This file is indexed.

/usr/share/doc/gmt/html/man/mapproject.html is in gmt-doc 4.5.11-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
<!-- Creator     : groff version 1.19.2 -->
<!-- CreationDate: Tue Nov  5 09:45:29 2013 -->
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta name="generator" content="groff -Thtml, see www.gnu.org">
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<meta name="Content-Style" content="text/css">
<style type="text/css">
       p     { margin-top: 0; margin-bottom: 0; }
       pre   { margin-top: 0; margin-bottom: 0; }
       table { margin-top: 0; margin-bottom: 0; }
</style>
<title>MAPPROJECT</title>

</head>
<body bgcolor="#ffffff">

<h1 align=center>MAPPROJECT</h1>

<a href="#NAME">NAME</a><br>
<a href="#SYNOPSIS">SYNOPSIS</a><br>
<a href="#DESCRIPTION">DESCRIPTION</a><br>
<a href="#OPTIONS">OPTIONS</a><br>
<a href="#ASCII FORMAT PRECISION">ASCII FORMAT PRECISION</a><br>
<a href="#EXAMPLES">EXAMPLES</a><br>
<a href="#RESTRICTIONS">RESTRICTIONS</a><br>
<a href="#ELLIPSOIDS AND SPHEROIDS">ELLIPSOIDS AND SPHEROIDS</a><br>
<a href="#SEE ALSO">SEE ALSO</a><br>
<a href="#REFERENCES">REFERENCES</a><br>

<hr>


<a name="NAME"></a>
<h2>NAME</h2>


<p style="margin-left:11%; margin-top: 1em">mapproject
&minus; Forward and Inverse map transformation of 2-D
coordinates</p>

<a name="SYNOPSIS"></a>
<h2>SYNOPSIS</h2>



<p style="margin-left:11%; margin-top: 1em"><b>mapproject</b>
<i>infiles</i> <b>&minus;J</b><i>parameters</i>
<b>&minus;R</b><i>west</i>/<i>east</i>/<i>south</i>/<i>north</i>[<b>r</b>]
[
<b>&minus;Ab</b>|<b>B</b>|<b>f</b>|<b>F</b>[<i>lon0</i>/<i>lat0</i>]
] [ <b>&minus;C</b>[<i>dx</i>/<i>dy</i>] ] [
<b>&minus;Dc</b>|<b>i</b>|<b>m</b>|<b>p</b> ] [
<b>&minus;E</b>[<i>datum</i>] ] [
<b>&minus;F</b>[<b>k</b>|<b>m</b>|<b>n</b>|<b>i</b>|<b>c</b>|<b>p</b>]
] [
<b>&minus;G</b>[<i>x0</i>/<i>y0</i>][<b>+</b>|<b>-</b>][/<i>unit</i>]
] [ <b>&minus;H</b>[<b>i</b>][<i>nrec</i>] ] [
<b>&minus;I</b> ] [
<b>&minus;L</b><i>line.xy</i>[/<i>unit</i>][<b>+</b>] ] [
<b>&minus;Q</b>[<b>d</b>|<b>e</b> ] [ <b>&minus;S</b> ] [
<b>&minus;T</b>[<b>h</b>]<i>from</i>[/<i>to</i>] ] [
<b>&minus;V</b> ] [ <b>&minus;:</b>[<b>i</b>|<b>o</b>] ] [
<b>&minus;b</b>[<b>i</b>|<b>o</b>][<b>s</b>|<b>S</b>|<b>d</b>|<b>D</b>[<i>ncol</i>]|<b>c</b>[<i>var1</i><b>/</b><i>...</i>]]
] [ <b>&minus;f</b>[<b>i</b>|<b>o</b>]<i>colinfo</i> ] [
<b>&minus;g</b>[<b>a</b>]<b>x</b>|<b>y</b>|<b>d</b>|<b>X</b>|<b>Y</b>|<b>D</b>|[<i>col</i>]<b>z</b>[+|-]<i>gap</i>[<b>u</b>]
] [ <b>&minus;m</b>[<b>i</b>|<b>o</b>][<i>flag</i>] ]</p>

<a name="DESCRIPTION"></a>
<h2>DESCRIPTION</h2>



<p style="margin-left:11%; margin-top: 1em"><b>mapproject</b>
reads (longitude, latitude) positions from <i>infiles</i>
[or standard input] and computes (x,y) coordinates using the
specified map projection and scales. Optionally, it can read
(x,y) positions and compute (longitude, latitude) values
doing the inverse transformation. This can be used to
transform linear (x,y) points obtained by digitizing a map
of known projection to geographical coordinates. May also
calculate distances along track, to a fixed point, or
closest approach to a line. Finally, can be used to perform
various datum conversions. Additional data fields are
permitted after the first 2 columns which must have
(longitude,latitude) or (x,y). See option <b>&minus;:</b> on
how to read (latitude,longitude) files. <i><br>
infiles</i></p>

<p style="margin-left:22%;">Data file(s) to be transformed.
If not given, standard input is read.</p>

<table width="100%" border=0 rules="none" frame="void"
       cellspacing="0" cellpadding="0">
<tr valign="top" align="left">
<td width="11%"></td>
<td width="3%">



<p style="margin-top: 1em" valign="top"><b>&minus;J</b></p> </td>
<td width="8%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Selects the map
projection. The following character determines the
projection. If the character is upper case then the
argument(s) supplied as scale(s) is interpreted to be the
map width (or axis lengths), else the scale argument(s) is
the map scale (see its definition for each projection). UNIT
is cm, inch, or m, depending on the <b><A HREF="gmtdefaults.html#MEASURE_UNIT">MEASURE_UNIT</A></b>
setting in .gmtdefaults4, but this can be overridden on the
command line by appending <b>c</b>, <b>i</b>, or <b>m</b> to
the <i>scale</i> or <i>width</i> values. Append <b>h</b>,
<b>+</b>, or <b>-</b> to the given <i>width</i> if you
instead want to set map height, the maximum dimension, or
the minimum dimension, respectively [Default is <b>w</b> for
width].</p> </td>
</table>

