/usr/share/doc/gle-doc/html/tube.html is in gle-doc 3.1.0-7ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
<!
GLE extrusion, sweep and tubing library
>
<head>
<title>Subroutine Documentation</title>
<meta name="description" content="The GLE Tubing and Extrusion Library
is a graphics programming interface (API) for drawing
tubing, extrusions and sweeps using the OpenGL API.">
<meta name="keywords" content="GLE, tubing, extrusion, graphics, OpenGL,
lathe, sweep, torus, polycylinder, polycone, contour, parallel
translation, helix, texture mapping">
</head>
<body>
<h1>Subroutine Documentation</h1>
<h2>Some Types</h2>
<pre>
typedef double gleDouble;
typedef gleDouble gleAffine[2][3];
</pre>
<h2>Subroutine Descriptions</h2>
<dl>
<img src="angle.gif">
<dt>
<pre><b> void glePolyCylinder (int npoints, /* num points in polyline */
gleDouble point_array[][3], /* polyline vertces */
float color_array[][3], /* colors at polyline verts */
gleDouble radius); /* radius of polycylinder */
</b></pre>
<pre><b> void glePolyCylinder_c4f (int npoints, /* num points in polyline */
gleDouble point_array[][3], /* polyline vertces */
float color_array[][4], /* colors at polyline verts */
gleDouble radius); /* radius of polycylinder */
</b></pre>
<dd>
Draw polycylinder, specified as a polyline.
<p>
Note that neither the very first segment, nor the very last segment are
drawn. The first and last segments serve only to define the angle of
the join at the very ends of the polyline. Thus, to draw one segment,
three must be specified. To draw two segments, four must be specified,
etc.
<p>
The color array may be NULL. If NULL, the current color is used. If not
NULL, the glColor3f() routine is used to set the color; therefore,
specifying the glColorMaterial() subroutine before this primitive can be used
to set diffuse, specular, ambient, etc. colors.
The glePolyCylinder_c4f() routine calls glColor4f() instead, thus allowing
alpha-blending (transparency) to be performed.
<p>
By default, the cross-section of the cylinder is drawn as a 20-sided
polygon. This number can be changed using the gleSetNumSides() routine.
<p>
<img src="cone.gif">
<dt>
<pre><b> void glePolyCone (int npoints, /* numpoints in poly-line */
gleDouble point_array[][3], /* polyline vertices */
float color_array[][3], /* colors at polyline verts */
gleDouble radius_array[]); /* cone radii at polyline verts */
</b></pre>
<pre><b> void glePolyCone_c4f (int npoints, /* numpoints in poly-line */
gleDouble point_array[][3], /* polyline vertices */
float color_array[][4], /* colors at polyline verts */
gleDouble radius_array[]); /* cone radii at polyline verts */
</b></pre>
<dd>
Draw polycone, specified as a polyline with radii.
<p>
Note that neither the very first segment, nor the very last segment are
drawn. The first and last segments serve only to define the angle of
the join at the very ends of the polyline. Thus, to draw one segment,
three must be specified. To draw two segments, four must be specified,
<i>etc.</i>
<p>
The color array may be NULL. If NULL, the current color is used. If not
NULL, the glColor3f() routine is used to set the color; therefore,
specifying the glColorMaterial() subroutine before this primitive can be used
to set diffuse, specular, ambient, <i>etc.</i> colors.
The glePolyCone_c4f() routine calls glColor4f() instead, thus allowing
alpha-blending (transparency) to be performed.
<p>
By default, the cross-section of the cylinder is drawn as a 20-sided
polygon. This number can be changed using the gleSetNumSides() routine.
<p>
<dt><pre><b> int gleGetNumSides(void);
void gleSetNumSides(int slices);
</b></pre>
<dd>
Query and set the GLE cylinder and cone roundness. When GLE draws
a cylinder or a cone, it approximates the circular cross-section
with a polygon (of 20 sides by default). These subroutines can
be used to change the default number of sides in this cross-section.
A smaller number of sides can typically be drawn much faster, at
the loss of some visual accuracy. Increasing the number of sides to
more than 20 will typically have no noticeable visual effect.
