/usr/share/gap/prim/primitiv.gi is in gap-prim-groups 4r6p5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 | #############################################################################
##
#W primitiv.gi GAP primitive groups library Alexander Hulpke
##
##
#Y Copyright (C) 1999, School Math.&Comp. Sci., University of St Andrews
##
## This file contains the routines for the primitive groups library
##
Unbind(PRIMGRP);
#############################################################################
##
#V PRIMGRP
## Generators, names and properties of the primitive groups.
## entries are
## 1: id
## 2: size
## 3: Simple+2*Solvable
## 4: ONan-Scott-type
## 5: Collected suborbits
## 6: Transitivity
## 7: name
## 8: socle type
## 9: generators
PRIMGRP:=[];
#############################################################################
##
#V PRIMLOAD
##
## Queue of order in which the groups were loaded.
PRIMLOAD:=[];
BIND_GLOBAL("PrimGrpLoad",function(deg)
local s,fname,ind,new;
if not IsBound(PRIMGRP[deg]) then
if not (deg in PRIMRANGE and IsBound(PRIMINDX[deg])) then
Error("Primitive groups of degree ",deg," are not known!");
fi;
# are there too many groups stored?
s:=Sum(Filtered(PRIMGRP,i->IsBound(i)),Length);
if IsBound(PRIMLOAD[1]) then
while s>200 do
s:=s-PRIMLENGTHS[PRIMLOAD[1]];
Unbind(PRIMGRP[PRIMLOAD[1]]);
PRIMLOAD:=PRIMLOAD{[2..Length(PRIMLOAD)]}; od;
fi;
ind:=PRIMINDX[deg];
new:=Filtered([1..Length(PRIMINDX)],i->PRIMINDX[i]=ind);
fname:=Concatenation("gps",String(ind));
ReadGapRoot( Concatenation( "prim/grps/", fname, ".g" ) );
# store the degree
PRIMLOAD:=Filtered(PRIMLOAD,i->not i in new);
Append(PRIMLOAD,new);
fi;
end);
BIND_GLOBAL("PRIMGrp",function(deg,nr)
PrimGrpLoad(deg);
if nr>PRIMLENGTHS[deg] then
Error("There are only ",PRIMLENGTHS[deg]," groups of degree ",deg,"\n");
fi;
return PRIMGRP[deg][nr];
end);
InstallGlobalFunction(NrPrimitiveGroups, function(deg)
if not IsBound(PRIMLENGTHS[deg]) then
PrimGrpLoad(deg);
fi;
return PRIMLENGTHS[deg];
end);
InstallGlobalFunction( PrimitiveGroup, function(deg,num)
local l,g,fac,mats,perms,v,t;
l:=PRIMGrp(deg,num);
# special case: Symmetric and Alternating Group
if l[9]="Alt" then
g:=AlternatingGroup(deg);
SetName(g,Concatenation("A(",String(deg),")"));
elif l[9]="Sym" then
g:=SymmetricGroup(deg);
SetName(g,Concatenation("S(",String(deg),")"));
elif l[9] = "psl" then
g:= PSL(2, deg-1);
SetName(g, Concatenation("PSL(2,", String(deg-1),")"));
elif l[9] = "pgl" then
g:= PGL(2, deg-1);
SetName(g, Concatenation("PGL(2,", String(deg-1), ")"));
elif l[4] = "1" then
if Length(l[9]) > 0 then
fac:= Factors(deg);
mats:=List(l[9],i->ImmutableMatrix(GF(fac[1]),i));
v:=Elements(GF(fac[1])^Length(fac));
perms:=List(mats,i->Permutation(i,v,OnRight));
t:=First(v,i->not IsZero(i)); # one nonzero translation
#suffices as matrix
# action is irreducible
Add(perms,Permutation(t,v,function(i,j) return i+j;end));
g:= Group(perms);
SetSize(g, l[2]);
else
g:= Image(IsomorphismPermGroup(CyclicGroup(deg)));
fi;
if IsString(l[7]) and Length(l[7])>0 then
SetName(g, l[7]);
fi;
else
g:= GroupByGenerators( l[9], () );
if IsString(l[7]) and Length(l[7])>0 then
SetName(g,l[7]);
#else
# SetName(g,Concatenation("p",String(deg),"n",String(num)));
fi;
SetSize(g,l[2]);
fi;
SetPrimitiveIdentification(g,l[1]);
SetONanScottType(g,l[4]);
SetSocleTypePrimitiveGroup(g,rec(series:=l[8][1],
parameter:=l[8][2],
width:=l[8][3]));
if l[3] = 0 then
SetIsSimpleGroup(g, false);
SetIsSolvableGroup(g, false);