<p style="margin-left:22%;">In case the central meridian is
an optional parameter and it is being omitted, then the
center of the longitude range given by the <b>&minus;R</b>
option is used. The default standard parallel is the
equator. <br>
The ellipsoid used in the map projections is user-definable
by editing the .gmtdefaults4 file in your home directory. 73
commonly used ellipsoids and spheroids are currently
supported, and users may also specify their own custum
ellipsoid parameters [Default is WGS-84]. Several GMT
parameters can affect the projection: <b><A HREF="gmtdefaults.html#ELLIPSOID">ELLIPSOID</A></b>,
<b><A HREF="gmtdefaults.html#INTERPOLANT">INTERPOLANT</A></b>, <b><A HREF="gmtdefaults.html#MAP_SCALE_FACTOR">MAP_SCALE_FACTOR</A></b>, and
<b><A HREF="gmtdefaults.html#MEASURE_UNIT">MEASURE_UNIT</A></b>; see the <b><A HREF="gmtdefaults.html">gmtdefaults</A></b> man page for
details. <br>
Choose one of the following projections (The <b>E</b> or
<b>C</b> after projection names stands for Equal-Area and
Conformal, respectively):</p>

<p style="margin-left:22%; margin-top: 1em"><b>CYLINDRICAL
PROJECTIONS: <br>
&minus;Jc</b><i>lon0/lat0/scale</i> or
<b>&minus;JC</b><i>lon0/lat0/width</i> (Cassini).</p>

<p style="margin-left:32%;">Give projection center
<i>lon0/lat0</i> and <i>scale</i> (<b>1:</b><i>xxxx</i> or
UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Jcyl_stere</b>/[<i>lon0/</i>[<i>lat0/</i>]]<i>scale</i>
or <b><br>

&minus;JCyl_stere</b>/[<i>lon0/</i>[<i>lat0/</i>]]<i>width</i>
(Cylindrical Stereographic).</p>

<p style="margin-left:32%;">Give central meridian
<i>lon0</i> (optional), standard parallel <i>lat0</i>
(optional), and <i>scale</i> along parallel
(<b>1:</b><i>xxxx</i> or UNIT/degree). The standard parallel
is typically one of these (but can be any value):</p>

<p style="margin-left:43%;">66.159467 - Miller&rsquo;s
modified Gall <br>
55 - Kamenetskiy&rsquo;s First <br>
45 - Gall&rsquo;s Stereographic <br>
30 - Bolshoi Sovietskii Atlas Mira or Kamenetskiy&rsquo;s
Second <br>
0 - Braun&rsquo;s Cylindrical</p>


<p style="margin-left:22%;"><b>&minus;Jj</b>[<i>lon0/</i>]<i>scale</i>
or <b>&minus;JJ</b>[<i>lon0/</i>]<i>width</i> (Miller
Cylindrical <br>
Projection).</p>

<p style="margin-left:32%;">Give the central meridian
<i>lon0</i> (optional) and <i>scale</i>
(<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Jm</b>[<i>lon0/</i>[<i>lat0/</i>]]<i>scale</i>
or
<b>&minus;JM</b>[<i>lon0/</i>[<i>lat0/</i>]]<i>width</i></p>

<p style="margin-left:32%;">Give central meridian
<i>lon0</i> (optional), standard parallel <i>lat0</i>
(optional), and <i>scale</i> along parallel
(<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Jo</b><i>parameters</i>
(Oblique Mercator <b>[C]</b>).</p>

<p style="margin-left:32%;">Typically used with
<b>&minus;R</b>&lt;...&gt;<b>r</b>, otherwise region is in
oblique coordinates. Specify one of: <b><br>
&minus;Jo</b>[<b>a</b>]<i>lon0/lat0/azimuth/scale</i> or
<b><br>
&minus;JO</b>[<b>a</b>]<i>lon0/lat0/azimuth/width</i></p>

<p style="margin-left:43%;">Set projection center
<i>lon0/lat0</i>, <i>azimuth</i> of oblique equator, and
<i>scale</i>.</p>


<p style="margin-left:32%;"><b>&minus;Jo</b>[<b>b</b>]<i>lon0/lat0/lon1/lat1/scale</i>
or <b><br>
&minus;JO</b>[<b>b</b>]<i>lon0/lat0/lon1/lat1/scale</i></p>

<p style="margin-left:43%;">Set projection center
<i>lon0/lat0</i>, another point on the oblique equator
<i>lon1/lat1</i>, and <i>scale</i>.</p>


<p style="margin-left:32%;"><b>&minus;Joc</b><i>lon0/lat0/lonp/latp/scale</i>
or <b><br>
&minus;JOc</b><i>lon0/lat0/lonp/latp/scale</i></p>

<p style="margin-left:43%;">Set projection center
<i>lon0/lat0</i>, pole of oblique projection
<i>lonp/latp</i>, and <i>scale</i>.</p>

<p style="margin-left:32%; margin-top: 1em">Give
<i>scale</i> along oblique equator (<b>1:</b><i>xxxx</i> or
UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Jq</b>[<i>lon0/</i>[<i>lat0/</i>]]<i>scale</i>
or <b>&minus;JQ</b>[<i>lon0/</i>[<i>lat0/</i>]]<i>width</i>
(Cylindrical <br>
Equidistant).</p>

<p style="margin-left:32%;">Give the central meridian
<i>lon0</i> (optional), standard parallel <i>lat0</i>
(optional), and <i>scale</i> (<b>1:</b><i>xxxx</i> or
UNIT/degree). The standard parallel is typically one of
these (but can be any value):</p>

<p style="margin-left:43%;">61.7 - Grafarend and Niermann,
minimum linear distortion <br>
50.5 - Ronald Miller Equirectangular <br>
43.5 - Ronald Miller, minimum continental distortion <br>
42 - Grafarend and Niermann <br>
37.5 - Ronald Miller, minimum overall distortion <br>
0 - Plate Carree, Simple Cylindrical, Plain/Plane Chart</p>


<p style="margin-left:22%;"><b>&minus;Jt</b><i>lon0/</i>[<i>lat0/</i>]<i>scale</i>
or
<b>&minus;JT</b><i>lon0/</i>[<i>lat0/</i>]<i>width</i></p>

