This file is indexed.

/usr/share/gretl/scripts/misc/mle-advanced.inp is in gretl-common 1.9.14-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
set echo off
set messages off

# ------------------------------------------------------
# This script exemplifies the advanced use of mle, with
# analytical first and second derivatives plus the choice 
# of the numerical optimization algorithm
# ------------------------------------------------------

# ----- functions --------------------------------------

function matrix score(matrix b, series y, list X)
    /* computes the score by observation for a Probit
       model, which is returned as a (T x k) matrix */
    series ndx = lincomb(X, b)
    series m = y ? invmills(-ndx) : -invmills(ndx)
    return {m} .* {X}
end function
    
function void Hess(matrix *H, matrix b, series y, list X) 
    /* computes the negative Hessian for a Probit
    model, which is stored as a (k x k) matrix pointed 
    by the first argument of the function */
    series ndx = lincomb(X, b)
    series m = y ? invmills(-ndx) : -invmills(ndx)
    series w = m*(m+ndx)
    matrix mX = {X}    
    H = (mX .* {w})'mX
end function

function void OPG(matrix *H, matrix b, series y, list X) 
    /* computes the Outer Product of the Gradient for a
    Probit model via the analytical score function; the 
    OPG matrix is stored in the (k x k) matrix pointed at 
    by the first argument of the function */
    matrix G = score(b, y, X)    
    H = G'G
end function

function matrix totalscore(matrix *b, series y, list X) 
    /* computes the total score; this function is not 
    needed in the actual optimization, it is just used 
    by the "check" function (see below) */
    return sumc(score(b, y, X))
end function

function void check(matrix b, series y, list X)
    /* compares the analytical Hessian to its numerical
    approximation obtained via fdjac */
    matrix aH
    Hess(&aH, b, y, X) # stores the analytical Hessian into aH
    
    matrix nH = fdjac(b, "totalscore(&b, y, X)")
    nH = 0.5*(nH + nH') # force symmetry
    
    printf "Numerical Hessian\n%16.6f\n", nH 
    printf "Analytical Hessian (negative)\n%16.6f\n", aH 
    printf "Check (should be zero)\n%16.6f\n", nH + aH
end function

# ----- main ----------------------------------------------

nulldata 10000
set optimizer bfgs

# generate artificial data
series x1 = normal()
series x2 = normal()
series x3 = normal()
list X = const x1 x2 x3

series ystar = x1 + x2 + x3 + normal()
series y = (ystar > 0)

matrix b = zeros(nelem(X),1) # initialize b at 0
check(b, y, X)               # check Hessian at 0

# BFGS - numerical
set stopwatch
mle logl = y*ln(P) + (1-y)*ln(1-P)
    series ndx = lincomb(X, b)
    series P = cnorm(ndx)
    params b
end mle --verbose 
tbnum = $stopwatch

check(b, y, X) # check Hessian at maximum

# BFGS - numerical (Richardson)
set bfgs_richardson on
matrix b = zeros(nelem(X),1)

set stopwatch
mle logl = y*ln(P) + (1-y)*ln(1-P)
    series ndx = lincomb(X, b)
    series P = cnorm(ndx)
    params b
end mle --verbose 
tric = $stopwatch
set bfgs_richardson off

# BFGS - analytical
matrix b = zeros(nelem(X),1)

set stopwatch
mle logl = y*ln(P) + (1-y)*ln(1-P)
    series ndx = lincomb(X, b)
    series P = cnorm(ndx)
    deriv b = score(b, y, X)
end mle --verbose 
tban = $stopwatch

# Newton-Raphson - numerical
set optimizer newton

matrix b = zeros(nelem(X),1)
set stopwatch
mle logl = y*ln(P) + (1-y)*ln(1-P)
    series ndx = lincomb(X, b)
    series P = cnorm(ndx)
    params b
end mle --verbose 
tnrn = $stopwatch

# Newton-Raphson - analytical gradient
matrix b = zeros(nelem(X),1)
set stopwatch
mle logl = y*ln(P) + (1-y)*ln(1-P)
    series ndx = lincomb(X, b)
    series P = cnorm(ndx)
    deriv b = score(b, y, X)
end mle --verbose
tnra1 = $stopwatch

# Newton-Raphson - analytical Hessian
matrix H = {}
matrix b = zeros(nelem(X),1)
set stopwatch
mle logl = y*ln(P) + (1-y)*ln(1-P)
    series ndx = lincomb(X, b)
    series P = cnorm(ndx)
    deriv b = score(b, y, X)
    hessian Hess(&H, b, y, X)
end mle --verbose
tnra2 = $stopwatch

# BHHH by using OPG instead of real Hessian
matrix H = {}
matrix b = zeros(nelem(X),1)
set stopwatch
mle logl = y*ln(P) + (1-y)*ln(1-P)
    series ndx = lincomb(X, b)
    series P = cnorm(ndx)
    deriv b = score(b, y, X)
    hessian OPG(&H, b, y, X)
end mle --verbose
tbhhh = $stopwatch

printf "BFGS (numerical):             %5.3f seconds\n", tbnum
printf "BFGS (Richardson):            %5.3f seconds\n", tric
printf "BFGS (analytical gradient):   %5.3f seconds\n", tban
printf "Newton (numerical):           %5.3f seconds\n", tnrn
printf "Newton (analytical gradient): %5.3f seconds\n", tnra1
printf "Newton (analytical Hessian):  %5.3f seconds\n", tnra2
printf "BHHH:                         %5.3f seconds\n", tbhhh