/usr/share/hol88-2.02.19940316/contrib/knuth-bendix/group.ml is in hol88-contrib-source 2.02.19940316-19.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | % group.ml. Some examples from the original paper by
Knuth and Bendix. The standard group theory example
is test1.
%
new_theory `group`;;
let ftype = ":*";;
curry new_infix `op` ":^ftype -> ^ftype -> ^ftype" ;;
curry new_constant `inv` ":^ftype -> ^ftype";;
curry new_constant `flip` ":^ftype -> ^ftype";;
curry new_constant `un` ":^ftype -> ^ftype";;
curry new_constant `two` ":^ftype -> ^ftype";;
curry new_constant `i` ftype;;
curry new_constant `Id` ftype;;
let op = curry mk_const `op` ":^ftype -> ^ftype -> ^ftype" ;;
let inv = curry mk_const `inv` ":^ftype -> ^ftype";;
let flip = curry mk_const `flip` ":^ftype -> ^ftype";;
let un = curry mk_const `un` ":^ftype -> ^ftype";;
let two = curry mk_const `two` ":^ftype -> ^ftype";;
let i = curry mk_const `i` ":^ftype";;
let Id = curry mk_const `Id` ftype;;
let e1 = curry new_axiom `e1` "($= : ^ftype -> ^ftype -> bool) (i op x) x";;
let e2 = curry new_axiom `e2` "($= : ^ftype -> ^ftype -> bool) ((inv x) op x) i";;
let e3 = curry new_axiom `e3` "($= : ^ftype -> ^ftype -> bool) ((x op y) op z) (x op (y op z))";;
let e4 = curry new_axiom `e4` "($= : ^ftype -> ^ftype -> bool) (x op i) x";;
let e5 = curry new_axiom `e5` "($= : ^ftype -> ^ftype -> bool) (x op (inv x)) i";;
let e6 = curry new_axiom `e6` "($= : ^ftype -> ^ftype -> bool) ((inv x) op (x op y)) y";;
let e7 = curry new_axiom `e7` "($= : ^ftype -> ^ftype -> bool) (Id op x) x";;
let e8 = curry new_axiom `e8` "($= : ^ftype -> ^ftype -> bool) ((flip x) op x) Id";;
let e9 = curry new_axiom `e9` "($= : ^ftype -> ^ftype -> bool) ((x op y) op (y op z)) y";;
let e10 = curry new_axiom `e10` "($= : ^ftype -> ^ftype -> bool) ((x op x) op x) (un x)";;
let e11 = curry new_axiom `e11` "($= : ^ftype -> ^ftype -> bool) (x op (x op x)) (two x)";;
let e12 = curry new_axiom `e12` "($= : ^ftype -> ^ftype -> bool) ((two x) op y) (x op y)";;
close_theory();;
% Orderings %
let status tm = (tm = op);;
% inv > op > i %
let inv_op_i x y =
if (x = y)
then false
else (x = inv) or
((x = op) & (y = i));;
% flip > inv > op > Id > i %
let flip_inv_op_Id_i x y =
if (x = y)
then false
else ((x = op) & ((y = i) or (y = Id)))
or
((x = Id) & (y = i))
or
(x = flip)
or
((x = inv) & (not (y = flip)));;
% Ordering for example sixteen and seventeen
op > un & op > two
%
let o16 x y =
if (x = y)
then false
else ((x = op) & ((y = un) or (y = two)));;
% Example 1 %
let ex1 = [e1;e2;e3];;
% Example 3 %
let ex3 = [e4;e5;e3];;
% Example 4 %
let ex4 = [e6];;
% Example 5 tests generation of critical pairs %
let ex5a = [ e3; e1; e7; e2; e8 ];;
% Example 5 %
let ex5b = [e1;e7;e2;e8;e3];;
% Example 6, central groupoids 1 %
let ex6 = [e9];;
% Example 12, (l,r) systems %
let ex12 = [ e1;e5;e3];;
% Example 16, central groupoids 2 %
let ex16 = [ e9; e10; e11; e12 ];;
% Example 17, central groupoids 3 %
let ex17 = [ e9; e10; e11 ];;
let (test1, test3, test4, test5a, test5b, test6, test12, test16, test17) =
let test order eset () =
(print_string `Equations:`;
print_newline();
show_list (\th. print_thm th; print_newline()) eset;
print_newline();
print_string `Rules:`;
print_newline();
show_list (\th. print_thm th; print_newline())
(kb (rpos status order) eset); ())
in
(test inv_op_i ex1,
test inv_op_i ex3,
test inv_op_i ex4,
test flip_inv_op_Id_i ex5a,
test flip_inv_op_Id_i ex5b,
test inv_op_i ex6,
test inv_op_i ex12,
test o16 ex16,
test o16 ex17);;