<p style="margin-left:32%;">Give the central meridian
<i>lon0</i>, central parallel <i>lat0</i> (optional), and
<i>scale</i> (<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Ju</b><i>zone/scale</i>
or <b>&minus;JU</b><i>zone/width</i> (UTM - Universal
Transverse <br>
Mercator <b>[C]</b>).</p>

<p style="margin-left:32%;">Give the UTM zone
(A,B,1-60[C-X],Y,Z)) and <i>scale</i> (<b>1:</b><i>xxxx</i>
or UNIT/degree). <br>
Zones: If C-X not given, prepend - or + to enforce southern
or northern hemisphere conventions [northern if south &gt;
0].</p>


<p style="margin-left:22%;"><b>&minus;Jy</b>[<i>lon0/</i>[<i>lat0/</i>]]<i>scale</i>
or <b>&minus;JY</b>[<i>lon0/</i>[<i>lat0/</i>]]<i>width</i>
(Cylindrical <br>
Equal-Area <b>[E]</b>).</p>

<p style="margin-left:32%;">Give the central meridian
<i>lon0</i> (optional), standard parallel <i>lat0</i>
(optional), and <i>scale</i> (<b>1:</b><i>xxxx</i> or
UNIT/degree). The standard parallel is typically one of
these (but can be any value):</p>

<p style="margin-left:43%;">50 - Balthasart <br>
45 - Gall-Peters <br>
37.0666 - Caster <br>
37.4 - Trystan Edwards <br>
37.5 - Hobo-Dyer <br>
30 - Behrman <br>
0 - Lambert (default)</p>

<p style="margin-left:22%; margin-top: 1em"><b>CONIC
PROJECTIONS: <br>
&minus;Jb</b><i>lon0/lat0/lat1/lat2/scale</i> or
<b>&minus;JB</b><i>lon0/lat0/lat1/lat2/width</i> <br>
(Albers <b>[E]</b>).</p>

<p style="margin-left:32%;">Give projection center
<i>lon0/lat0</i>, two standard parallels <i>lat1/lat2</i>,
and <i>scale</i> (<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Jd</b><i>lon0/lat0/lat1/lat2/scale</i>
or <b>&minus;JD</b><i>lon0/lat0/lat1/lat2/width</i> <br>
(Conic Equidistant)</p>

<p style="margin-left:32%;">Give projection center
<i>lon0/lat0</i>, two standard parallels <i>lat1/lat2</i>,
and <i>scale</i> (<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Jl</b><i>lon0/lat0/lat1/lat2/scale</i>
or <b>&minus;JL</b><i>lon0/lat0/lat1/lat2/width</i> <br>
(Lambert <b>[C]</b>)</p>

<p style="margin-left:32%;">Give origin <i>lon0/lat0</i>,
two standard parallels <i>lat1/lat2</i>, and <i>scale</i>
along these (<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Jpoly</b>/[<i>lon0/</i>[<i>lat0/</i>]]<i>scale</i>
or
<b>&minus;JPoly</b>/[<i>lon0/</i>[<i>lat0/</i>]]<i>width</i>
<br>
((American) Polyconic).</p>

<p style="margin-left:32%;">Give the central meridian
<i>lon0</i> (optional), reference parallel <i>lat0</i>
(optional, default = equator), and <i>scale</i> along
central meridian (<b>1:</b><i>xxxx</i> or UNIT/degree).</p>

<p style="margin-left:22%; margin-top: 1em"><b>AZIMUTHAL
PROJECTIONS:</b></p>

<p style="margin-left:22%; margin-top: 1em">Except for
polar aspects, <b>&minus;R</b> w/e/s/n will be reset to
<b>&minus;Rg</b>. Use <b>&minus;R</b>&lt;...&gt;<b>r</b> for
smaller regions. <b><br>
&minus;Ja</b><i>lon0/lat0</i>[<i>/horizon</i>]<i>/scale</i>
or
<b>&minus;JA</b><i>lon0/lat0</i>[<i>/horizon</i>]<i>/width</i>
<br>
(Lambert <b>[E]</b>).</p>

<p style="margin-left:32%;"><i>lon0/lat0</i> specifies the
projection center. <i>horizon</i> specifies the max distance
from projection center (in degrees, &lt;= 180, default 90).
Give <i>scale</i> as <b>1:</b><i>xxxx</i> or
<i>radius/lat</i>, where <i>radius</i> is distance in UNIT
from origin to the oblique latitude <i>lat</i>.</p>


<p style="margin-left:22%;"><b>&minus;Je</b><i>lon0/lat0</i>[<i>/horizon</i>]<i>/scale</i>
or
<b>&minus;JE</b><i>lon0/lat0</i>[<i>/horizon</i>]<i>/width</i>
<br>
(Azimuthal Equidistant).</p>

<p style="margin-left:32%;"><i>lon0/lat0</i> specifies the
projection center. <i>horizon</i> specifies the max distance
from projection center (in degrees, &lt;= 180, default 180).
Give <i>scale</i> as <b>1:</b><i>xxxx</i> or
<i>radius/lat</i>, where <i>radius</i> is distance in UNIT
from origin to the oblique latitude <i>lat</i>.</p>


<p style="margin-left:22%;"><b>&minus;Jf</b><i>lon0/lat0</i>[<i>/horizon</i>]<i>/scale</i>
or
<b>&minus;JF</b><i>lon0/lat0</i>[<i>/horizon</i>]<i>/width</i>
<br>
(Gnomonic).</p>

<p style="margin-left:32%;"><i>lon0/lat0</i> specifies the
projection center. <i>horizon</i> specifies the max distance
from projection center (in degrees, &lt; 90, default 60).
Give <i>scale</i> as <b>1:</b><i>xxxx</i> or
<i>radius/lat</i>, where <i>radius</i> is distance in UNIT
from origin to the oblique latitude <i>lat</i>.</p>


<p style="margin-left:22%;"><b>&minus;Jg</b><i>lon0/lat0</i>[<i>/horizon</i>]<i>/scale</i>
or
<b>&minus;JG</b><i>lon0/lat0</i>[<i>/horizon</i>]<i>/width</i>
<br>
(Orthographic).</p>