elif l[3] = 1 then
SetIsSimpleGroup(g, true);
SetIsSolvableGroup(g, false);
elif l[3] = 2 then
SetIsSimpleGroup(g, false);
SetIsSolvableGroup(g, true);
elif l[3] = 3 then
SetIsSimpleGroup(g, true);
SetIsSolvableGroup(g, true);
fi;
SetTransitivity(g, l[6]);
if deg<=50 then
SetSimsNo(g,l[10]);
fi;
return g;
end );
# local cache for `PrimitiveIdentification':
PRILD:=0;
PGICS:=[];
InstallMethod(PrimitiveIdentification,"generic",true,[IsPermGroup],0,
function(grp)
local dom,deg,PD,s,cand,a,p,s_quot,b,cs,n,beta,alpha,i,ag,bg,q,gl,hom;
dom:=MovedPoints(grp);
if not (IsTransitive(grp,dom) and IsPrimitive(grp,dom)) then
Error("Group must operate primitively");
fi;
deg:=Length(dom);
PrimGrpLoad(deg);
PD:=PRIMGRP[deg];
if IsNaturalAlternatingGroup(grp) then
SetSize(grp, Factorial(deg)/2);
elif IsNaturalSymmetricGroup(grp) then
SetSize(grp, Factorial(deg));
fi;
s:=Size(grp);
# size
cand:=Filtered([1..PRIMLENGTHS[deg]],i->PD[i][2]=s);
#ons
if Length(cand)>1 and Length(Set(PD{cand},i->i[4]))>1 then
a:=ONanScottType(grp);
cand:=Filtered(cand,i->PD[i][4]=a);
fi;
# suborbits
if Length(cand)>1 and Length(Set(PD{cand},i->i[5]))>1 then
a:=Collected(List(Orbits(Stabilizer(grp,dom[1]),dom{[2..Length(dom)]}),
Length));
cand:=Filtered(cand,i->Set(PD[i][5])=Set(a));
fi;
# Transitivity
if Length(cand)>1 and Length(Set(PD{cand},i->i[6]))>1 then
a:=Transitivity(grp,dom);
cand:=Filtered(cand,i->PD[i][6]=a);
fi;
if Length(cand)>1 then
# now we need to create the groups
p:=List(cand,i->PrimitiveGroup(deg,i));
# in product action case, some tests on the socle quotient.
if ONanScottType(grp) = "4c" then
#first we just identify its isomorphism type
s:= Socle(grp);
s_quot:= FactorGroup(grp, s);
a:= IdGroup(s_quot);
b:= [];
for i in [1..Length(cand)] do
b[i]:= IdGroup(FactorGroup(p[i], Socle(p[i])));
od;
s:= Filtered([1..Length(cand)], i->b[i] =a);
cand:= cand{s};
p:= p{s};
fi;
fi;
if Length(cand)>1 then
# sylow orbits
gl:=Reversed(Set(Factors(Size(grp))));
while Length(cand)>1 and Length(gl)>0 do
a:=Collected(List(Orbits(SylowSubgroup(grp,gl[1]),MovedPoints(grp)),
Length));
b:=[];
for i in [1..Length(cand)] do
b[i]:=Collected(List(Orbits(SylowSubgroup(p[i],gl[1]),
MovedPoints(p[i])),
Length));
od;
s:=Filtered([1..Length(cand)],i->b[i]=a);
cand:=cand{s};
p:=p{s};
gl:=gl{[2..Length(gl)]};
od;
fi;
if Length(cand) > 1 then
# Some further tests for the sylow subgroups
for q in Set(Factors(Size(grp)/Size(Socle(grp)))) do
if q=1 then
q:=2;
fi;
ag:=Image(IsomorphismPcGroup(SylowSubgroup(grp,q)));
# central series
a:=List(LowerCentralSeries(ag),Size);
b:=[];
for i in [1..Length(cand)] do
bg:=Image(IsomorphismPcGroup(SylowSubgroup(p[i],q)));
b[i]:=List(LowerCentralSeries(bg),Size);
od;
s:=Filtered([1..Length(cand)],i->b[i]=a);
cand:=cand{s};
p:=p{s};
if Length(cand)>1 then
# Frattini subgroup
a:=Size(FrattiniSubgroup(ag));
b:=[];
for i in [1..Length(cand)] do
bg:=Image(IsomorphismPcGroup(SylowSubgroup(p[i],q)));
b[i]:=Size(FrattiniSubgroup(bg));
od;
s:=Filtered([1..Length(cand)],i->b[i]=a);
cand:=cand{s};
p:=p{s};
fi;
if Length(cand)>1 and Size(ag)<512 then
# Isomorphism type of 2-Sylow
a:=IdGroup(ag);
b:=[];
for i in [1..Length(cand)] do
bg:=Image(IsomorphismPcGroup(SylowSubgroup(p[i],q)));
b[i]:=IdGroup(bg);
od;
s:=Filtered([1..Length(cand)],i->b[i]=a);
cand:=cand{s};
p:=p{s};
fi;
od;
fi;
#back for a closer look at the product action groups.
if Length(cand) > 1 and ONanScottType(grp) = "4c" then
#just here out of curiosity during testing.
