/usr/share/gap/small/smlinfo.gi is in gap-small-groups 4r6p5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 | #############################################################################
##
#W smlinfo.gi GAP group library Hans Ulrich Besche
## Bettina Eick, Eamonn O'Brien
##
## This file contains the ...
##
#############################################################################
##
#F SMALL_GROUPS_INFORMATION
##
## ...
SMALL_GROUPS_INFORMATION := [ ];
#############################################################################
##
#F SmallGroupsInformation( size )
##
## ...
InstallGlobalFunction( SmallGroupsInformation, function( size )
local smav, idav, num, lib, t;
smav := SMALL_AVAILABLE( size );
idav := ID_AVAILABLE( size );
if size = 1024 then
Print( "The groups of size 1024 are not available. \n");
return;
fi;
if smav = fail then
Print( "The groups of size ", size, " are not available. \n");
return;
fi;
lib := 1;
if IsBound( smav.lib ) then
lib := smav.lib;
fi;
if IsBound( smav.number ) then
num := smav.number;
else
num := NUMBER_SMALL_GROUPS_FUNCS[ smav.func ]( size, smav ).number;
fi;
if num = 1 then
Print("\n There is 1 group of order ",size,".\n");
else
Print("\n There are ",num," groups of order ",size,".\n" );
fi;
SMALL_GROUPS_INFORMATION[ smav.func ]( size, smav, num );
Print("\n This size belongs to layer ",lib,
" of the SmallGroups library. \n");
if idav <> fail then
Print(" IdSmallGroup is available for this size. \n \n");
else
Print(" IdSmallGroup is not available for this size. \n \n");
fi;
end );
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 1 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 1 ] := function( size, smav, num )
local all, i;
all := AllSmallGroups( size );
for i in [ 1 .. Length( all ) ] do
if HasNameIsomorphismClass( all[ i ] ) then
Print(" ",i," is of type ",NameIsomorphismClass(all[i]),".\n");
else
if HasNameIsomorphismClass( all[ i - 1 ] ) then
Print( " ", i, " - ", Length(all)-1, " are of types " );
if smav.func = 6 then
Print( smav.q,":",smav.p,"+",smav.q,":",smav.p,".\n" );
else
Print( smav.q,":",smav.p,"+",smav.r,":",smav.p,".\n" );
fi;
fi;
fi;
od;
Print("\n");
Print(" The groups whose order factorises in at most 3 primes \n");
Print(" have been classified by O. Hoelder. This classification is \n");
Print(" used in the SmallGroups library. \n");
end;
SMALL_GROUPS_INFORMATION[ 2 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 3 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 4 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 5 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 6 ] := SMALL_GROUPS_INFORMATION[ 1 ];
SMALL_GROUPS_INFORMATION[ 7 ] := SMALL_GROUPS_INFORMATION[ 1 ];
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 8 .. 10 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 8 ] := function( size, smav, num )
local ffid, prop, i, l;
ffid := IdGroup( OneSmallGroup( size, FrattinifactorSize, size ) );
prop := PROPERTIES_SMALL_GROUPS[ size ].frattFacs;
if not IsPrimePowerInt( size ) then
Print(" They are sorted by their Frattini factors. \n");
i := 1;
if ffid[ 2 ] > 1 then
repeat
if prop.pos[ i ][ 1 ] = -prop.pos[ i ][ 2 ] then
Print( " ", prop.pos[ i ][ 1 ],
" has Frattini factor ", prop.frattFacs[ i ], ".\n" );
else
Print( " ", prop.pos[ i ][ 1 ], " - ",
-prop.pos[ i ][ 2 ], " have Frattini factor ",
prop.frattFacs[ i ], ".\n" );
fi;
i := i + 1;
until prop.frattFacs[ i ] = ffid;
fi;
Print(" ", ffid[2], " - ", num,
" have trivial Frattini subgroup.\n");
else
Print(" They are sorted by their ranks. \n");
Print(" ", 1, " is cyclic. \n");
i := 2;
repeat
l := Length( Factors( prop.frattFacs[ i ][1] ) );
