^ftype";;
let two = curry mk_const `two` ":^ftype -> ^ftype";;
let i = curry mk_const `i` ":^ftype";;
let Id = curry mk_const `Id` ftype;;

let e1 = curry new_axiom `e1` "($= : ^ftype -> ^ftype -> bool) (i op x) x";;
let e2 = curry new_axiom `e2` "($= : ^ftype -> ^ftype -> bool) ((inv x) op x) i";;
let e3 = curry new_axiom `e3` "($= : ^ftype -> ^ftype -> bool) ((x op y) op z) (x op (y op z))";;
let e4 = curry new_axiom `e4` "($= : ^ftype -> ^ftype -> bool) (x op i) x";;
let e5 = curry new_axiom `e5` "($= : ^ftype -> ^ftype -> bool) (x op (inv x)) i";;
let e6 = curry new_axiom `e6` "($= : ^ftype -> ^ftype -> bool) ((inv x) op (x op y)) y";;
let e7 = curry new_axiom `e7` "($= : ^ftype -> ^ftype -> bool) (Id op x) x";;
let e8 = curry new_axiom `e8` "($= : ^ftype -> ^ftype -> bool) ((flip x) op x) Id";;
let e9 = curry new_axiom `e9` "($= : ^ftype -> ^ftype -> bool) ((x op y) op (y op z)) y";;
let e10 = curry new_axiom `e10` "($= : ^ftype -> ^ftype -> bool) ((x op x) op x) (un x)";;
let e11 = curry new_axiom `e11` "($= : ^ftype -> ^ftype -> bool) (x op (x op x)) (two x)";;
let e12 = curry new_axiom `e12` "($= : ^ftype -> ^ftype -> bool) ((two x) op y) (x op y)";;

close_theory();;

% Orderings %
let status tm = (tm = op);;

% inv > op > i %
let inv_op_i x y = 
   if (x = y)
   then false 
   else (x = inv) or
        ((x = op) & (y = i));;


% flip > inv > op > Id > i %
let flip_inv_op_Id_i x y =
   if (x = y)
   then false
   else ((x = op) & ((y = i) or (y = Id)))
        or
        ((x = Id) & (y = i))
        or
        (x = flip) 
        or
        ((x = inv) & (not (y = flip)));;


% Ordering for example sixteen and seventeen
 op > un & op > two
%
let o16 x y =
   if (x = y)
   then false 
   else ((x = op) & ((y = un) or (y = two)));;


% Example 1 %
let ex1 = [e1;e2;e3];;

% Example 3 %
let ex3 = [e4;e5;e3];;

% Example 4 %
let ex4 = [e6];;

% Example 5  tests generation of critical pairs %
let ex5a = [ e3; e1; e7; e2; e8 ];;

% Example 5  %
let ex5b = [e1;e7;e2;e8;e3];;

% Example 6, central groupoids 1 %
let ex6 = [e9];;

% Example 12, (l,r) systems %
let ex12 = [ e1;e5;e3];;

% Example 16, central groupoids 2 %
let ex16 = [ e9; e10; e11; e12 ];;

% Example 17, central groupoids 3 %
let ex17 = [ e9; e10; e11 ];;

let (test1, test3, test4, test5a, test5b, test6, test12, test16, test17) =
   let test order eset () = 
      (print_string `Equations:`;
       print_newline();
       show_list (\th. print_thm th; print_newline()) eset; 
       print_newline();
       print_string `Rules:`;
       print_newline();
       show_list (\th. print_thm th; print_newline())
                 (kb (rpos status order) eset); ())
   in
   (test inv_op_i ex1,
    test inv_op_i ex3,
    test inv_op_i ex4,
    test flip_inv_op_Id_i ex5a,
    test flip_inv_op_Id_i ex5b,
    test inv_op_i ex6,
    test inv_op_i ex12,
    test o16 ex16,
    test o16 ex17);;

% These (old) timings are from the conversion-based rewriting
  implementation. When you run kb now, there should be speedup 
  corresponding to the table at the top of rewrite.ml
##
  timer true;;
  test1();;
  test3();;
  test4();;
  test5a();;
  test5b();;
  test6();;
  test12();;
  test16();;
  test17();;

false : bool
Run time: 0.0s

#Equations:

|- !x. i op x = x
|- !x. (inv x) op x = i
|- !x y z. (x op y) op z = x op (y op z)