#Print("cand =", cand, "\n");
#now we construct the action of the socle quotient as a
#(necessarily transitive) action on the socle factors.
s:= Socle(grp);
cs:= CompositionSeries(s);
cs:= cs[Length(cs)-1];
n:= Normalizer(grp, cs);
beta:= FactorCosetAction(grp, n);
alpha:= FactorCosetAction(n, ClosureGroup(Centralizer(n, cs), s));
a:= TransitiveIdentification(Group(KuKGenerators(grp, beta, alpha)));
b:= [];
for i in [1..Length(cand)] do
s:= Socle(p[i]);
cs:= CompositionSeries(s);
cs:= cs[Length(cs)-1];
n:= Normalizer(p[i], cs);
beta:= FactorCosetAction(p[i], n);
alpha:= FactorCosetAction(n, ClosureGroup(Centralizer(n, cs), s));
b[i]:= TransitiveIdentification(Group(KuKGenerators(p[i], beta, alpha)));
od;
s:= Filtered([1..Length(cand)], i->b[i]=a);
cand:= cand{s};
p:= p{s};
fi;
if Length(cand)>1 then
# Klassen
a:=Collected(List(ConjugacyClasses(grp:onlysizes),
i->[CycleStructurePerm(Representative(i)),Size(i)]));
# use caching
if deg<>PRILD then
PRILD:=deg;
PGICS:=[];
fi;
b:=[];
for i in [1..Length(cand)] do
if not IsBound(PGICS[cand[i]]) then
PGICS[cand[i]]:=Collected(List(ConjugacyClasses(p[i]:onlysizes),
j->[CycleStructurePerm(Representative(j)),Size(j)]));
fi;
b[i]:=PGICS[cand[i]];
od;
s:=Filtered([1..Length(cand)],i->b[i]=a);
cand:=cand{s};
p:=p{s};
fi;
if Length(cand)>1 and ForAll(p,i->ONanScottType(i)="1")
and ONanScottType(grp)="1" then
gl:=Factors(NrMovedPoints(grp));
gl:=GL(Length(gl),gl[1]);
hom:=IsomorphismPermGroup(gl);
s:=List(p,i->Subgroup(gl,LinearActionLayer(i,Pcgs(Socle(i)))));
b:=Subgroup(gl,LinearActionLayer(grp,Pcgs(Socle(grp))));
s:=Filtered([1..Length(cand)],
i->RepresentativeAction(Image(hom,gl),Image(hom,s[i]),Image(hom,b))<>fail);
cand:=cand{s};
p:=p{s};
fi;
if Length(cand)=1 then
return cand[1];
else
Error("Uh-Oh, this should never happen ",cand);
return cand[1];
fi;
end);
InstallMethod(SimsNo,"via `PrimitiveIdentification'",true,[IsPermGroup],0,
function(grp)
local dom;
dom:=MovedPoints(grp);
if not IsTransitive(grp,dom) and IsPrimitive(grp,dom) then
Error("Group must operate primitively");
fi;
return SimsNo(PrimitiveGroup(Length(dom),PrimitiveIdentification(grp)));
end);
##
#R IsPrimGrpIterRep
##
DeclareRepresentation("IsPrimGrpIterRep",IsComponentObjectRep,[]);
# function used by the iterator to get the next group or to indicate that
# finished
BindGlobal("PriGroItNext",function(it)
local g;
it!.next:=fail;
repeat
if it!.degi>Length(it!.deg) then
it!.next:=false;
else
g:=PrimitiveGroup(it!.deg[it!.degi],it!.gut[it!.deg[it!.degi]][it!.nr]);
if ForAll(it!.prop,i->STGSelFunc(i[1](g),i[2])) then
it!.next:=g;
fi;
it!.nr:=it!.nr+1;
if it!.nr>Length(it!.gut[it!.deg[it!.degi]]) then
it!.degi:=it!.degi+1;
it!.nr:=1;
while it!.degi<=Length(it!.deg) and Length(it!.gut[it!.deg[it!.degi]])=0 do
it!.degi:=it!.degi+1;
od;
fi;
fi;
until it!.degi>Length(it!.deg) or it!.next<>fail;
end);
#############################################################################
##
#F PrimitiveGroupsIterator(arglis,alle) . . . . . selection function
##
InstallGlobalFunction(PrimitiveGroupsIterator,function(arg)
local arglis,i,j,a,b,l,p,deg,gut,g,grp,nr,f,RFL,ind,it;
if Length(arg)=1 and IsList(arg[1]) then
arglis:=arg[1];
else
arglis:=arg;
fi;
l:=Length(arglis)/2;
if not IsInt(l) then
Error("wrong arguments");
fi;
deg:=PRIMRANGE;
# do we ask for the degree?
p:=Position(arglis,NrMovedPoints);
if p<>fail then
p:=arglis[p+1];
if IsInt(p) then
f:=not p in deg;
p:=[p];
fi;
if IsList(p) then
f:=not IsSubset(deg,Difference(p,[1]));
deg:=Intersection(deg,p);
else
# b is a function (wondering, whether anyone will ever use it...)
f:=true;
deg:=Filtered(deg,p);
fi;
else
f:=true; #warnung weil kein Degree angegeben ?
