This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/CSP/choice.ml is in hol88-contrib-source 2.02.19940316-19.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
% Trace Semantics for the process CHOICE.				%
% 									%
% FILE		  : choice.ml 						%
% 									%
% READS FILES	  : process_ty.th, rules_and_tacs.ml          		%
% LOADS LIBRARIES : sets, string		          		%
% WRITES FILES    : choice.th						%
%									%
% AUTHOR	  : Albert J Camilleri					%
% AFFILIATION     : Hewlett-Packard Laboratories, Bristol		%
% DATE		  : 89.03.15						%
% REVISED	  : 91.10.01						%


load_library `sets`;;
load_library `string`;;
loadf `rules_and_tacs`;;

new_theory `choice`;;

new_parent `process_ty`;;

load_theorems `list_lib1`;;
map (load_theorem `star`) [`NIL_IN_STAR`; `CONS_STAR`; `SUBSET_STAR`];;
map (load_definition `process_ty`) [`IS_PROCESS`; `ALPHA_DEF`; `TRACES_DEF`];;
map (load_theorem `process_ty`)
    [`PROCESS_LEMMA6`; `APPEND_IN_TRACES`; `TRACES_IN_STAR`];;

let WELL_DEF_ALPHA =
    new_definition
       (`WELL_DEF_ALPHA`,
	"WELL_DEF_ALPHA A P =
         ? A'. (!x. x IN A ==> (ALPHA (P x) = A')) /\ (A SUBSET A')");;

let [WELL_DEF_LEMMA1; WELL_DEF_LEMMA2] =
    map ((REWRITE_RULE [SUBSET_DEF]) o DISCH_ALL)
        (CONJUNCTS
         (SELECT_RULE
	  (ASSUME
	   "? A'. (!x. x IN A ==> (ALPHA (P x) = A')) /\ (A SUBSET A')")));;

let WELL_DEF_LEMMA3 =
    (DISCH_ALL o GEN_ALL o (DISCH "(x:event) IN A") o
     (SUBS [SYM (UNDISCH (SPEC_ALL (UNDISCH WELL_DEF_LEMMA1)))]) o
     UNDISCH o SPEC_ALL o UNDISCH) WELL_DEF_LEMMA2;;

let IS_PROCESS_choice =
    prove_thm
       (`IS_PROCESS_choice`,
	"! A P.
          (WELL_DEF_ALPHA A P) ==>
          IS_PROCESS
           ((@A'. (!x. x IN A ==> (ALPHA (P x) = A')) /\ (A SUBSET A')),
	    {[]} UNION {CONS a t | a IN A /\ t IN (TRACES (P a))})",
        REWRITE_TAC [WELL_DEF_ALPHA; IS_PROCESS; SUBSET_DEF; UNION_DEF] THEN
        SET_SPEC_TAC THEN
	REWRITE_TAC [IN_SING; APPEND_EQ_NIL] THEN
	REPEAT STRIP_TAC THEN
	IMP_RES_TAC CONS_MEMBER_LIST THEN
	ASM_REWRITE_TAC [NIL_IN_STAR] THEN
	IMP_RES_TAC WELL_DEF_LEMMA1 THEN
	POP_ASSUM (SUBST1_TAC o SYM) THEN
	IMP_RES_TAC WELL_DEF_LEMMA3 THEN
	ASM_REWRITE_TAC [CONS_STAR] THEN
	IMP_RES_TAC (REWRITE_RULE [SUBSET_DEF] TRACES_IN_STAR) THEN
	DISJ2_TAC THEN
	EXISTS_TAC "a:event" THEN
	EXISTS_TAC "r:trace" THEN
	UNDISCH_TAC "t' IN (TRACES (P (a:event)))" THEN
	ASM_REWRITE_TAC [APPEND_IN_TRACES]);;

let choice_LEMMA1 = REWRITE_RULE [PROCESS_LEMMA6] IS_PROCESS_choice;;

let DEST_PROCESS =
    TAC_PROOF
       (([],
	 "?f. !A P.
           WELL_DEF_ALPHA A P ==>
           ((ALPHA (f A P) =
             (@A'. (!x. x IN A ==> (ALPHA (P x) = A')) /\ (A SUBSET A'))) /\
            (TRACES (f A P) =
	     {[]} UNION {CONS a t | a IN A /\ t IN (TRACES (P a))}))"),
	EXISTS_TAC
	 "\A P.
	  ABS_process
           ((@A'. (!x. x IN A ==> (ALPHA (P x) = A')) /\ (A SUBSET A')),
            {[]} UNION {CONS a t | a IN A /\ t IN (TRACES (P a))})" THEN
        BETA_TAC THEN
	PURE_ONCE_REWRITE_TAC
	 [GEN_ALL (SPEC "ABS_process r" ALPHA_DEF);
	  GEN_ALL (SPEC "ABS_process r" TRACES_DEF)] THEN
	REPEAT GEN_TAC THEN
	DISCH_THEN (SUBST1_TAC o (MATCH_MP choice_LEMMA1)) THEN
	REWRITE_TAC []);;

let choice = new_specification `choice` [(`constant`,`choice`)] DEST_PROCESS;;

let [ALPHA_choice; TRACES_choice] =
    map2 (\(x,y). save_thm (x, y))
         ([`ALPHA_choice`; `TRACES_choice`],
          map (GEN_ALL o DISCH_ALL) (CONJUNCTS (UNDISCH (SPEC_ALL choice))));;

let WELL_DEF_LEMMA3 =
    REWRITE_RULE
     (map (SYM o SPEC_ALL) [WELL_DEF_ALPHA; SUBSET_DEF])
     (DISCH_ALL (SYM (UNDISCH (SPEC "c:event" (UNDISCH WELL_DEF_LEMMA1)))));;

save_thm
     (`ALPHA_choice_SPEC`,
      DISCH_ALL
	(GEN "c:event"
	     (DISCH "(c:event) IN A"
	            (TRANS
		     (UNDISCH
		      (ADD_ASSUM "(c:event) IN A" (SPEC_ALL ALPHA_choice)))
		     (UNDISCH_ALL WELL_DEF_LEMMA3)))));;

close_theory ();;