Rules:

|- i op x1 = x1
|- (inv x1) op x1 = i
|- (x1 op x2) op x3 = x1 op (x2 op x3)
|- (inv x1) op (x1 op x2) = x2
|- x1 op i = x1
|- inv i = i
                                    |- inv(inv x1) = x1
 
                                    |- x1 op (inv x1) = i
|- x1 op ((inv x1) op x2) = x2
|- inv(x1 op x2) = (inv x2) op (inv x1)

() : void
Run time: 180.8s
Garbage collection time: 140.2s
Intermediate theorems generated: 17436

#Equations:

|- !x. x op i = x
|- !x. x op (inv x) = i
|- !x y z. (x op y) op z = x op (y op z)


Rules:

|- x1 op i = x1
|- x1 op (inv x1) = i
|- (x1 op x2) op x3 = x1 op (x2 op x3)
|- x1 op ((inv x1) op x2) = x2
|- i op x1 = x1
|- inv i = i
|- inv(inv x1) = x1
|- (inv x1) op x1 = i
|- (inv x1) op (x1 op x2) = x2
|- inv(x1 op x2) = (inv x2) op (inv x1)

() : void
Run time: 437.1s
Garbage collection time: 690.6s
Intermediate theorems generated: 44517

#Equations:

|- !x y. (inv x) op (x op y) = y


Rules:

|- (inv x1) op (x1 op x2) = x2
|- (inv(inv x1)) op x2 = x1 op x2
|- x1 op ((inv x1) op x2) = x2

() : void
Run time: 12.5s
Garbage collection time: 20.6s
Intermediate theorems generated: 1070

#Equations:

|- !x y z. (x op y) op z = x op (y op z)
|- !x. i op x = x
|- !x. Id op x = x
|- !x. (inv x) op x = i
|- !x. (flip x) op x = Id


Rules:

|- (x1 op x2) op x3 = x1 op (x2 op x3)
|- i op x1 = x1
|- (inv x1) op x1 = i
|- (inv x1) op (x1 op x2) = x2
|- x1 op i = x1
|- Id = i
|- inv(inv x1) = x1
|- inv i = i
|- flip x1 = inv x1
|- x1 op (inv x1) = i
|- x1 op ((inv x1) op x2) = x2
|- inv(x1 op x2) = (inv x2) op (inv x1)

() : void
Run time: 309.1s
Garbage collection time: 632.9s
Intermediate theorems generated: 28591

#Equations:

|- !x. i op x = x
|- !x. Id op x = x
|- !x. (inv x) op x = i
|- !x. (flip x) op x = Id
|- !x y z. (x op y) op z = x op (y op z)


Rules:

|- i op x1 = x1
|- (inv x1) op x1 = i
|- (x1 op x2) op x3 = x1 op (x2 op x3)
|- (inv x1) op (x1 op x2) = x2
|- x1 op i = x1
|- Id = i
|- inv i = i
|- inv(inv x1) = x1
|- flip x1 = inv x1
|- x1 op (inv x1) = i
|- x1 op ((inv x1) op x2) = x2
|- inv(x1 op x2) = (inv x2) op (inv x1)

() : void
Run time: 314.1s
Garbage collection time: 807.4s
Intermediate theorems generated: 28779

#Equations:

|- !x y z. (x op y) op (y op z) = y


Rules:
|- (x1 op x2) op (x2 op x3) = x2
|- x1 op ((x1 op x2) op x3) = x1 op x2
|- (x1 op (x2 op x3)) op x3 = x2 op x3

() : void
Run time: 24.5s
Garbage collection time: 64.9s
Intermediate theorems generated: 2297

#Equations:

|- !x. i op x = x
|- !x. x op (inv x) = i
|- !x y z. (x op y) op z = x op (y op z)


Rules:

|- i op x1 = x1
|- x1 op (inv x1) = i
|- (x1 op x2) op x3 = x1 op (x2 op x3)
|- inv i = i
|- x1 op ((inv x1) op x2) = x2
|- inv(inv x1) = x1 op i
|- (inv x1) op (x1 op x2) = x2
|- inv(x1 op x2) = (inv x2) op (inv x1)
|- (inv x1) op i = inv x1

() : void
Run time: 227.3s
Garbage collection time: 666.7s
Intermediate theorems generated: 22972

#Equations:

|- !x y z. (x op y) op (y op z) = y
|- !x. (x op x) op x = un x
|- !x. x op (x op x) = two x
|- !x y. (two x) op y = x op y


Rules:
Space request would exceed maximum memory allocation  
[Storage space totally exhausted]
Space exhausted when allocating  symbol   
evaluation failed     lisp error

%