b:=true;
for a in [Size,Order] do
p:=Position(arglis,a);
if p<>fail then
p:=arglis[p+1];
if IsInt(p) then
p:=[p];
fi;
if IsList(p) then
deg := Filtered( deg,
d -> ForAny( p, k -> 0 = k mod d ) );
b := false;
f := not IsSubset( PRIMRANGE, p );
fi;
fi;
od;
if b then
Info(InfoWarning,1,"No degree restriction given!\n",
"#I A search over the whole library will take a long time!");
fi;
fi;
gut:=[];
for i in deg do
gut[i]:=[1..NrPrimitiveGroups(i)];
od;
for i in deg do
for ind in [1..l] do
a:=arglis[2*ind-1];
b:=arglis[2*ind];
# get all cheap properties first
if a=NrMovedPoints then
nr:=0; # done already
elif a=Size or a=Transitivity or a=ONanScottType then
if a=Size then
nr:=2;
elif a=Transitivity then
nr:=6;
elif a=ONanScottType then
nr:=4;
if b=1 or b=2 or b=5 then
b:=String(b);
elif b=3 then
b:=["3a","3b"];
elif b=4 then
b:=["4a","4b","4c"];
fi;
fi;
gut[i]:=Filtered(gut[i],j->STGSelFunc(PRIMGrp(i,j)[nr],b));
elif a=IsSimpleGroup or a=IsSimple then
gut[i]:=Filtered(gut[i],j->STGSelFunc(PRIMGrp(i,j)[3] mod 2=1,b));
elif a=IsSolvableGroup or a=IsSolvable then
gut[i]:=Filtered(gut[i],j->STGSelFunc(QuoInt(PRIMGrp(i,j)[3],2)=1,b));
elif a=SocleTypePrimitiveGroup then
if IsFunction(b) then
# for a function we have to translate the list form into records
RFL:=function(lst)
return rec(series:=lst[1],parameter:=lst[2],width:=lst[3]);
end;
gut[i]:=Filtered(gut[i],j->b(RFL(PRIMGrp(i,j)[8])));
else
# otherwise we may bring b into the form we want
if IsRecord(b) then
b:=[b];
fi;
if IsList(b) and IsRecord(b[1]) then
b:=List(b,i->[i.series,i.parameter,i.width]);
fi;
gut[i]:=Filtered(gut[i],j->PRIMGrp(i,j)[8] in b);
fi;
fi;
od;
od;
if f then
Print( "#W AllPrimitiveGroups: Degree restricted to [ 1 .. ",
PRIMRANGE[ Length( PRIMRANGE ) ], " ]\n" );
fi;
# the rest is hard.
# find the properties we have not stored
p:=[];
for i in [1..l] do
if not arglis[2*i-1] in
[NrMovedPoints,Size,Transitivity,ONanScottType,IsSimpleGroup,IsSimple,
IsSolvableGroup,IsSolvable,SocleTypePrimitiveGroup] then
Add(p,arglis{[2*i-1,2*i]});
fi;
od;
it:=Objectify(NewType(IteratorsFamily,
IsIterator and IsPrimGrpIterRep and IsMutable),rec());
it!.deg:=deg;
i:=1;
while i<=Length(deg) and Length(gut[deg[i]])=0 do
i:=i+1;
od;
it!.degi:=i;
it!.nr:=1;
it!.prop:=p;
it!.gut:=gut;
PriGroItNext(it);
return it;
end);
InstallMethod(IsDoneIterator,"primitive groups iterator",true,
[IsPrimGrpIterRep and IsIterator and IsMutable],0,
function(it)
return it!.next=false or it!.next=fail;
end);
InstallMethod(NextIterator,"primitive groups iterator",true,
[IsPrimGrpIterRep and IsIterator and IsMutable],0,
function(it)
local g;
g:=it!.next;
if g=false or g=fail then
Error("iterator ran out");
fi;
PriGroItNext(it); # next value
return g;
end);
#############################################################################
##
#F AllPrimitiveGroups( <fun>, <res>, ... ) . . . . . . . selection function
##
InstallGlobalFunction(AllPrimitiveGroups,function ( arg )
local l,g,it;
it:=PrimitiveGroupsIterator(arg);
l:=[];
for g in it do
Add(l,g);
od;
return l;
end);
#############################################################################
##
#F OnePrimitiveGroup( <fun>, <res>, ... ) . . . . . . . selection function
##
InstallGlobalFunction(OnePrimitiveGroup,function ( arg )
local l,g,it;
it:=PrimitiveGroupsIterator(arg);
if IsDoneIterator(it) then
return fail;
else
return NextIterator(it);
fi;
end);
# some trivial or useless functions for nitpicking compatibility
BindGlobal("NrAffinePrimitiveGroups",
function(x)
if x=1 then
return 1;
else
return Length(AllPrimitiveGroups(NrMovedPoints,x,ONanScottType,"1"));
fi;
end);
BindGlobal("NrSolvableAffinePrimitiveGroups",
x->Length(AllPrimitiveGroups(NrMovedPoints,x,IsSolvableGroup,true)));
DeclareSynonym("SimsName",Name);
BindGlobal("PrimitiveGroupSims",
function(d,n)
return OnePrimitiveGroup(NrMovedPoints,d,SimsNo,n);
end);