<p style="margin-left:32%;"><i>lon0/lat0</i> specifies the
projection center. <i>horizon</i> specifies the max distance
from projection center (in degrees, &lt;= 90, default 90).
Give <i>scale</i> as <b>1:</b><i>xxxx</i> or
<i>radius/lat</i>, where <i>radius</i> is distance in UNIT
from origin to the oblique latitude <i>lat</i>.</p>


<p style="margin-left:22%;"><b>&minus;Jg</b><i>lon0/lat0/altitude/azimuth/tilt/twist/Width/Height/scale</i>
or <b><br>

&minus;JG</b><i>lon0/lat0/altitude/azimuth/tilt/twist/Width/Height/width</i>
<br>
(General Perspective).</p>

<p style="margin-left:32%;"><i>lon0/lat0</i> specifies the
projection center. <i>altitude</i> is the height (in km) of
the viewpoint above local sea level. If <i>altitude</i> is
less than 10, then it is the distance from the center of the
earth to the viewpoint in earth radii. If <i>altitude</i>
has a suffix <b>r</b> then it is the radius from the center
of the earth in kilometers. <i>azimuth</i> is measured to
the east of north of view. <i>tilt</i> is the upward tilt of
the plane of projection. If <i>tilt</i> is negative, then
the viewpoint is centered on the horizon. Further, specify
the clockwise <i>twist</i>, <i>Width</i>, and <i>Height</i>
of the viewpoint in degrees. Give <i>scale</i> as
<b>1:</b><i>xxxx</i> or <i>radius/lat</i>, where
<i>radius</i> is distance in UNIT from origin to the oblique
latitude <i>lat</i>.</p>


<p style="margin-left:22%;"><b>&minus;Js</b><i>lon0/lat0</i>[<i>/horizon</i>]<i>/scale</i>
or
<b>&minus;JS</b><i>lon0/lat0</i>[<i>/horizon</i>]<i>/width</i>
<br>
(General Stereographic <b>[C]</b>).</p>

<p style="margin-left:32%;"><i>lon0/lat0</i> specifies the
projection center. <i>horizon</i> specifies the max distance
from projection center (in degrees, &lt; 180, default 90).
Give <i>scale</i> as <b>1:</b><i>xxxx</i> (true at pole) or
<i>lat</i>/<b>1:</b><i>xxxx</i> (true at standard parallel
<i>lat</i>) or <i>radius/lat</i> (<i>radius</i> in UNIT from
origin to the oblique latitude <i>lat</i>). Note if
<b>1:</b><i>xxxx</i> is used then to specify <i>horizon</i>
you must also specify the <i>lat</i> as +-90 to avoid
ambiguity.</p>


<p style="margin-left:22%; margin-top: 1em"><b>MISCELLANEOUS
PROJECTIONS: <br>
&minus;Jh</b>[<i>lon0/</i>]<i>scale</i> or
<b>&minus;JH</b>[<i>lon0/</i>]<i>width</i> (Hammer
<b>[E]</b>).</p>

<p style="margin-left:32%;">Give the central meridian
<i>lon0</i> (optional) and <i>scale</i> along equator
(<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Ji</b>[<i>lon0/</i>]<i>scale</i>
or <b>&minus;JI</b>[<i>lon0/</i>]<i>width</i> (Sinusoidal
<b>[E]</b>).</p>

<p style="margin-left:32%;">Give the central meridian
<i>lon0</i> (optional) and <i>scale</i> along equator
(<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Jkf</b>[<i>lon0/</i>]<i>scale</i>
or <b>&minus;JKf</b>[<i>lon0/</i>]<i>width</i> (Eckert IV)
<b>[E]</b>).</p>

<p style="margin-left:32%;">Give the central meridian
<i>lon0</i> (optional) and <i>scale</i> along equator
(<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Jk</b>[<b>s</b>][<i>lon0/</i>]<i>scale</i>
or <b>&minus;JK</b>[<b>s</b>][<i>lon0/</i>]<i>width</i>
(Eckert VI) <b>[E]</b>).</p>

<p style="margin-left:32%;">Give the central meridian
<i>lon0</i> (optional) and <i>scale</i> along equator
(<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Jn</b>[<i>lon0/</i>]<i>scale</i>
or <b>&minus;JN</b>[<i>lon0/</i>]<i>width</i>
(Robinson).</p>

<p style="margin-left:32%;">Give the central meridian
<i>lon0</i> (optional) and <i>scale</i> along equator
(<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Jr</b>[<i>lon0/</i>]<i>scale</i>
<b>&minus;JR</b>[<i>lon0/</i>]<i>width</i> (Winkel
Tripel).</p>

<p style="margin-left:32%;">Give the central meridian
<i>lon0</i> (optional) and <i>scale</i> along equator
(<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Jv</b>[<i>lon0/</i>]<i>scale</i>
or <b>&minus;JV</b>[<i>lon0/</i>]<i>width</i> (Van der
Grinten).</p>

<p style="margin-left:32%;">Give the central meridian
<i>lon0</i> (optional) and <i>scale</i> along equator
(<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%;"><b>&minus;Jw</b>[<i>lon0/</i>]<i>scale</i>
or <b>&minus;JW</b>[<i>lon0/</i>]<i>width</i> (Mollweide
<b>[E]</b>).</p>

<p style="margin-left:32%;">Give the central meridian
<i>lon0</i> (optional) and <i>scale</i> along equator
(<b>1:</b><i>xxxx</i> or UNIT/degree).</p>


<p style="margin-left:22%; margin-top: 1em"><b>NON-GEOGRAPHICAL
PROJECTIONS: <br>

&minus;Jp</b>[<b>a</b>]<i>scale</i>[<i>/origin</i>][<b>r</b>|<b>z</b>]
or
<b>&minus;JP</b>[<b>a</b>]<i>width</i>[<i>/origin</i>][<b>r</b>|<b>z</b>]
(Polar <br>
coordinates (theta,r))</p>

