/usr/share/hol88-2.02.19940316/contrib/CSP/choice.ml is in hol88-contrib-source 2.02.19940316-19.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | % Trace Semantics for the process CHOICE. %
% %
% FILE : choice.ml %
% %
% READS FILES : process_ty.th, rules_and_tacs.ml %
% LOADS LIBRARIES : sets, string %
% WRITES FILES : choice.th %
% %
% AUTHOR : Albert J Camilleri %
% AFFILIATION : Hewlett-Packard Laboratories, Bristol %
% DATE : 89.03.15 %
% REVISED : 91.10.01 %
load_library `sets`;;
load_library `string`;;
loadf `rules_and_tacs`;;
new_theory `choice`;;
new_parent `process_ty`;;
load_theorems `list_lib1`;;
map (load_theorem `star`) [`NIL_IN_STAR`; `CONS_STAR`; `SUBSET_STAR`];;
map (load_definition `process_ty`) [`IS_PROCESS`; `ALPHA_DEF`; `TRACES_DEF`];;
map (load_theorem `process_ty`)
[`PROCESS_LEMMA6`; `APPEND_IN_TRACES`; `TRACES_IN_STAR`];;
let WELL_DEF_ALPHA =
new_definition
(`WELL_DEF_ALPHA`,
"WELL_DEF_ALPHA A P =
? A'. (!x. x IN A ==> (ALPHA (P x) = A')) /\ (A SUBSET A')");;
let [WELL_DEF_LEMMA1; WELL_DEF_LEMMA2] =
map ((REWRITE_RULE [SUBSET_DEF]) o DISCH_ALL)
(CONJUNCTS
(SELECT_RULE
(ASSUME
"? A'. (!x. x IN A ==> (ALPHA (P x) = A')) /\ (A SUBSET A')")));;
let WELL_DEF_LEMMA3 =
(DISCH_ALL o GEN_ALL o (DISCH "(x:event) IN A") o
(SUBS [SYM (UNDISCH (SPEC_ALL (UNDISCH WELL_DEF_LEMMA1)))]) o
UNDISCH o SPEC_ALL o UNDISCH) WELL_DEF_LEMMA2;;
let IS_PROCESS_choice =
prove_thm
(`IS_PROCESS_choice`,
"! A P.
(WELL_DEF_ALPHA A P) ==>
IS_PROCESS
((@A'. (!x. x IN A ==> (ALPHA (P x) = A')) /\ (A SUBSET A')),
{[]} UNION {CONS a t | a IN A /\ t IN (TRACES (P a))})",
REWRITE_TAC [WELL_DEF_ALPHA; IS_PROCESS; SUBSET_DEF; UNION_DEF] THEN
SET_SPEC_TAC THEN
REWRITE_TAC [IN_SING; APPEND_EQ_NIL] THEN
REPEAT STRIP_TAC THEN
IMP_RES_TAC CONS_MEMBER_LIST THEN
ASM_REWRITE_TAC [NIL_IN_STAR] THEN
IMP_RES_TAC WELL_DEF_LEMMA1 THEN
POP_ASSUM (SUBST1_TAC o SYM) THEN
IMP_RES_TAC WELL_DEF_LEMMA3 THEN
ASM_REWRITE_TAC [CONS_STAR] THEN
IMP_RES_TAC (REWRITE_RULE [SUBSET_DEF] TRACES_IN_STAR) THEN
DISJ2_TAC THEN
EXISTS_TAC "a:event" THEN
EXISTS_TAC "r:trace" THEN
UNDISCH_TAC "t' IN (TRACES (P (a:event)))" THEN
ASM_REWRITE_TAC [APPEND_IN_TRACES]);;
let choice_LEMMA1 = REWRITE_RULE [PROCESS_LEMMA6] IS_PROCESS_choice;;
let DEST_PROCESS =
TAC_PROOF
(([],
"?f. !A P.
WELL_DEF_ALPHA A P ==>
((ALPHA (f A P) =
(@A'. (!x. x IN A ==> (ALPHA (P x) = A')) /\ (A SUBSET A'))) /\
(TRACES (f A P) =
{[]} UNION {CONS a t | a IN A /\ t IN (TRACES (P a))}))"),
EXISTS_TAC
"\A P.
ABS_process
((@A'. (!x. x IN A ==> (ALPHA (P x) = A')) /\ (A SUBSET A')),
{[]} UNION {CONS a t | a IN A /\ t IN (TRACES (P a))})" THEN
BETA_TAC THEN
PURE_ONCE_REWRITE_TAC
[GEN_ALL (SPEC "ABS_process r" ALPHA_DEF);
GEN_ALL (SPEC "ABS_process r" TRACES_DEF)] THEN
REPEAT GEN_TAC THEN
DISCH_THEN (SUBST1_TAC o (MATCH_MP choice_LEMMA1)) THEN
REWRITE_TAC []);;
let choice = new_specification `choice` [(`constant`,`choice`)] DEST_PROCESS;;
let [ALPHA_choice; TRACES_choice] =
map2 (\(x,y). save_thm (x, y))
([`ALPHA_choice`; `TRACES_choice`],
map (GEN_ALL o DISCH_ALL) (CONJUNCTS (UNDISCH (SPEC_ALL choice))));;
let WELL_DEF_LEMMA3 =
REWRITE_RULE
(map (SYM o SPEC_ALL) [WELL_DEF_ALPHA; SUBSET_DEF])
(DISCH_ALL (SYM (UNDISCH (SPEC "c:event" (UNDISCH WELL_DEF_LEMMA1)))));;
save_thm
(`ALPHA_choice_SPEC`,
DISCH_ALL
(GEN "c:event"
(DISCH "(c:event) IN A"
(TRANS
(UNDISCH
(ADD_ASSUM "(c:event) IN A" (SPEC_ALL ALPHA_choice)))
(UNDISCH_ALL WELL_DEF_LEMMA3)))));;
close_theory ();;
|