<p>
<img src="texas.gif">
<dt>
<pre><b> void gleExtrusion (int ncp, /* number of contour points */
gleDouble contour[][2], /* 2D contour */
gleDouble cont_normal[][2], /* 2D contour normals */
gleDouble up[3], /* up vector for contour */
int npoints, /* numpoints in poly-line */
gleDouble point_array[][3], /* polyline vertices */
float color_array[][3]); /* colors at polyline verts */
</b></pre>
<pre><b> void gleExtrusion_c4f (int ncp, /* number of contour points */
gleDouble contour[][2], /* 2D contour */
gleDouble cont_normal[][2], /* 2D contour normals */
gleDouble up[3], /* up vector for contour */
int npoints, /* numpoints in poly-line */
gleDouble point_array[][3], /* polyline vertices */
float color_array[][4]); /* colors at polyline verts */
</b></pre>
<dd>Extrude arbitrary 2D contour along arbitrary 3D path.
The argument "contour" specifies the 2D contour to be extruded, while the
argument "point_array" specifies the path along which to extrude. The
vector "up" defines the orientation of the contour y-axis in real 3D space.
<p>
Note that neither the very first segment, nor the very last segment are
drawn. The first and last segments serve only to define the angle of
the join at the very ends of the polyline. Thus, to draw one segment,
three must be specified. To draw two segments, four must be specified,
<i>etc.</i>
<p>
The normal array may be NULL. If it is, normal vectors will NOT be
automatically generated, and the object will look terrible when lit.
<p>
The color array may be NULL. If NULL, the current color is used. If not
NULL, the glColor3f() routine is used to set the color; therefore,
specifying the glColorMaterial() subroutine before this primitive can be used
to set diffuse, specular, ambient, <i>etc.</i> colors.
The gleExtrusion_c4f() routine calls glColor4f() instead, thus allowing
alpha-blending (transparency) to be performed.
<p>
<img src="twist1.gif">
<img src="twist2.gif">
<img src="twist3.gif">
<dt>
<pre><b> void gleTwistExtrusion (int ncp, /* number of contour points */
gleDouble contour[][2], /* 2D contour */
gleDouble cont_normal[][2], /* 2D contour normals */
gleDouble up[3], /* up vector for contour */
int npoints, /* numpoints in poly-line */
gleDouble point_array[][3], /* polyline vertices */
float color_array[][3], /* color at polyline verts */
gleDouble twist_array[]); /* contour twists (in degrees) */
</b></pre>
<pre><b> void gleTwistExtrusion_c4f (int ncp, /* number of contour points */
gleDouble contour[][2], /* 2D contour */
gleDouble cont_normal[][2], /* 2D contour normals */
gleDouble up[3], /* up vector for contour */
int npoints, /* numpoints in poly-line */
gleDouble point_array[][3], /* polyline vertices */
float color_array[][4], /* color at polyline verts */
gleDouble twist_array[]); /* contour twists (in degrees) */
</b></pre>
<dd>Extrude arbitrary 2D contour along arbitrary 3D path, specifying local
rotations (twists). As the contour is extruded, it will be twisted by the
amount specified in the array "twist_array". The angles are measured in
degrees, and the rotation is about the origin of the contour coordinate
system.
<p>
The argument "contour" specifies the 2D contour to be extruded, while the
argument "point_array" specifies the path along which to extrude. The
vector "up" defines the orientation of the contour y-axis in real 3D space.
<p>
Note that neither the very first segment, nor the very last segment are
drawn. The first and last segments serve only to define the angle of
the join at the very ends of the polyline. Thus, to draw one segment,
three must be specified. To draw two segments, four must be specified,
<i>etc.</i>
<p>
The normal array may be NULL. If it is, normal vectors will NOT be
automatically generated, and the object will look terrible when lit.
<p>
The color array may be NULL. If NULL, the current color is used. If not
NULL, the glColor3f() routine is used to set the color; therefore,
specifying the glColorMaterial() subroutine before this primitive can be used
to set diffuse, specular, ambient, <i>etc.</i> colors.
The gleTwistExtrusion_c4f() routine calls glColor4f() instead, thus allowing
alpha-blending (transparency) to be performed.