# maximal subgroups routine.
# precomputed data up to degree 50 (so it will be quick is most cases).
# (As there is no independent check for the primitive groups of degree >50,
# we rather do not refer to them, but only use them in a calculation.)
BindGlobal("SNMAXPRIMS",[[],[],[],[],[],[2],[],[5],[],[7],[],[4],
[],[2],[],[],[],[2],[],[2],[1,3,7],[2],[],[3],[],[5],[],[12],[],[2],[],[5],[],
[],[],[12],[],[2],[],[4,6],[],[2],[],[2],[5],[],[],[2],[],[7],[],[],[],[2],[6],
[7,5],[],[],[],[7],[],[2],[2],[],[2],[],[],[3,5],[],[],[],[2],[],[2],[],[],[],
[2,4],[],[2],[],[8],[],[2,4],[4],[],[],[],[],[2],[8],[],[],[],[],[],[],[2],[],
[4,2],[],[3],[],[2],[7,9],[],[],[2],[],[2],[],[],[],[2],[],[],[],[],[],[10],[],
[5],[],[],[],[2,17,11],[],[5],[],[5],[],[2],[],[],[],[12],[],[2],[],[2],[],[],
[],[],[],[],[],[],[],[2],[],[2],[],[],[],[7],[],[2],[],[],[],[5],[],[2],[2],
[],[],[7],[],[5],[4,2],[],[],[2],[2],[],[],[],[],[2],[],[2],[],[],[],[],[],[],
[],[],[],[2],[],[2],[],[],[],[2],[],[2],[],[],[],[],[],[],[],[],[],[4],[],[2],
[],[],[],[],[],[],[],[3],[],[],[],[2],[],[],[],[2],[],[2],[],[],[],[4],[],[],
[],[],[],[2],[],[2],[],[4],[],[],[],[],[],[],[],[2],[7,2],[],[],[],[],[2],[],
[],[],[],[],[2],[],[],[],[],[],[2],[],[2],[],[],[],[],[],[2],[],[2,20,22],[],
[2],[],[2],[],[2],[],[],[],[5],[],[],[],[2],[],[],[2],[],[],[9,5,7],[],[],[],[],
[],[],[],[2],[],[],[],[2],[],[2],[3],[],[],[2],[],[],[],[],[],[],[5],[],[],[],
[],[],[],[2],[],[],[],[],[],[2],[],[],[2],[],[],[6],[],[],[],[2],[],[2],
[9,4,6],[],[],[2],[],[],[5],[],[],[18],[],[5],[],[9,4],[],[],[],[2],[3],[],[],
[],[],[2],[],[],[],[],[],[2],[],[],[],[2],[],[],[],[],[],[2],[],[],[],[],[],
[],[],[2],[],[6],[],[2],[],[],[],[4,2],[],[],[],[2],[],[],[],[],[],[],[],[],
[],[2],[],[2],[],[],[1],[],[],[],[],[],[],[2],[],[2],[],[],[],[],[],[2],[],[],
[],[2],[],[],[],[],[],[2],[],[],[],[],[],[],[],[2],[],[],[],[6],[],[2],[5,2,3],
[],[],[2],[],[],[],[],[],[],[],[],[],[],[],[2],[],[],[],[],[],[],[],[2],[],
[],[],[2],[],[],[],[],[],[],[],[2],[],[],[],[6],[],[],[],[],[],[2],[],[],[],
[],[],[],[],[],[],[7],[],[2],[],[2],[6],[],[],[7],[],[5],[],[],[],[],[],[],[],
[],[],[8],[],[2],[],[],[],[],[],[2],[],[],[],[],[],[],[],[],[],[2],[],[4],[],
[],[],[2],[],[],[],[],[],[2],[],[2],[],[],[],[],[],[2],[],[],[],[],[],[],[],
[],[],[2],[],[],[],[],[],[2],[2],[],[],[],[],[2],[],[2],[],[],[],[],[],[2],[],
[],[],[],[],[2],[],[],[],[2],[],[3],[],[],[],[],[],[8],[],[],[],[],[],[2],[],
[],[],[],[],[],[],[],[],[2],[],[2],[],[],[],[2],[],[],[],[],[],[2],[],[],[],
[],[],[7],[],[2],[],[],[],[4,2],[],[],[],[],[],[],[],[2],[],[],[],[2],[],[2],
[],[],[],[2],[],[],[],[],[],[],[],[2],[4],[],[],[],[],[],[],[],[],[2],[],[],
[],[],[],[],[],[2],[],[],[],[],[2],[],[],[],[],[2],[],[],[],[],[],[],[],[2],
[],[13,3],[],[],[],[2],[],[],[],[],[],[2],[2],[],[],[2],[],[],[],[],[],[1],[],
[2],[],[],[],[],[],[2],[],[],[],[2],[],[],[2],[],[],[],[],[2],[],[],[],[2],[1],
[],[],[],[],[],[],[],[],[],[],[],[],[2],[],[],[],[],[],[],[],[],[],[2],[],
[],[],[],[],[],[],[8],[],[],[],[2],[],[2],[],[],[],[],[],[],[4],[11,2,19],[],