if prop.pos[ i ][ 1 ] = -prop.pos[ i ][ 2 ] then
Print( " ", prop.pos[ i ][ 1 ], " has rank ", l, ".\n" );
else
Print( " ", prop.pos[ i ][ 1 ], " - ",
-prop.pos[ i ][ 2 ], " have rank ", l, ".\n" );
fi;
i := i + 1;
until prop.frattFacs[ i ] = ffid;
Print(" ", ffid[2], " is elementary abelian. \n");
fi;
Print( "\n For the selection functions the values of the ",
"following attributes \n are precomputed and stored:\n ");
if IsPrimePowerInt( size ) then
Print( " IsAbelian, PClassPGroup, RankPGroup,",
" FrattinifactorSize and \n FrattinifactorId. \n");
else
Print( " IsAbelian, IsNilpotentGroup,",
" IsSupersolvableGroup, IsSolvableGroup, \n LGLength,",
" FrattinifactorSize and FrattinifactorId. \n");
fi;
end;
SMALL_GROUPS_INFORMATION[ 9 ] := SMALL_GROUPS_INFORMATION[ 8 ];
SMALL_GROUPS_INFORMATION[ 10 ] := SMALL_GROUPS_INFORMATION[ 8 ];
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 11, 17 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 11 ] := function( size, smav, num )
local i, q;
q := 2;
if IsBound( smav.q ) then q := smav.q; fi;
Print(" They are sorted by normal Sylow subgroups. \n");
Print( " 1 - ", smav.pos[ 2 ], " are the nilpotent groups.\n" );
for i in [ 2 .. Length( smav.types ) ] do
Print( " ", smav.pos[i] + 1, " - ", smav.pos[i+1] );
if smav.types[ i ] = "p-autos" then
Print( " have a normal Sylow ", q,"-subgroup. \n");
elif smav.types[ i ] = "none-p-nil" then
Print( " have no normal Sylow subgroup. \n");
elif IsInt( smav.types[ i ] ) then
Print( " have a normal Sylow ", smav.p, "-subgroup \n");
Print( " with centralizer of index ");
Print( q^smav.types[i],".\n");
fi;
od;
end;
SMALL_GROUPS_INFORMATION[ 17 ] := SMALL_GROUPS_INFORMATION[ 11 ];
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 12 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 12 ] := function( size, smav, num )
if size = 1152 then
Print(" There are sorted using Sylow subgroups. \n");
Print(" 1 - 2328 are nilpotent with Sylow 3-subgroup c9.\n" );
Print(" 2329 - 4656 are nilpotent with Sylow 3-subgroup 3^2.\n");
Print(" 4657 - 153312 are non-nilpotent with normal ");
Print("Sylow 3-subgroup.\n");
Print(" 153313 - 157877 have no normal Sylow 3-subgroup.\n");
return;
fi;
Print(" There are sorted using Hall subgroups. \n");
Print( " 1 - 2328 are the nilpotent groups.\n" );
Print( " 2329 - 236344 have a normal Hall (3,5)-subgroup.\n");
Print( " 236345 - 240416 are solvable without normal Hall",
" (3,5)-subgroup.\n");
Print( " 240417 - 241004 are not solvable.\n" );
end;
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 14 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 14 ] := function( size, smav, num )
Print( " 1 - 10494213 are the nilpotent groups.\n" );
Print( " 10494214 - 408526597 have a normal Sylow 3-subgroup.\n" );
Print( " 408526598 - 408544625 have a normal Sylow 2-subgroup.\n" );
Print( " 408544626 - 408641062 have no normal Sylow subgroup.\n" );
end;
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 18 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 18 ] := function( size, smav, num )
Print( " 1 is cyclic. \n");
Print( " 2 - 10 have rank 2 and p-class 3.\n" );
Print( " 11 - 386 have rank 2 and p-class 4.\n" );
Print( " 387 - 1698 have rank 2 and p-class 5.\n" );
Print( " 1699 - 2008 have rank 2 and p-class 6.\n" );
Print( " 2009 - 2039 have rank 2 and p-class 7.\n" );
Print( " 2040 - 2044 have rank 2 and p-class 8.\n" );
Print( " 2045 has rank 3 and p-class 2.\n" );
Print( " 2046 - 29398 have rank 3 and p-class 3.\n" );
Print( " 29399 - 30617 have rank 3 and p-class 4.\n" );
Print( " 30618 - 31239 have rank 3 and p-class 3.\n" );
