This file is indexed.

/usr/share/gap/small/smlinfo.gi is in gap-small-groups 4r6p5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
#############################################################################
##
#W  smlinfo.gi               GAP group library             Hans Ulrich Besche
##                                               Bettina Eick, Eamonn O'Brien
##
##  This file contains the ...
##

#############################################################################
##
#F  SMALL_GROUPS_INFORMATION
##
##  ...
SMALL_GROUPS_INFORMATION := [ ];

#############################################################################
##
#F  SmallGroupsInformation( size )
##
##  ...
InstallGlobalFunction( SmallGroupsInformation, function( size )
    local smav, idav, num, lib, t;

    smav := SMALL_AVAILABLE( size );
    idav := ID_AVAILABLE( size );

    if size = 1024 then
        Print( "The groups of size 1024 are not available. \n");
        return;
    fi;

    if smav = fail then
        Print( "The groups of size ", size, " are not available. \n");
        return;
    fi; 

    lib := 1;
    if IsBound( smav.lib ) then
        lib := smav.lib;
    fi;
    
    if IsBound( smav.number ) then
        num := smav.number;
    else
        num := NUMBER_SMALL_GROUPS_FUNCS[ smav.func ]( size, smav ).number;
    fi;
    if num = 1 then 
        Print("\n  There is 1 group of order ",size,".\n");
    else
        Print("\n  There are ",num," groups of order ",size,".\n" );
    fi;
 
    SMALL_GROUPS_INFORMATION[ smav.func ]( size, smav, num );

    Print("\n  This size belongs to layer ",lib,
          " of the SmallGroups library. \n");

    if idav <> fail then 
        Print("  IdSmallGroup is available for this size. \n \n");
    else        
        Print("  IdSmallGroup is not available for this size. \n \n");
    fi;
end );

#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 1 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 1 ] := function( size, smav, num )
    local all, i;

    all := AllSmallGroups( size );
    for i in [ 1 .. Length( all ) ] do
        if HasNameIsomorphismClass( all[ i ] ) then
            Print("    ",i," is of type ",NameIsomorphismClass(all[i]),".\n");
        else
            if HasNameIsomorphismClass( all[ i - 1 ] ) then
                Print( "    ", i, " - ", Length(all)-1, " are of types " );
                if smav.func = 6 then
                    Print( smav.q,":",smav.p,"+",smav.q,":",smav.p,".\n" );
                else
                    Print( smav.q,":",smav.p,"+",smav.r,":",smav.p,".\n" );
                fi;
            fi;
        fi;
    od;
        
    Print("\n");
    Print("  The groups whose order factorises in at most 3 primes \n");
    Print("  have been classified by O. Hoelder. This classification is \n");
    Print("  used in the SmallGroups library. \n");
end;

SMALL_GROUPS_INFORMATION[ 2 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 3 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 4 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 5 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 6 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 7 ] := SMALL_GROUPS_INFORMATION[ 1 ];

#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 8 .. 10 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 8 ] := function( size, smav, num )
    local ffid, prop, i, l;

    ffid := IdGroup( OneSmallGroup( size, FrattinifactorSize, size ) );
    prop := PROPERTIES_SMALL_GROUPS[ size ].frattFacs;

    if not IsPrimePowerInt( size ) then
        Print("  They are sorted by their Frattini factors. \n");
        i := 1;
        if ffid[ 2 ] > 1 then
            repeat 
                if prop.pos[ i ][ 1 ] = -prop.pos[ i ][ 2 ] then
                    Print( "     ", prop.pos[ i ][ 1 ],
                       " has Frattini factor ", prop.frattFacs[ i ], ".\n"  );
                else
                    Print( "     ", prop.pos[ i ][ 1 ], " - ",
                       -prop.pos[ i ][ 2 ], " have Frattini factor ",
                       prop.frattFacs[ i ], ".\n"  );
                fi;
                i := i + 1;
            until prop.frattFacs[ i ] = ffid;
        fi;
        Print("     ", ffid[2], " - ", num, 
              " have trivial Frattini subgroup.\n");
    else
        Print("  They are sorted by their ranks. \n");
        Print("     ", 1, " is cyclic. \n");
        i := 2;
        repeat 
            l := Length( Factors( prop.frattFacs[ i ][1] ) );
            if prop.pos[ i ][ 1 ] = -prop.pos[ i ][ 2 ] then
                Print( "     ", prop.pos[ i ][ 1 ], " has rank ", l, ".\n"  );
            else
                Print( "     ", prop.pos[ i ][ 1 ], " - ",
                       -prop.pos[ i ][ 2 ], " have rank ", l, ".\n"  );
            fi;
            i := i + 1;
        until prop.frattFacs[ i ] = ffid;
        Print("     ", ffid[2], " is elementary abelian. \n");
    fi;