<p style="margin-left:32%;">Optionally insert <b>a</b>
after <b>&minus;Jp</b> [ or <b>&minus;JP</b>] for azimuths
CW from North instead of directions CCW from East [Default].
Optionally append /<i>origin</i> in degrees to indicate an
angular offset [0]). Finally, append <b>r</b> if r is
elevations in degrees (requires s &gt;= 0 and n &lt;= 90) or
<b>z</b> if you want to annotate depth rather than radius
[Default]. Give <i>scale</i> in UNIT/r-unit.</p>


<p style="margin-left:22%;"><b>&minus;Jx</b><i>x-scale</i>[<i>/y-scale</i>]
or <b>&minus;JX</b><i>width</i>[<i>/height</i>] (Linear,
log, and <br>
power scaling)</p>

<p style="margin-left:32%;">Give <i>x-scale</i>
(<b>1:</b><i>xxxx</i> or UNIT/x-unit) and/or <i>y-scale</i>
(<b>1:</b><i>xxxx</i> or UNIT/y-unit); or specify
<i>width</i> and/or <i>height</i> in UNIT.
<i>y-scale</i>=<i>x-scale</i> if not specified separately
and using <b>1:</b><i>xxxx</i> implies that x-unit and
y-unit are in meters. Use negative scale(s) to reverse the
direction of an axis (e.g., to have y be positive down). Set
<i>height</i> or <i>width</i> to 0 to have it recomputed
based on the implied scale of the other axis. Optionally,
append to <i>x-scale</i>, <i>y-scale</i>, <i>width</i> or
<i>height</i> one of the following:</p>

<table width="100%" border=0 rules="none" frame="void"
       cellspacing="0" cellpadding="0">
<tr valign="top" align="left">
<td width="32%"></td>
<td width="10%">


<p style="margin-top: 1em" valign="top"><b>d</b></p></td>
<td width="1%"></td>
<td width="57%">


<p style="margin-top: 1em" valign="top">Data are
geographical coordinates (in degrees).</p></td>
<tr valign="top" align="left">
<td width="32%"></td>
<td width="10%">


<p style="margin-top: 1em" valign="top"><b>l</b></p></td>
<td width="1%"></td>
<td width="57%">


<p style="margin-top: 1em" valign="top">Take log10 of
values before scaling.</p></td>
<tr valign="top" align="left">
<td width="32%"></td>
<td width="10%">



<p style="margin-top: 1em" valign="top"><b>p</b><i>power</i></p> </td>
<td width="1%"></td>
<td width="57%">


<p style="margin-top: 1em" valign="top">Raise values to
<i>power</i> before scaling.</p></td>
<tr valign="top" align="left">
<td width="32%"></td>
<td width="10%">


<p style="margin-top: 1em" valign="top"><b>t</b></p></td>
<td width="1%"></td>
<td width="57%">


<p style="margin-top: 1em" valign="top">Input coordinates
are time relative to <b><A HREF="gmtdefaults.html#TIME_EPOCH">TIME_EPOCH</A></b>.</p></td>
<tr valign="top" align="left">
<td width="32%"></td>
<td width="10%">


<p style="margin-top: 1em" valign="top"><b>T</b></p></td>
<td width="1%"></td>
<td width="57%">


<p style="margin-top: 1em" valign="top">Input coordinates
are absolute time.</p></td>
</table>

<p style="margin-left:32%; margin-top: 1em">Default axis
lengths (see <b><A HREF="gmtdefaults.html">gmtdefaults</A></b>) can be invoked using
<b>&minus;JXh</b> (for landscape); <b>&minus;JXv</b> (for
portrait) will swap the x- and y-axis lengths. The default
unit for this installation is either cm or inch, as defined
in the file share/gmt_setup.conf. However, you may change
this by editing your .gmtdefaults4 file(s).</p>

<table width="100%" border=0 rules="none" frame="void"
       cellspacing="0" cellpadding="0">
<tr valign="top" align="left">
<td width="11%"></td>
<td width="3%">



<p style="margin-top: 1em" valign="top"><b>&minus;R</b></p> </td>
<td width="8%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top"><i>xmin</i>,
<i>xmax</i>, <i>ymin</i>, and <i>ymax</i> specify the Region
of interest. For geographic regions, these limits correspond
to <i>west, east, south,</i> and <i>north</i> and you may
specify them in decimal degrees or in
[+-]dd:mm[:ss.xxx][W|E|S|N] format. Append <b>r</b> if lower
left and upper right map coordinates are given instead of
w/e/s/n. The two shorthands <b>&minus;Rg</b> and
<b>&minus;Rd</b> stand for global domain (0/360 and
-180/+180 in longitude respectively, with -90/+90 in
latitude). Alternatively, specify the name of an existing
grid file and the <b>&minus;R</b> settings (and grid
spacing, if applicable) are copied from the grid. For
calendar time coordinates you may either give (a) relative
time (relative to the selected <b><A HREF="gmtdefaults.html#TIME_EPOCH">TIME_EPOCH</A></b> and in the
selected <b><A HREF="gmtdefaults.html#TIME_UNIT">TIME_UNIT</A></b>; append <b>t</b> to
<b>&minus;JX</b>|<b>x</b>), or (b) absolute time of the form
[<i>date</i>]<b>T</b>[<i>clock</i>] (append <b>T</b> to
<b>&minus;JX</b>|<b>x</b>). At least one of <i>date</i> and
<i>clock</i> must be present; the <b>T</b> is always
required. The <i>date</i> string must be of the form
[-]yyyy[-mm[-dd]] (Gregorian calendar) or yyyy[-Www[-d]]
(ISO week calendar), while the <i>clock</i> string must be
of the form hh:mm:ss[.xxx]. The use of delimiters and their
type and positions must be exactly as indicated (however,
input, output and plot formats are customizable; see
<b><A HREF="gmtdefaults.html">gmtdefaults</A></b>). Special case for the UTM projection: If
<b>&minus;C</b> is used and <b>&minus;R</b> is not given
then the region is set to coincide with the given UTM zone
so as to preserve the full ellipsoidal solution (See
RESTRICTIONS for more information).</p></td>
</table>