<p>
<dt>
<pre><b> void gleSuperExtrusion (int ncp, /* number of contour points */
gleDouble contour[][2], /* 2D contour */
gleDouble cont_normal[][2], /* 2D contour normals */
gleDouble up[3], /* up vector for contour */
int npoints, /* numpoints in poly-line */
gleDouble point_array[][3], /* polyline vertices */
float color_array[][3], /* color at polyline verts */
gleDouble xform_array[][2][3]); /* 2D contour xforms */
</b></pre>
<pre><b> void gleSuperExtrusion_c4f (int ncp, /* number of contour points */
gleDouble contour[][2], /* 2D contour */
gleDouble cont_normal[][2], /* 2D contour normals */
gleDouble up[3], /* up vector for contour */
int npoints, /* numpoints in poly-line */
gleDouble point_array[][3], /* polyline vertices */
float color_array[][4], /* color at polyline verts */
gleDouble xform_array[][2][3]); /* 2D contour xforms */
</b></pre>
<dd>Extrude arbitrary 2D contour along arbitrary 3D path, specifying local
affine transformations. As the contour is extruded, the affine will be
applied to the points in the contour.
<p>
The argument "contour" specifies the 2D contour to be extruded, while the
argument "point_array" specifies the path along which to extrude. The
vector "up" defines the orientation of the contour y-axis in real 3D space.
<p>
Note that neither the very first segment, nor the very last segment are
drawn. The first and last segments serve only to define the angle of
the join at the very ends of the polyline. Thus, to draw one segment,
three must be specified. To draw two segments, four must be specified,
<i>etc.</i>
<p>
The normal array may be NULL. If it is, normal vectors will NOT be
automatically generated, and the object will look terrible when lit.
<p>
The color array may be NULL. If NULL, the current color is used. If not
NULL, the glColor3f() routine is used to set the color; therefore,
specifying the glColorMaterial() subroutine before this primitive can be used
to set diffuse, specular, ambient, <i>etc.</i> colors.
The gleSuperExtrusion_c4f() routine calls glColor4f() instead, thus allowing
alpha-blending (transparency) to be performed.
<p>
<img src="shear.gif">
<dt><pre><b> void gleSpiral (int ncp, /* number of contour points */
gleDouble contour[][2], /* 2D contour */
gleDouble cont_normal[][2], /* 2D contour normals */
gleDouble up[3], /* up vector for contour */
gleDouble startRadius, /* spiral starts in x-y plane */
gleDouble drdTheta, /* change in radius per revolution */
gleDouble startZ, /* starting z value */
gleDouble dzdTheta, /* change in Z per revolution */
gleDouble startXform[2][3], /* starting contour affine xform */
gleDouble dXformdTheta[2][3], /* tangent change xform per revoln */
gleDouble startTheta, /* start angle in x-y plane */
gleDouble sweepTheta); /* degrees to spiral around */
</b></pre>
<dd>
Sweep an arbitrary contour along a helical path.
<p>
The axis of the helix lies along the modeling coordinate z-axis.
<p>
An affine transform can be applied as the contour is swept. For most
ordinary usage, the affines should be given as NULL.
<p>
The "startXform[][]" is an affine matrix
applied to the contour to deform the contour.
Thus, "startXform" of the form
<pre>
| cos sin 0 |
| -sin cos 0 |
</pre>
will rotate the contour (in the plane of the contour), while
<pre>
| 1 0 tx |
| 0 1 ty |
</pre>
will translate the contour, and
<pre>
| sx 0 0 |
| 0 sy 0 |
</pre>
scales along the two axes of the contour.
In particular, note that
<pre>
| 1 0 0 |
| 0 1 0 |
</pre>
is the identity matrix.
<p>
The "dXformdTheta[][]" is a differential affine matrix
that is integrated
while the contour is extruded. Note that this affine
matrix lives in the tangent space, and so it should have the form of
a generator. Thus,
dx/dt's of the form
<pre>
| 0 r 0 |
| -r 0 0 |
</pre>
rotate the the contour as it is extruded (r == 0 implies no rotation,
r == 2*PI implies that the contour is rotated once, <i>etc.</i>),
while
<pre>
| 0 0 tx |
| 0 0 ty |
</pre>
translates the contour, and
<pre>
| sx 0 0 |
| 0 sy 0 |
</pre>
scales it.
In particular, note that
<pre>
| 0 0 0 |
| 0 0 0 |
</pre>
is the identity matrix -- <i>i.e.</i> the derivatives are zero, and therefore
the integral is a constant.