% These (old) timings are from the conversion-based rewriting
implementation. When you run kb now, there should be speedup
corresponding to the table at the top of rewrite.ml
##
timer true;;
test1();;
test3();;
test4();;
test5a();;
test5b();;
test6();;
test12();;
test16();;
test17();;
false : bool
Run time: 0.0s
#Equations:
|- !x. i op x = x
|- !x. (inv x) op x = i
|- !x y z. (x op y) op z = x op (y op z)
Rules:
|- i op x1 = x1
|- (inv x1) op x1 = i
|- (x1 op x2) op x3 = x1 op (x2 op x3)
|- (inv x1) op (x1 op x2) = x2
|- x1 op i = x1
|- inv i = i
|- inv(inv x1) = x1
|- x1 op (inv x1) = i
|- x1 op ((inv x1) op x2) = x2
|- inv(x1 op x2) = (inv x2) op (inv x1)
() : void
Run time: 180.8s
Garbage collection time: 140.2s
Intermediate theorems generated: 17436
#Equations:
|- !x. x op i = x
|- !x. x op (inv x) = i
|- !x y z. (x op y) op z = x op (y op z)
Rules:
|- x1 op i = x1
|- x1 op (inv x1) = i
|- (x1 op x2) op x3 = x1 op (x2 op x3)
|- x1 op ((inv x1) op x2) = x2
|- i op x1 = x1
|- inv i = i
|- inv(inv x1) = x1
|- (inv x1) op x1 = i
|- (inv x1) op (x1 op x2) = x2
|- inv(x1 op x2) = (inv x2) op (inv x1)
() : void
Run time: 437.1s
Garbage collection time: 690.6s
Intermediate theorems generated: 44517
#Equations:
|- !x y. (inv x) op (x op y) = y
Rules:
|- (inv x1) op (x1 op x2) = x2
|- (inv(inv x1)) op x2 = x1 op x2
|- x1 op ((inv x1) op x2) = x2
() : void
Run time: 12.5s
Garbage collection time: 20.6s
Intermediate theorems generated: 1070
#Equations:
|- !x y z. (x op y) op z = x op (y op z)
|- !x. i op x = x
|- !x. Id op x = x
|- !x. (inv x) op x = i
|- !x. (flip x) op x = Id
Rules:
|- (x1 op x2) op x3 = x1 op (x2 op x3)
|- i op x1 = x1
|- (inv x1) op x1 = i
|- (inv x1) op (x1 op x2) = x2
|- x1 op i = x1
|- Id = i
|- inv(inv x1) = x1
|- inv i = i
|- flip x1 = inv x1
|- x1 op (inv x1) = i
|- x1 op ((inv x1) op x2) = x2
|- inv(x1 op x2) = (inv x2) op (inv x1)
() : void
Run time: 309.1s
Garbage collection time: 632.9s
Intermediate theorems generated: 28591
#Equations:
|- !x. i op x = x
|- !x. Id op x = x
|- !x. (inv x) op x = i
|- !x. (flip x) op x = Id
|- !x y z. (x op y) op z = x op (y op z)
Rules:
|- i op x1 = x1
|- (inv x1) op x1 = i
|- (x1 op x2) op x3 = x1 op (x2 op x3)
|- (inv x1) op (x1 op x2) = x2
|- x1 op i = x1
|- Id = i
|- inv i = i
|- inv(inv x1) = x1
|- flip x1 = inv x1
|- x1 op (inv x1) = i
|- x1 op ((inv x1) op x2) = x2
|- inv(x1 op x2) = (inv x2) op (inv x1)
() : void
Run time: 314.1s
Garbage collection time: 807.4s
Intermediate theorems generated: 28779
#Equations:
|- !x y z. (x op y) op (y op z) = y
Rules:
|- (x1 op x2) op (x2 op x3) = x2
|- x1 op ((x1 op x2) op x3) = x1 op x2
|- (x1 op (x2 op x3)) op x3 = x2 op x3
() : void
Run time: 24.5s
Garbage collection time: 64.9s
Intermediate theorems generated: 2297
#Equations:
|- !x. i op x = x
|- !x. x op (inv x) = i
|- !x y z. (x op y) op z = x op (y op z)
Rules:
|- i op x1 = x1
|- x1 op (inv x1) = i
|- (x1 op x2) op x3 = x1 op (x2 op x3)
|- inv i = i
|- x1 op ((inv x1) op x2) = x2
|- inv(inv x1) = x1 op i
|- (inv x1) op (x1 op x2) = x2
|- inv(x1 op x2) = (inv x2) op (inv x1)
|- (inv x1) op i = inv x1
() : void
Run time: 227.3s
Garbage collection time: 666.7s
Intermediate theorems generated: 22972
#Equations:
|- !x y z. (x op y) op (y op z) = y
|- !x. (x op x) op x = un x
|- !x. x op (x op x) = two x
|- !x y. (two x) op y = x op y
Rules:
Space request would exceed maximum memory allocation
[Storage space totally exhausted]
Space exhausted when allocating symbol
evaluation failed lisp error
%
|