<a name="OPTIONS"></a>
<h2>OPTIONS</h2>


<p style="margin-left:11%; margin-top: 1em">No space
between the option flag and the associated arguments.
<i><br>
infile(s)</i></p>

<p style="margin-left:22%;">input file(s) with 2 or more
columns. If no file(s) is given, <b>mapproject</b> will read
the standard input.</p>


<p style="margin-left:11%;"><b>&minus;A</b>[<b>f</b>|<b>b</b>]</p>

<p style="margin-left:22%;"><b>&minus;A</b> calculates the
(forward) azimuth from fixed point <i>lon/lat</i> to each
data point. Use <b>&minus;Ab</b> to get back-azimuth from
data points to fixed point. Upper case <b>F</b> or <b>B</b>
will convert from geodetic to geocentric latitudes and
estimate azimuth of geodesics (assuming the current
ellipsoid is not a sphere). If no fixed point is given then
we compute the azimuth (or back-azimuth) from the previous
point.</p>

<table width="100%" border=0 rules="none" frame="void"
       cellspacing="0" cellpadding="0">
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;C</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Set center of
projected coordinates to be at map projection center
[Default is lower left corner]. Optionally, add offsets in
the projected units to be added (or subtracted when
<b>&minus;I</b> is set) to (from) the projected coordinates,
such as false eastings and northings for particular
projection zones [0/0]. The unit used for the offsets is the
plot distance unit in effect (see <b><A HREF="gmtdefaults.html#MEASURE_UNIT">MEASURE_UNIT</A></b>)
unless <b>&minus;F</b> is used, in which case the offsets
are always in meters.</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;D</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Temporarily
override <b><A HREF="gmtdefaults.html#MEASURE_UNIT">MEASURE_UNIT</A></b> and use <b>c</b> (cm), <b>i</b>
(inch), <b>m</b> (meter), or <b>p</b> (points) instead.
Cannot be used with <b>&minus;F</b>.</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;E</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Convert from
geodetic (lon, lat, height) to Earth Centered Earth Fixed
(ECEF) (x,y,z) coordinates (add <b>&minus;I</b> for the
inverse conversion). Append datum ID (see <b>&minus;Qd</b>)
or give <i>ellipsoid</i>:<i>dx,dy,dz</i> where
<i>ellipsoid</i> may be an ellipsoid ID (see
<b>&minus;Qe</b>) or given as <i>a</i>[,<i>inv_f</i>], where
<i>a</i> is the semi-major axis and <i>inv_f</i> is the
inverse flattening (0 if omitted). If <i>datum</i> is - or
not given we assume WGS-84.</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;F</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Force 1:1 scaling,
i.e., output (or input, see <b>&minus;I</b>) data are in
actual projected meters. To specify other units, append
<b>k</b> (km), <b>m</b> (mile), <b>n</b> (nautical mile),
<b>i</b> (inch), <b>c</b> (cm), or <b>p</b> (points).
Without <b>&minus;F</b>, the output (or input, see
<b>&minus;I</b>) are in the units specified by
<b><A HREF="gmtdefaults.html#MEASURE_UNIT">MEASURE_UNIT</A></b> (but see <b>&minus;D</b>).</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;G</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Calculate distances
along track OR to the optional point set with
<b>&minus;G</b><i>x0/y0</i>. Append IT(unit), the distance
unit; choose among <b>e</b> (m), <b>k</b> (km), <b>m</b>
(mile), <b>n</b> (nautical mile), <b>d</b> (spherical
degree), <b>c</b> (Cartesian distance using input
coordinates) or <b>C</b> (Cartesian distance using projected
coordinates). The last unit requires <b>&minus;R</b> and
<b>&minus;J</b> to be set. Upper case <b>E</b>, <b>K</b>,
<b>M</b>, <b>N</b>, or <b>D</b> will use exact methods for
geodesic distances (Rudoe&rsquo;s method for distances in
length units and employing geocentric latitudes in degree
calculations, assuming the current ellipsoid is not
spherical). With no fixed point we calculate cumulate
distances along track. To obtain incremental distance
between successive points, use <b>&minus;G-</b>. To specify
the 2nd point via two extra columns in the input file,
choose <b>&minus;G+</b>.</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;H</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Input file(s) has
header record(s). If used, the default number of header
records is <b><A HREF="gmtdefaults.html#N_HEADER_RECS">N_HEADER_RECS</A></b>. Use <b>&minus;Hi</b> if
only input data should have header records [Default will
write out header records if the input data have them]. Blank
lines and lines starting with # are always skipped.</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;I</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Do the Inverse
transformation, i.e., get (longitude,latitude) from (x,y)
data.</p> </td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;L</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Determine the
shortest distance from the input data points to the line(s)
given in the ASCII multi-segment file <i>line.xy</i>. The
distance and the coordinates of the nearest point will be
appended to the output as three new columns. Append the
distance unit; choose among <b>e</b> (m), <b>k</b> (km),
<b>m</b> (mile), <b>n</b> (nautical mile), <b>d</b>
(spherical degree), <b>c</b> (Cartesian distance using input
coordinates) or <b>C</b> (Cartesian distance using projected
coordinates). The last unit requires <b>&minus;R</b> and
<b>&minus;J</b> to be set. A spherical approximation is used
for geographic data. Finally, append <b>+</b> to report the
line segment id and the fractional point number instead of
lon/lat of the nearest point.</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;Q</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">List all projection
parameters. To only list datums, use <b>&minus;Qd</b>. To
only list ellipsoids, use <b>&minus;Qe</b>.</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;S</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Suppress points
that fall outside the region.</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;T</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Coordinate
conversions between datums <i>from</i> and <i>to</i> using
the standard Molodensky transformation. Use <b>&minus;Th</b>
if 3rd input column has height above ellipsoid [Default
assumes height = 0, i.e., on the ellipsoid]. Specify datums
using the datum ID (see <b>&minus;Qd</b>) or give
<i>ellipsoid</i>:<i>dx,dy,dz</i> where <i>ellipsoid</i> may
be an ellipsoid ID (see <b>&minus;Qe</b>) or given as
<i>a</i>[,<i>inv_f</i>], where <i>a</i> is the semi-major
axis and <i>inv_f</i> is the inverse flattening (0 if
omitted). If <i>datum</i> is - or not given we assume
WGS-84. <b>&minus;T</b> may be used in conjunction with
<b>&minus;R &minus;J</b> to change the datum before
coordinate projection (add <b>&minus;I</b> to apply the
datum conversion after the inverse projection). Make sure
that the <b><A HREF="gmtdefaults.html#ELLIPSOID">ELLIPSOID</A></b> setting is correct for your
case.</p> </td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;V</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Selects verbose
mode, which will send progress reports to stderr [Default
runs &quot;silently&quot;].</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;:</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Toggles between
(longitude,latitude) and (latitude,longitude) input and/or
output. [Default is (longitude,latitude)]. Append <b>i</b>
to select input only or <b>o</b> to select output only.
[Default affects both].</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;bi</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Selects binary
input. Append <b>s</b> for single precision [Default is
<b>d</b> (double)]. Uppercase <b>S</b> or <b>D</b> will
force byte-swapping. Optionally, append <i>ncol</i>, the
number of columns in your binary input file if it exceeds
the columns needed by the program. Or append <b>c</b> if the
input file is netCDF. Optionally, append
<i>var1</i><b>/</b><i>var2</i><b>/</b><i>...</i> to specify
the variables to be read. [Default is 2 input columns].</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;bo</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Selects binary
output. Append <b>s</b> for single precision [Default is
<b>d</b> (double)]. Uppercase <b>S</b> or <b>D</b> will
force byte-swapping. Optionally, append <i>ncol</i>, the
number of desired columns in your binary output file.
[Default is same as input].</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;f</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Special formatting
of input and/or output columns (time or geographical data).
Specify <b>i</b> or <b>o</b> to make this apply only to
input or output [Default applies to both]. Give one or more
columns (or column ranges) separated by commas. Append
<b>T</b> (absolute calendar time), <b>t</b> (relative time
in chosen <b><A HREF="gmtdefaults.html#TIME_UNIT">TIME_UNIT</A></b> since <b><A HREF="gmtdefaults.html#TIME_EPOCH">TIME_EPOCH</A></b>),
<b>x</b> (longitude), <b>y</b> (latitude), or <b>f</b>
(floating point) to each column or column range item.
Shorthand <b>&minus;f</b>[<b>i</b>|<b>o</b>]<b>g</b> means
<b>&minus;f</b>[<b>i</b>|<b>o</b>]0<b>x</b>,1<b>y</b>
(geographic coordinates).</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;g</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Examine the spacing
between consecutive data points in order to impose breaks in
the line. Append <b>x</b>|<b>X</b> or <b>y</b>|<b>Y</b> to
define a gap when there is a large enough change in the x or
y coordinates, respectively, or <b>d</b>|<b>D</b> for
distance gaps; use upper case to calculate gaps from
projected coordinates. For gap-testing on other columns use
[<i>col</i>]<b>z</b>; if <i>col</i> is not prepended the it
defaults to 2 (i.e., 3rd column). Append [+|-]<i>gap</i> and
optionally a unit <b>u</b>. Regarding optional signs: -ve
means previous minus current column value must exceed
|<i>gap</i> to be a gap, +ve means current minus previous
column value must exceed <i>gap</i>, and no sign means the
absolute value of the difference must exceed <i>gap</i>. For
geographic data (<b>x</b>|<b>y</b>|<b>d</b>), the unit
<b>u</b> may be m<b>e</b>ter [Default], <b>k</b>ilometer,
<b>m</b>iles, or <b>n</b>autical miles. For projected data
(<b>X</b>|<b>Y</b>|<b>D</b>), choose from <b>i</b>nch,
<b>c</b>entimeter, <b>m</b>eter, or <b>p</b>oints [Default
unit set by MEASURE_UNIT]. Note: For
<b>x</b>|<b>y</b>|<b>z</b> with time data the unit is
instead controlled by TIME_UNIT. Repeat the option to
specify multiple criteria, of which any can be met to
produce a line break. Issue an additional <b>&minus;ga</b>
to indicate that all criteria must be met instead.</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="4%">