[2],[],[2],[],[],[],[2],[],[2],[],[],[],[],[],[],[],[],[],[6],[],[5],[],[],[],
[],[],[],[],[],[],[],[],[2],[],[],[],[2],[],[2],[],[],[],[2],[],[],[],[],[],
[],[],[],[],[],[],[],[],[2],[],[],[],[2],[],[2],[],[],[],[2],[],[],[],[],[],
[],[],[],[],[],[],[],[],[],[4,2],[],[],[],[],[2],[],[3],[],[2],[],[],[],[],[],
[],[],[2],[],[],[],[],[],[],[],[],[],[2],[],[],[],[],[],[],[],[2],[],[],[],
[2],[],[],[],[],[],[2],[],[],[],[],[],[2],[],[],[],[],[],[],[],[5],[],[],[],
[],[],[2],[],[],[],[2],[],[],[],[],[],[2],[],[],[],[],[],[2],[],[],[],[],[],
[2],[],[2],[],[],[],[],[],[2],[]]);
BindGlobal("ANMAXPRIMS", [[],[],[],[],[],[1],[5],[],[9],[6],[6],
[2],[7],[1],[4],[],[8],[1],[],[1],[2,6],[1],[5],[1],[],[3],[13],[6,11],[],[1],
[9,10],[4],[2],[],[2],[10,11],[],[1],[],[3,5],[],[1],[],[1],[4,7],[],[],[1],[],
[2,6],[],[1],[],[1],[5],[4,6],[1,3],[],[],
[6],[],[1],[1,4,6],[],[1,5,7,11],[5],[],
[2,4],[],[],[],[1],[14],[1],[],[],[2],[1,3],[],[1],[],[7],[],[1,3],[3],[],[],
[],[],[1],[6,7],[],[],[],[],[],[],[1],[],[1,3],[],[1,2],[],[1],[6,8],[],[],[1],
[],[1],[],[8],[],[1],[],[],[1,3],[],[2],
[5,9,14,15,17,21],[49],[4],[],[],[],[1,6,8,16],
[13],[4],[2],[3],[],[1],[1],[],[3],[6,11],
[],[1],[],[1],[],[],[],[2,4,5],[],[],[],[],[],[1],[],[1],[4],[],[1],[6],[],[1],
[],[],[],[2],[],[1],[1,5],[],[],[6],[],
[3],[1,3],[],[],[1],[1,4],[2,4],[],[],[],[1],[],[1],[2],[],[],[1],[],[],[],[4],
[],[1],[],[1],[],[],[],[1],[],[1],[],[],[1],[],[],[],[],[3],[],[2,3],[],[1],[],
[],[],[],[],[],[],[2],[],[],[],[1],[],[],[],[1],[],[1],[4],[],[],[2,3],[],[],
[],[],[],[1],[],[1],[],[3],[],[],[],[1],[],[],[],[1],[1,3,6],[],[2],[],[4],[1],
[],[],[],[],[],[1],[],[1],[],[],[],[1],[],[1],[6],[],[2],[3,6],[],[1],[],
[1,17,21],[],[1],[],[1],[1],[1],[],[],[],
[3],[],[],[],[1],[],[],[1],[],[],[2,6,8],
[],[],[],[],[],[],[1],[1],[],[],[],[1],[],[1],[1,2],[],[],[1],[],[],[],[],[],
[],[2,4,12],[],[],[],[],[2,4],[],[1],[],
[],[],[6,7],[],[1],[],[],[1],[],[],[2,5],
[],[],[],[1],[],[1],[3,5,8],[],[],[1],[],
[],[4],[],[],[17],[],[4],[],[3,7,8],[],
[],[],[1],[2],[],[],[],[],[1],[],[],[],[6,9],[],[1],[2],[],[],[1],[],[],[],[],
[],[1],[],[],[],[],[],[2],[],[1],[],[5],
[],[1],[],[],[],[1,3],[],[],[],[1],[],[],[],[],[],[4],[],[],[],[1],[],[1],[],
[],[],[],[],[],[],[],[],[1],[],[1],[4],
[],[],[],[],[1],[],[],[],[1],[],[],[],[],[],[1],[],[],[],[],[2],[2],[],[1],[],
[],[],[2,5],[],[1],[1,4],[],[],[1],[],[],[],[],[],[],[],[],[],[],[],[1],[],[],
[],[],[],[],[],[1],[],[],[],[1],[],[],[2],[3,7,10],[],[],[],[1],[],[],[],[5],
[],[1],[],[],[],[1],[1],[],[9,12],[],[],
[],[],[],[],[4,5],[],[1],[],[1],[4,5],[],[2],[3,6],[],[4],[],[],[],[],[],[],[],
[],[],[7],[],[1],[],[],[],[],[],[1],[],[],[],[],[1],[],[],[],[],[1],[],[2,3],
[2],[],[],[1],[],[],[5],[],[],[1],[],[1],[],[],[],[],[],[1],[],[],[],[],[],
[],[4],[],[],[1],[],[],[],[],[],[1],[1],[],[],[],[],[1],[],[1],[],[],[],[],[],
[1],[],[],[],[],[],[1],[],[2],[],[1],[],[1,2],[],[],[],[],[],[6],[],[],[],[2],
[],[1],[],[],[],[],[],[],[],[],[],[1],[],[1],[],[],[],[1],[],[],[1,5],[],[],
[1],[],[],[2],[],[],[6],[],[1],[],[],[],[1,3],[],[],[],[],[2],[4],[],[1],[],[],