    Print( "\n  For the selection functions the values of the ",
           "following attributes \n  are precomputed and stored:\n ");
    if IsPrimePowerInt( size ) then
        Print( "    IsAbelian, PClassPGroup, RankPGroup,",
               " FrattinifactorSize and \n     FrattinifactorId. \n");
    else
        Print( "    IsAbelian, IsNilpotentGroup,", 
               " IsSupersolvableGroup, IsSolvableGroup, \n     LGLength,",
               " FrattinifactorSize and FrattinifactorId. \n");
    fi;
end;
SMALL_GROUPS_INFORMATION[ 9 ] := SMALL_GROUPS_INFORMATION[ 8 ];
SMALL_GROUPS_INFORMATION[ 10 ] := SMALL_GROUPS_INFORMATION[ 8 ];

#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 11, 17 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 11 ] := function( size, smav, num )
    local i, q;

    q := 2;
    if IsBound( smav.q ) then q := smav.q; fi;

    Print("  They are sorted by normal Sylow subgroups. \n");
    Print( "     1 - ", smav.pos[ 2 ], " are the nilpotent groups.\n" );
    for i in [ 2 .. Length( smav.types ) ] do
        Print( "     ", smav.pos[i] + 1, " - ", smav.pos[i+1] );
        if smav.types[ i ] = "p-autos" then 
            Print( " have a normal Sylow ", q,"-subgroup. \n");
        elif smav.types[ i ] = "none-p-nil" then 
            Print( " have no normal Sylow subgroup. \n");
        elif IsInt( smav.types[ i ] ) then
            Print( " have a normal Sylow ", smav.p, "-subgroup \n");
            Print( "                     with centralizer of index ");
            Print( q^smav.types[i],".\n");
        fi;
    od;
end;
SMALL_GROUPS_INFORMATION[ 17 ] := SMALL_GROUPS_INFORMATION[ 11 ];

#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 12 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 12 ] := function( size, smav, num )

    if size = 1152 then
        Print("  There are sorted using Sylow subgroups. \n");
        Print("     1 - 2328 are nilpotent with Sylow 3-subgroup c9.\n" );
        Print("     2329 - 4656 are nilpotent with Sylow 3-subgroup 3^2.\n");
        Print("     4657 - 153312 are non-nilpotent with normal ");
        Print("Sylow 3-subgroup.\n");
        Print("     153313 - 157877 have no normal Sylow 3-subgroup.\n");
        return;
    fi;

    Print("  There are sorted using Hall subgroups. \n");
    Print( "     1 - 2328 are the nilpotent groups.\n" );
    Print( "     2329 - 236344 have a normal Hall (3,5)-subgroup.\n");
    Print( "     236345 - 240416 are solvable without normal Hall",
           " (3,5)-subgroup.\n");
    Print( "     240417 - 241004 are not solvable.\n" );
end;

#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 14 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 14 ] := function( size, smav, num )

    Print( "     1 - 10494213 are the nilpotent groups.\n" );
    Print( "     10494214 - 408526597 have a normal Sylow 3-subgroup.\n" );
    Print( "     408526598 - 408544625 have a normal Sylow 2-subgroup.\n" );
    Print( "     408544626 - 408641062 have no normal Sylow subgroup.\n" );
end;

#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 18 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 18 ] := function( size, smav, num )