<p style="margin-top: 1em" valign="top"><b>&minus;m</b></p> </td>
<td width="7%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Multiple segment
file(s). Segments are separated by a special record. For
ASCII files the first character must be <i>flag</i> [Default
is &rsquo;&gt;&rsquo;]. For binary files all fields must be
NaN and <b>&minus;b</b> must set the number of output
columns explicitly. By default the <b>&minus;m</b> setting
applies to both input and output. Use <b>&minus;mi</b> and
<b>&minus;mo</b> to give separate settings to input and
output.</p> </td>
</table>

<a name="ASCII FORMAT PRECISION"></a>
<h2>ASCII FORMAT PRECISION</h2>


<p style="margin-left:11%; margin-top: 1em">The ASCII
output formats of numerical data are controlled by
parameters in your .gmtdefaults4 file. Longitude and
latitude are formatted according to
<b><A HREF="gmtdefaults.html#OUTPUT_DEGREE_FORMAT">OUTPUT_DEGREE_FORMAT</A></b>, whereas other values are
formatted according to <b><A HREF="gmtdefaults.html#D_FORMAT">D_FORMAT</A></b>. Be aware that the
format in effect can lead to loss of precision in the
output, which can lead to various problems downstream. If
you find the output is not written with enough precision,
consider switching to binary output (<b>&minus;bo</b> if
available) or specify more decimals using the
<b><A HREF="gmtdefaults.html#D_FORMAT">D_FORMAT</A></b> setting.</p>

<a name="EXAMPLES"></a>
<h2>EXAMPLES</h2>


<p style="margin-left:11%; margin-top: 1em">To transform a
file with (longitude,latitude) into (x,y) positions in cm on
a Mercator grid for a given scale of 0.5 cm per degree,
run</p>


<p style="margin-left:11%; margin-top: 1em"><b>mapproject</b>
lonlatfile <b>&minus;R</b> 20/50/12/25 <b>&minus;Jm</b>
0.5<b>c</b> &gt; xyfile</p>