[],[1],[],[1],[],[],[],[1],[],[],[],[],[],[],[],[1],[3],[],[],[],[],[],[],[],
[],[1],[4],[],[],[],[],[],[],[1],[],[],[],[],[1],[],[],[],[],[1],[],[],[],[],
[],[],[],[1],[],[2,12],[],[],[],[1],[],[],[],[],[],[1],[1],[],[],[1],[],[],[],
[],[],[],[],[1],[],[],[],[5],[2],[1],[1],[],[],[1],[],[],[1],[],[],[],[],[1],
[],[],[],[1],[],[],[],[],[],[2],[1],[],[],[],[],[],[],[1],[],[],[],[2],[],[],
[],[],[],[1],[],[],[],[],[],[],[],[2],[],[],[],[1],[],[1],[],[],[],[2],[],[],
[3,6],[1,10,16],[],[1],[],[1],[],[],[],[1],[],[1],[],[],[],[],[],[],[],[],[],
[2,4,5],[],[3],[],[],[],[],[],[],[],[],[],[],[],[1],[],[],[],[1],[],[1],[4],[],
[],[1],[],[],[],[],[],[],[1],[],[],[],[],[],[],[1],[],[1],[],[1],[],[1],[],[],
[],[1],[],[],[4],[],[],[],[],[],[],[],[],[],[],[],[1,3],[],[],[],[],[1],[],
[1],[],[1],[],[],[],[],[],[],[],[1],[],[],[],[],[],[],[],[],[],[1],[],[],[],
[],[],[],[],[1],[],[],[],[1],[],[],[2],[4],[],[1],[],[],[],[],[],[1],[],[],[],
[],[],[5,8],[],[4],[],[],[],[],[],[1],[2],[],[],[1],[],[],[],[],[],[1],[],[2],
[],[],[],[1],[],[],[],[],[],[1],[],[1],[2],[],[],[],[],[1],[]]);
InstallGlobalFunction(MaximalSubgroupsSymmAlt,function(arg)
local G,max,dom,n,A,S,issn,p,i,j,m,k,powdec,pd,gps,v,invol,sel,mf,l,prim;
G:=arg[1];
if Length(arg)>1 then
prim:=arg[2];
else
prim:=false;
fi;
dom:=Set(MovedPoints(G));
n:=Length(dom);
A:=AlternatingGroup(n);
issn:=Size(A)<>Size(G);
if n<3 then
if n<=2 and not issn then
return [];
else
return [TrivialSubgroup(G)];
fi;
fi;
invol:=(1,2);
if not issn then
S:=SymmetricGroup(n);
else
S:=G;
fi;
max:=[];
if issn then
Add(max,A);
fi;
# types according to Liebeck,Praeger,Saxl paper:
if not prim then
# type (a): Intransitive
# A_n is highly transitive, so we always get only one class
# all partitions in 2 not equal parts
p:=Filtered(Partitions(n,2),i->i[1]<>i[2]);
for i in p do
if issn then
m:=DirectProduct(SymmetricGroup(i[1]),SymmetricGroup(i[2]));
else
if i[2]<2 then
m:=AlternatingGroup(i[1]);
else
m:=DirectProduct(AlternatingGroup(i[1]),AlternatingGroup(i[2]));
# add a double transposition
m:=ClosureGroupAddElm(m,(1,2)(n-1,n));
SetSize(m,Factorial(i[1])*Factorial(i[2])/2);
fi;
fi;
Add(max,m);
od;
# type (b): Imprimitive
# A_n is highly transitive, so we always get only one class
# all possible block system sizes
p:=Difference(DivisorsInt(n),[1,n]);
for i in p do
# exception: Table I, 1
if n<>8 or i<>2 or issn then
m:=WreathProduct(SymmetricGroup(i),SymmetricGroup(n/i));
if not issn then
m:=AlternatingSubgroup(m);
fi;
Add(max,m);
fi;
od;
fi;
# type (c): Affine
p:=Factors(n);
if Length(Set(p))=1 then
k:=Length(p);
p:=p[1];
m:=GL(k,p);
v:=AsSSortedList(GF(p)^k);
m:=Action(m,v,OnRight);
k:=First(v,i->not IsZero(i));
m:=ClosureGroup(m,PermList(List(v,i->Position(v,i+k))));
if Size(m)<Size(S) then
if SignPermGroup(m)=1 then
#its a subgroup of A_n, but there are two classes
# (the normalizer in S_n cannot increase)
if not issn then
Add(max,m);
Add(max,m^invol);
fi;
else
# the (intersection with A_n) is a maximal subgroup
if issn then
Add(max,m);