Print( " 31240 - 56685 have rank 3 and p-class 4.\n" );
Print( " 56686 - 60615 have rank 3 and p-class 5.\n" );
Print( " 60616 - 60894 have rank 3 and p-class 6.\n" );
Print( " 60895 - 60903 have rank 3 and p-class 7.\n" );
Print( " 60904 - 67612 have rank 4 and ", "p-class 2.\n" );
Print( " 67613 - 387088 have rank 4 and ", "p-class 3.\n" );
Print( " 387089 - 419734 have rank 4 and ", "p-class 4.\n" );
Print( " 419735 - 420500 have rank 4 and ", "p-class 5.\n" );
Print( " 420501 - 420514 have rank 4 and ", "p-class 6.\n" );
Print( " 420515 - 6249623 have rank 5 and ", "p-class 2.\n" );
Print( " 6249624 - 7529606 have rank 5 and ", "p-class 3.\n" );
Print( " 7529607 - 7532374 have rank 5 and ", "p-class 4.\n" );
Print( " 7532375 - 7532392 have rank 5 and ", "p-class 5.\n" );
Print( " 7532393 - 10481221 have rank 6 and ", "p-class 2.\n" );
Print( " 10481222 - 10493038 have rank 6 and ", "p-class 3.\n" );
Print( " 10493039 - 10493061 have rank 6 and ", "p-class 4.\n" );
Print( " 10493062 - 10494173 have rank 7 ", "and p-class 2.\n" );
Print( " 10494174 - 10494200 have rank 7 ", "and p-class 3.\n" );
Print( " 10494201 - 10494212 have rank 8 ", "and p-class 2.\n" );
Print( " 10494213 is elementary abelian.\n");
end;
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 19 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 19 ] := function( size, smav, num )
Print(" They are sorted by their ranks. \n");
Print( " 1 is cyclic. \n");
Print( " 2 - 10 have rank 2. \n");
Print( " 11 - 14 have rank 3. \n");
Print( " 15 is elementary abelian. \n");
end;
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 20 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 20 ] := function( size, smav, num )
local p, a, b, c;
p := Factors(size)[1];
a:=27 + p + 2*GcdInt(p-1,3) + GcdInt(p-1,4);
b:=54 + 2*p + 2*GcdInt(p-1,3) + GcdInt(p-1,4);
c:=60 + 2*p + 2*GcdInt(p-1,3) + GcdInt(p-1,4);
Print( " They are sorted by their ranks.\n" );
Print( " 1 is cyclic.\n");
Print( " 2 - ",a," have rank 2. \n");
Print( " ",a+1," - ",b," have rank 3. \n");
Print( " ",b+1," - ",c," have rank 4. \n");
Print( " ",c+1," is elementary abelian. \n");
end;
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 21 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 21 ] := function( size, smav, num )
Print( " \n");
Print( " Easterfield (1940) constructed a list of the groups of\n");
Print( " order p^6 for p >= 5.\n \n");
Print( " The database of parametrised presentations for the groups \n");
Print( " with order p^6 for p >= 5 is based on the Easterfield \n");
Print( " list, corrected by Newman, O'Brien and Vaughan-Lee (2004).\n");
Print( " It differs only in the addition of groups in isoclinism \n");
Print( " family $\Phi_{13}$, in using the James (1980) presentations \n");
Print( " for the groups in $\Phi_{19}$, and a small number of \n");
Print( " typographical amendments. The linear ordering employed is \n");
Print( " very close to that of Easterfield. \n \n");
Print( " Each group with order $p^6$ is described by a power- \n");
Print( " commutator presentation on 6 generators and 21 relations:\n");
Print( " 15 are commutator relations and 6 are power relations. \n");
Print( " Each presentation has the prime $p$ as a parameter. \n");
Print( " The database contains about 500 parametrised \n");
Print( " presentations, most of these have $p$ as the only \n");
Print( " parameter. \n");
end;
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 24 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 24 ] := function( size, smav, num )
local i, set, c;
Print( "\n" );
Print( " The groups of squarefree order have a cylic socle and a " );