<p style="margin-left:11%; margin-top: 1em">To transform
several 2-column, binary, double precision files with
(latitude,longitude) into (x,y) positions in inch on a
Transverse Mercator grid (central longitude 75W) for scale =
1:500000 and suppress those points that would fall outside
the map area, run</p>


<p style="margin-left:11%; margin-top: 1em"><b>mapproject</b>
tracks.* <b>&minus;R</b>-80/-70/20/40
<b>&minus;Jt</b>-75/1:500000 <b>&minus;: &minus;S &minus;Di
&minus;bo &minus;bi</b> 2 &gt; tmfile.b</p>

<p style="margin-left:11%; margin-top: 1em">To convert the
geodetic coordinates (lon, lat, height) in the file old.dat
from the NAD27 CONUS datum (Datum ID 131 which uses the
Clarke-1866 ellipsoid) to WGS 84, run</p>


<p style="margin-left:11%; margin-top: 1em"><b>mapproject</b>
old.dat <b>&minus;Th</b> 131 &gt; new.dat</p>

<p style="margin-left:11%; margin-top: 1em">To compute the
closest distance (in km) between each point in the input
file quakes.dat and the line segments given in the
multi-segment ASCII file coastline.xy, run</p>


<p style="margin-left:11%; margin-top: 1em"><b>mapproject</b>
quakes.dat <b>&minus;L</b> coastline.xy/k &gt;
quake_dist.dat</p>

<a name="RESTRICTIONS"></a>
<h2>RESTRICTIONS</h2>


<p style="margin-left:11%; margin-top: 1em">The rectangular
input region set with <b>&minus;R</b> will in general be
mapped into a non-rectangular grid. Unless <b>&minus;C</b>
is set, the leftmost point on this grid has xvalue = 0.0,
and the lowermost point will have yvalue = 0.0. Thus, before
you digitize a map, run the extreme map coordinates through
<b>mapproject</b> using the appropriate scale and see what
(x,y) values they are mapped onto. Use these values when
setting up for digitizing in order to have the inverse
transformation work correctly, or alternatively, use
<b>awk</b> to scale and shift the (x,y) values before
transforming. <br>
For some projections, a spherical solution may be used
despite the user having selected an ellipsoid. This occurs
when the users <b>&minus;R</b> setting implies a region that
exceeds the domain in which the ellipsoidal series
expansions are valid. These are the conditions: (1) Lambert
Conformal Conic (<b>&minus;JL</b>) and Albers Equal-Area
(<b>&minus;JB</b>) will use the spherical solution when the
map scale exceeds 1.0E7. (2) Transverse Mercator
(<b>&minus;JT</b>) and UTM (<b>&minus;JU</b>) will will use
the spherical solution when either the west or east boundary
given in <b>&minus;R</b> is more than 10 degrees from the
central meridian, and (3) same for Cassini
(<b>&minus;JC</b>) but with a limit of only 4 degrees.</p>

<a name="ELLIPSOIDS AND SPHEROIDS"></a>
<h2>ELLIPSOIDS AND SPHEROIDS</h2>


<p style="margin-left:11%; margin-top: 1em"><b><A HREF="GMT.html">GMT</A></b> will
use ellipsoidal formulae if they are implemented and the
user have selected an ellipsoid as the reference shape (see
<b><A HREF="gmtdefaults.html#ELLIPSOID">ELLIPSOID</A></b> in <b><A HREF="gmtdefaults.html">gmtdefaults</A></b>). The user needs to
be aware of a few potential pitfalls: (1) For some
projections, such as Transverse Mercator, Albers, and
Lamberts conformal conic we use the ellipsoidal expressions
when the areas mapped are small, and switch to the spherical
expressions (and substituting the appropriate auxiliary
latitudes) for larger maps. The ellipsoidal formulae are
used as follows: (a) Transverse Mercator: When all points
are within 10 degrees of central meridian, (b) Conic
projections when longitudinal range is less than 90 degrees,
(c) Cassini projection when all points are within 4 degrees
of central meridian. (2) When you are trying to match some
historical data (e.g., coordinates obtained with a certain
projection and a certain reference ellipsoid) you may find
that <b><A HREF="GMT.html">GMT</A></b> gives results that are slightly different.
One likely source of this mismatch is that older
calculations often used less significant digits. For
instance, Snyder&rsquo;s examples often use the Clarke 1866
ellipsoid (defined by him as having a flattening f =
1/294.98). From f we get the eccentricity squared to be
0.00676862818 (this is what <b><A HREF="GMT.html">GMT</A></b> uses), while Snyder
rounds off and uses 0.00676866. This difference can give
discrepancies of several tens of cm. If you need to
reproduce coordinates projected with this slightly different
eccentricity, you should specify your own ellipsoid with the
same parameters as Clarke 1866, but with f = 1/294.97861076.
Also, be aware that older data may be referenced to
different datums, and unless you know which datum was used
and convert all data to a common datum you may experience
mismatches of tens to hundreds of meters. (3) Finally, be
aware that <b><A HREF="gmtdefaults.html#MAP_SCALE_FACTOR">MAP_SCALE_FACTOR</A></b> have certain default
values for some projections so you may have to override the
setting in order to match results produced with other
settings.</p>

<a name="SEE ALSO"></a>
<h2>SEE ALSO</h2>



<p style="margin-left:11%; margin-top: 1em"><i><A HREF="gmtdefaults.html">gmtdefaults</A></i>(1),
<i><A HREF="GMT.html">GMT</A></i>(1), <i><A HREF="project.html">project</A></i>(1)</p>

<a name="REFERENCES"></a>
<h2>REFERENCES</h2>


<p style="margin-left:11%; margin-top: 1em">Bomford, G.,
1952, Geodesy, Oxford U. Press. <br>
Snyder, J. P., 1987, Map Projections &minus; A Working
Manual, U.S. Geological Survey Prof. Paper 1395. <br>
Vanicek, P. and Krakiwsky, E, 1982, Geodesy &minus; The
Concepts, North-Holland Publ., ISBN: 0 444 86149 1.</p>
<hr>
</body>
</html>