<br>
<img src="candle.gif">
<dt><pre><b> void gleLathe (int ncp, /* number of contour points */
gleDouble contour[][2], /* 2D contour */
gleDouble cont_normal[][2], /* 2D contour normals */
gleDouble up[3], /* up vector for contour */
gleDouble startRadius, /* spiral starts in x-y plane */
gleDouble drdTheta, /* change in radius per revolution */
gleDouble startZ, /* starting z value */
gleDouble dzdTheta, /* change in Z per revolution */
gleDouble startXform[2][3], /* starting contour affine xform */
gleDouble dXformdTheta[2][3], /* tangent change xform per revoln */
gleDouble startTheta, /* start angle in x-y plane */
gleDouble sweepTheta); /* degrees to spiral around */
</b></pre>
<dd>
Sweep an arbitrary contour along a helical path. The sweep will be
performed as a shear along the z-axis, so that the orientation of the
contour is displaced, rather than translated, as the contour is swept.
<p>
The axis of the helix lies along the modeling coordinate z-axis.
<p>
An affine transform can be applied as the contour is swept. For most
ordinary usage, the affines should be given as NULL.
<p>
<img src ="helix1.gif">
<img src ="helix3.gif">
<img src ="helix4.gif">
<img src ="helix5.gif">
<img src ="helix6.gif">
<img src ="helixtex.gif">
<dt><pre><b> void gleHelicoid (gleDouble rToroid, /* circle contour (torus) radius */
gleDouble startRadius, /* spiral starts in x-y plane */
gleDouble drdTheta, /* change in radius per revolution */
gleDouble startZ, /* starting z value */
gleDouble dzdTheta, /* change in Z per revolution */
gleDouble startXform[2][3], /* starting contour affine xform */
gleDouble dXformdTheta[2][3], /* tangent change xform per revoln */
gleDouble startTheta, /* start angle in x-y plane */
gleDouble sweepTheta); /* degrees to spiral around */
</b></pre>
<dd> Generalized Torus.
Similar to gleSpiral, except contour is a circle. Uses gleSpiral to
draw.
<dt><pre><b> void gleToroid (gleDouble rToroid, /* circle contour (torus) radius */
gleDouble startRadius, /* spiral starts in x-y plane */
gleDouble drdTheta, /* change in radius per revolution */
gleDouble startZ, /* starting z value */
gleDouble dzdTheta, /* change in Z per revolution */
gleDouble startXform[2][3], /* starting contour affine xform */
gleDouble dXformdTheta[2][3], /* tangent change xform per revoln */
gleDouble startTheta, /* start angle in x-y plane */
gleDouble sweepTheta); /* degrees to spiral around */
</b></pre>
<dd> Generalized Torus.
Similar to gleLathe, except contour is a circle. Uses gleLathe to
draw.
<br>
<img src="screwn.gif">
<img src="screw0.gif">
<img src="screw1.gif">
<img src="screw2.gif">
<dt><pre><b> void gleScrew (int ncp, /* number of contour points */
gleDouble contour[][2], /* 2D contour */
gleDouble cont_normal[][2], /* 2D contour normals */
gleDouble up[3], /* up vector for contour */
gleDouble startz, /* start of segment */
gleDouble endz, /* end of segment */
gleDouble twist); /* number of rotations */
</b></pre>
<dd>Draws screw-type shapes. Takes a contour, and extrudes it along the
z-axis, from a start z value of <b>startz</b> to an end z-value of
<b>endz</b>. During the extrusion, it will spin the contour along
the contour origin by <b>twist</b> degrees.
</dl>
<h2>GL3.2/IrisGL Subroutines</h2>
This library can be compiled for GL/IrisGL version 3.2 or above,
or for OpenGL. The names of the subroutines are different for the
GL/IrisGL and OpenGL versions. The are:
<dl>
<dt><b> extrusion </b><dd>gleExtrusion
<dt><b> setjoinstyle </b><dd>gleSetJoinStyle
<dt><b> getjoinstyle </b><dd>gleGetJoinStyle
<dt><b> polycone </b><dd>glePolyCone
<dt><b> polycylinder </b><dd>glePolyCylinder
<dt><b> super_extrusion </b><dd>gleSuperExtrusion
<dt><b> twist_extrusion </b><dd>gleTwistExtrusion
<dt><b> spiral </b><dd>gleSpiral
<dt><b> lathe </b><dd>gleLathe
<dt><b> helicoid </b><dd>gleHelicoid
<dt><b> toroid </b><dd>gleToroid
<dt><b> screw </b><dd>gleScrew
</dl>
<hr>
<h2>Stunts</h2>
For wire-frame mode, try using the glPolygonMode() routine.
<h2> The End </h2>
</body>
</html>
|