    Print( "     1 is cyclic. \n");
    Print( "     2 - 10 have rank 2 and p-class 3.\n" );
    Print( "     11 - 386 have rank 2 and p-class 4.\n" );
    Print( "     387 - 1698 have rank 2 and p-class 5.\n" );
    Print( "     1699 - 2008 have rank 2 and p-class 6.\n" );
    Print( "     2009 - 2039 have rank 2 and p-class 7.\n" );
    Print( "     2040 - 2044 have rank 2 and p-class 8.\n" );
    Print( "     2045 has rank 3 and p-class 2.\n" );
    Print( "     2046 - 29398 have rank 3 and p-class 3.\n" );
    Print( "     29399 - 30617 have rank 3 and p-class 4.\n" );
    Print( "     30618 - 31239 have rank 3 and p-class 3.\n" );
    Print( "     31240 - 56685 have rank 3 and p-class 4.\n" );
    Print( "     56686 - 60615 have rank 3 and p-class 5.\n" );
    Print( "     60616 - 60894 have rank 3 and p-class 6.\n" );
    Print( "     60895 - 60903 have rank 3 and p-class 7.\n" );
    Print( "     60904 - 67612 have rank 4 and ", "p-class 2.\n" );
    Print( "     67613 - 387088 have rank 4 and ", "p-class 3.\n" );
    Print( "     387089 - 419734 have rank 4 and ", "p-class 4.\n" );
    Print( "     419735 - 420500 have rank 4 and ", "p-class 5.\n" );
    Print( "     420501 - 420514 have rank 4 and ", "p-class 6.\n" );
    Print( "     420515 - 6249623 have rank 5 and ", "p-class 2.\n" );
    Print( "     6249624 - 7529606 have rank 5 and ", "p-class 3.\n" );
    Print( "     7529607 - 7532374 have rank 5 and ", "p-class 4.\n" );
    Print( "     7532375 - 7532392 have rank 5 and ", "p-class 5.\n" );
    Print( "     7532393 - 10481221 have rank 6 and ", "p-class 2.\n" );
    Print( "     10481222 - 10493038 have rank 6 and ", "p-class 3.\n" );
    Print( "     10493039 - 10493061 have rank 6 and ", "p-class 4.\n" );
    Print( "     10493062 - 10494173 have rank 7 ", "and p-class 2.\n" );
    Print( "     10494174 - 10494200 have rank 7 ", "and p-class 3.\n" );
    Print( "     10494201 - 10494212 have rank 8 ", "and p-class 2.\n" );
    Print( "     10494213 is elementary abelian.\n");
end;

#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 19 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 19 ] := function( size, smav, num )

  Print("  They are sorted by their ranks. \n");
  Print( "     1 is cyclic. \n");
  Print( "     2 - 10 have rank 2. \n");
  Print( "     11 - 14 have rank 3. \n");
  Print( "     15 is elementary abelian. \n");
end;

#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 20 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 20 ] := function( size, smav, num )
    local p, a, b, c;

    p := Factors(size)[1];
    a:=27 + p   + 2*GcdInt(p-1,3) + GcdInt(p-1,4);
    b:=54 + 2*p + 2*GcdInt(p-1,3) + GcdInt(p-1,4);
    c:=60 + 2*p + 2*GcdInt(p-1,3) + GcdInt(p-1,4);

    Print( "  They are sorted by their ranks.\n" );
    Print( "     1 is cyclic.\n");
    Print( "     2 - ",a," have rank 2. \n");
    Print( "     ",a+1," - ",b," have rank 3. \n");
    Print( "     ",b+1," - ",c," have rank 4. \n");
    Print( "     ",c+1," is elementary abelian. \n");
end;

#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 21 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 21 ] := function( size, smav, num )

   Print( " \n");
   Print( "      Easterfield (1940) constructed a list of the groups of\n");
   Print( "      order p^6 for p >= 5.\n \n");

   Print( "      The database of parametrised presentations for the groups \n");
   Print( "      with order p^6 for p >= 5 is based on the Easterfield \n");
   Print( "      list, corrected by Newman, O'Brien and Vaughan-Lee (2004).\n");
   Print( "      It differs only in the addition of groups in isoclinism \n"); 
   Print( "      family $\Phi_{13}$, in using the James (1980) presentations \n");
   Print( "      for the groups in $\Phi_{19}$, and a small number of \n");
   Print( "      typographical amendments. The linear ordering employed is \n");
   Print( "      very close to that of Easterfield. \n \n");

   Print( "      Each group with order $p^6$ is described by a power- \n");
   Print( "      commutator presentation on 6 generators and 21 relations:\n");
   Print( "      15 are commutator relations and 6 are power relations. \n");
   Print( "      Each presentation has the prime $p$ as a parameter. \n");
   Print( "      The database contains about 500 parametrised \n");
   Print( "      presentations, most of these have $p$ as the only \n");
   Print( "      parameter. \n");

end;

#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 24 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 24 ] := function( size, smav, num )
    local i, set, c;