else
# exceptions: table I and Aff(3)=A3.
if not n in [3,7,11,17,23] then
m:=AlternatingSubgroup(m);
Add(max,m);
fi;
fi;
fi;
fi;
fi;
# type (d): Diagonal
powdec:=PowerDecompositions(n);
gps:=IsomorphismTypeInfoFiniteSimpleGroup(n);
if gps<>fail then
pd:=Concatenation([[n,1]],powdec);
for i in pd do
if IsBound(gps.series) then
if gps.series="A" then
gps:=[AlternatingGroup(gps.parameter)];
elif gps.series="L" then
gps:=[PSL(gps.parameter[1],gps.parameter[2])];
elif gps.series="Z" then
gps:=[];
fi;
fi;
if not IsList(gps) then
Error("code for creation of simple groups not yet implemented");
else
# did we construct with some automorphisms?
for j in [1..Length(gps)] do
while Size(gps[j])>n do
gps[j]:=DerivedSubgroup(gps[j]);
od;
od;
gps:=List(gps,i->Image(SmallerDegreePermutationRepresentation(i)));
fi;
for j in gps do
m:=DiagonalSocleAction(j,i[2]+1);
m:=Normalizer(S,m);
if issn then
if SignPermGroup(m)=-1 then
Add(max,m);
fi;
else
if SignPermGroup(m)=-1 then
Add(max,AlternatingSubgroup(m));
else
Add(max,m);
Add(max,m^invol);
fi;
fi;
od;
od;
fi;
# type (e): Product type
for i in powdec do
if i[1]>4 then # up to s_4 we get a solvable normal subgroup
m:=WreathProductProductAction(SymmetricGroup(i[1]),SymmetricGroup(i[2]));
if issn then
# add if not contained in A_n
if SignPermGroup(m)=-1 then
Add(max,m);
fi;
else
if SignPermGroup(m)=1 then
Add(max,m);
# the wreath product is alternating, so the normalizer cannot grow
# and there must be a second class
Add(max,m^invol);
else
# the group is larger, so we have to intersect with A_n
m:=AlternatingSubgroup(m);
# but it might become imprimitive, use remark 2:
if i[2]<>2 or 2<>(i[1] mod 4) or IsPrimitive(m,[1..n]) then
Add(max,m);
fi;
fi;
fi;
fi;
od;
# type (f): Almost simple
if n>2499 then
Error("tables missing");
elif n>50 then
# all type 2 nonalt groups of right parity
k:=Factorial(n)/2;
l:=AllPrimitiveGroups(DegreeOperation,n,
i->Size(i)<k and IsSimpleGroup(Socle(i))
and not IsAbelian(Socle(i)),true,
SignPermGroup,SignPermGroup(G));
# remove obvious subgroups
Sort(l,function(a,b)return Size(a)<Size(b);end);
sel:=[];
for i in [1..Length(l)] do
if not ForAny([i+1..Length(l)],j->IsSubgroup(l[j],l[i])) then
Add(sel,i);
fi;
od;
l:=l{sel};
# remove the LPS exceptions
if n=8 then
l:=Filtered(l,i->PrimitiveIdentification(i)<>4);
elif n=36 then
l:=Filtered(l,i->PrimitiveIdentification(i)<>5);
elif n=144 then
Error("144 exception");
# this is the smallest 1/2q^4(q^2-1)^2. Its unlikely anyone will ever
# try degrees that big.
elif n>=28800 then
Error("Possible Sp4(q) exception");
fi;
# go through all and test explicitly
sel:=[1..Length(l)];
mf:=[];
for i in [Length(l),Length(l)-1..1] do
if i in sel then
Add(mf,l[i]);
for j in [1..i] do
#is there a permisomorphic primitive subgroup?
k:=IsomorphicSubgroups(l[i],l[j]);
k:=List(k,Image);
if ForAny(k,x->IsTransitive(x,[1..n]) and IsPrimitive(x,[1..n]) and
PrimitiveIdentification(x)=PrimitiveIdentification(l[j]))
then
RemoveSet(sel,j);
fi;
od;
fi;
od;
else
# use tables -- quicker
if issn then
mf:=List(SNMAXPRIMS[n],i->PrimitiveGroup(n,i));
else
mf:=List(ANMAXPRIMS[n],i->PrimitiveGroup(n,i));
fi;
fi;
Append(max,mf);
#An-split
if not issn then
for m in mf do
# does the class split? If not, the normalizer gets bigger, i.e. there
# is a larger primitive group in S_n
k:=AllPrimitiveGroups(NrMovedPoints,n,SocleTypePrimitiveGroup,
SocleTypePrimitiveGroup(m),SignPermGroup,-1);
k:=List(k,i->AlternatingSubgroup(i));
if ForAll(k,j->not IsTransitive(j,[1..n]) or not IsPrimitive(j,[1..n])
or PrimitiveIdentification(j)<>PrimitiveIdentification(m)) then
Add(max,m^invol);
fi;
od;
fi;
if dom<>[1..n] then
# map on other points
m:=MappingPermListList([1..n],dom);
max:=List(max,i->i^m);
fi;
return max;
end);
InstallMethod( MaximalSubgroupClassReps, "symmetric", true,
[ IsNaturalSymmetricGroup ], 0,
function ( G )
return MaximalSubgroupsSymmAlt(G,false);
end);
InstallMethod( MaximalSubgroupClassReps, "alternating", true,
[ IsNaturalAlternatingGroup ], 0,
function ( G )
return MaximalSubgroupsSymmAlt(G,false);
end);
#############################################################################
##
#E primitiv.gi
##
|