Print( "cylic socle factor.\n" );
Print( "\n" );
i := 0;
for set in smav.sets do
c := Product( smav.primes{ set.kp } );
if c = 1 then
Print( " 1 is abelian\n" );
elif set.number = 1 then
Print( " ", i + 1, " has socle C_" );
Print( size / c, " and factor C_", c, "\n" );
else
Print( " ", i + 1, " - ", i + set.number, " have socle C_" );
Print( size / c, " and factor C_", c, "\n" );
fi;
i := i + set.number;
od;
end;
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 25 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 25 ] := function( size, smav, num )
local i, set, c;
Print( "\n" );
Print( " The groups of cubefree order are either solvable or a direct ",
"product of \n the form PSL( 2, p ) x solvable group. ",
"The cubefree solvable groups are \n determined by their Frattini",
" factor.\n\n" );
i := 0;
for set in smav.sets do
if set.psl_p = 1 then
if set.size_phi = 1 then
if set.number = 1 then
Print( " ", i + 1, " is solvable and Frattini free\n" );
else
Print( " ", i + 1, " - ", i + set.number, " are solvable ",
"and Frattini free\n" );
fi;
else
if set.number = 1 then
Print( " ", i + 1, " is solvable with Frattini factor of ",
"size ", set.size_ff, "\n" );
else
Print( " ", i + 1, " - ", i + set.number, " are solvable ",
"with Frattini factor of size ", set.size_ff, "\n" );
fi;
fi;
elif
set.size_ff = 1 then
Print( " ", i + 1, " is PSL( 2, ", set.psl_p, " )\n" );
else
if set.size_phi = 1 then
if set.number = 1 then
Print( " ", i + 1, " is PSL( 2, ", set.psl_p, " ) x F, F ",
"solvable and Frattini free of order ", set.size_ff, "\n");
else
Print( " ", i + 1, " - ", i + set.number, " are PSL( 2, ",
set.psl_p, " ) x F_i, F_i solvable ",
"Frattini free of order ", set.size_ff, "\n" );
fi;
else
if set.number = 1 then
Print( " ", i + 1, " is PSL( 2, ", set.psl_p, " ) x G, G ",
"solvable of order ", set.size_ff * set.size_phi,
" with a Frattini factor\n of order ", set.size_ff,
"\n");
else
Print( " ", i + 1, " - ", i + set.number, " are PSL( 2, ",
set.psl_p, " ) x G_i, G_i ", "solvable of order ",
set.size_ff * set.size_phi, " with a",
"\n Frattini factor of order ", set.size_ff, "\n");
fi;
fi;
fi;
i := i + set.number;
od;
end;
#############################################################################
##
#F SMALL_GROUPS_INFORMATION[ 26 ]( size, smav, num )
##
SMALL_GROUPS_INFORMATION[ 26 ] := function( size, smav, num )
Print( " \n");
Print( " E.A. O'Brien and M.R. Vaughan-Lee determined presentations\n");
Print( " of the groups with order p^7. A preprint of their paper is\n");
Print( " available at\n" );
Print( " http://www.math.auckland.ac.nz/%7Eobrien/research/p7/paper-p7.pdf\n\n" );
Print( " For p in { 3, 5, 7, 11 } explicit lists of groups of order\n");
Print( " p^7 have been produced and stored into the database.\n\n");
Print( " Giving the power commutator presentations of any of these\n");
Print( " groups using a standard notation they might be reduced to 35\n");
Print( " elements of the group or a 245 p-digit number.\n\n");
Print( " Only 56 of these digits may be unlike 0 for any group and\n");
Print( " even these 56 digits are mostly like 0. Further on these\n");
Print( " digits are often quite likely for sequences of subsequent\n");
Print( " groups. Thus storage of groups was done by finding a so\n");
Print( " called head group and a so called tail. Along the tail\n");
Print( " only the different digits compared to the head are relevant.\n");
Print( " Even the tails occur more or less often and this is used\n");
Print( " to improve storage too. Since p^7 is too big the data is\n");
Print( " stored into some remaing holes of SMALL_GROUP_LIB at\n");
Print( " Primes[ p + 10 ].\n");
end;
|