    Print( "\n" );
    Print( "  The groups of squarefree order have a cylic socle and a " );
    Print( "cylic socle factor.\n" );

    Print( "\n" );
    i := 0;
    for set in smav.sets do
        c := Product( smav.primes{ set.kp } );
        if c = 1 then
            Print( "    1 is abelian\n" );
        elif set.number = 1 then
            Print( "    ", i + 1, " has socle C_" );
            Print( size / c, " and factor C_", c, "\n" );
        else
            Print( "    ", i + 1, " - ", i + set.number, " have socle C_" );
            Print( size / c, " and factor C_", c, "\n" );
        fi;
        i := i + set.number;
    od;
end;

#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 25 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 25 ] := function( size, smav, num )
    local i, set, c;
    Print( "\n" );
    Print( "  The groups of cubefree order are either solvable or a direct ",
           "product of \n  the form PSL( 2, p ) x solvable group. ",
           "The cubefree solvable groups are \n  determined by their Frattini",
           " factor.\n\n" );

    i := 0;
    for set in smav.sets do
      if set.psl_p = 1 then
        if set.size_phi = 1 then
          if set.number = 1 then
            Print( "    ", i + 1, " is solvable and Frattini free\n" );
          else
            Print( "    ", i + 1, " - ", i + set.number, " are solvable ",
                   "and Frattini free\n" );
          fi;
        else
          if set.number = 1 then
            Print( "    ", i + 1, " is solvable with Frattini factor of ",
                   "size ", set.size_ff, "\n" );
          else
            Print( "    ", i + 1, " - ", i + set.number, " are solvable ",
                   "with Frattini factor of size ", set.size_ff, "\n" );
          fi;
        fi;
      elif
        set.size_ff = 1 then
          Print( "    ", i + 1, " is PSL( 2, ", set.psl_p, " )\n" );
      else
        if set.size_phi = 1 then
          if set.number = 1 then
            Print( "    ", i + 1, " is PSL( 2, ", set.psl_p, " ) x F, F ",
                   "solvable and Frattini free of order ", set.size_ff, "\n");
          else
            Print( "    ", i + 1, " - ", i + set.number, " are PSL( 2, ",
                   set.psl_p, " ) x F_i, F_i solvable ",
                   "Frattini free of order ", set.size_ff, "\n" );
          fi;
        else
          if set.number = 1 then
            Print( "    ", i + 1, " is PSL( 2, ", set.psl_p, " ) x G, G ",
                   "solvable of order ", set.size_ff * set.size_phi,
                   " with a Frattini factor\n      of order ", set.size_ff,
                   "\n");
          else
            Print( "    ", i + 1, " - ", i + set.number, " are PSL( 2, ",
                   set.psl_p, " ) x G_i, G_i ", "solvable of order ",
                   set.size_ff * set.size_phi, " with a",
                   "\n      Frattini factor of order ", set.size_ff, "\n");
          fi;
        fi;
      fi;
      i := i + set.number;
    od;
end;

#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 26 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 26 ] := function( size, smav, num )

   Print( " \n");
   Print( "      E.A. O'Brien and M.R. Vaughan-Lee determined presentations\n");
   Print( "      of the groups with order p^7. A preprint of their paper is\n");
   Print( "      available at\n" );
   Print( "      http://www.math.auckland.ac.nz/%7Eobrien/research/p7/paper-p7.pdf\n\n" ); 
   Print( "      For p in { 3, 5, 7, 11 } explicit lists of groups of order\n");
   Print( "      p^7 have been produced and stored into the database.\n\n");
   Print( "      Giving the power commutator presentations of any of these\n");
   Print( "      groups using a standard notation they might be reduced to 35\n");
   Print( "      elements of the group or a 245 p-digit number.\n\n");
   Print( "      Only 56 of these digits may be unlike 0 for any group and\n");
   Print( "      even these 56 digits are mostly like 0. Further on these\n");
   Print( "      digits are often quite likely for sequences of subsequent\n");
   Print( "      groups. Thus storage of groups was done by finding a so\n");
   Print( "      called head group and a so called tail. Along the tail\n");
   Print( "      only the different digits compared to the head are relevant.\n");
   Print( "      Even the tails occur more or less often and this is used\n");
   Print( "      to improve storage too. Since p^7 is too big the data is\n");
   Print( "      stored into some remaing holes of SMALL_GROUP_LIB at\n");
   Print( "      Primes[ p + 10 ].\n");

end;