This file is indexed.

/usr/share/gap/prim/irredsol.gd is in gap-prim-groups 4r6p5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#############################################################################
##
#W  irredsol.gd                 GAP group library                  Mark Short
#W                                                           Burkhard Höfling
##
##
#Y  Copyright (C) 1993, Murdoch University, Perth, Australia
##
##  This file contains the  functions and  data for the  irreducible solvable
##  matrix group library.  It  contains  exactly one member  for each of  the
##  372  conjugacy  classes of  irreducible  solvable subgroups of  $GL(n,p)$
##  where $1 < n$, $p$ is a prime, and $p^n < 256$.  
##
##  By well-known  theory, this data also  doubles as a  library of primitive
##  solvable permutation groups of non-prime degree $<256$. 
##
##  This file contains the data  from Mark Short's thesis,  plus  two  groups 
##  missing from that list, subsequently discovered by Alexander Hulpke.
##

#############################################################################
##
#V  IrredSolJSGens[]  . . . . . . . . . . . . . . . generators for the groups
##
##  <ManSection>
##  <Var Name="IrredSolJSGens"/>
##
##  <Description>
##  <C>IrredSolJSGens[<A>n</A>][<A>p</A>][<A>k</A>]</C> is a generating set
##  for the <A>k</A>-th JS-maximal of GL(<A>n</A>,<A>p</A>).
##  This generating set is polycyclic, i.e. forms an AG-system for the group.
##  A JS-maximal is a maximal irreducible solvable subgroup of
##  GL(<A>n</A>,<A>p</A>)
##  (for a few exceptional small values of n and p this group isn't maximal).
##  Every group in the library is generated with reference to the generating
##  set of one of these JS-maximals, called its guardian (a group may be a
##  subgroup of several JS-maximals but it only has one guardian).
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable("IrredSolJSGens");

#############################################################################
##
#V  IrredSolGroupList[] . . . . . . . . . . . . . . description of the groups
##
##  <ManSection>
##  <Var Name="IrredSolGroupList"/>
##
##  <Description>
##  <C>IrredSolGroupList[<A>n</A>][<A>p</A>][<A>i</A>]</C> is a list containing the information
##  about the <A>i</A>-th group from GL(<A>n</A>,<A>p</A>).
##  The groups are ordered with respect to the following criteria:
##      1. Increasing size
##      2. Increasing guardian number
##  If two groups have the same size and guardian, they are in no particular
##  order.
##  <P/>
##  The list <C>IrredSolGroupList[<A>n</A>][<A>p</A>][<A>i</A>]</C> contains the following info:
##  Position: [1]:   the size of the group
##            [2]:   0 if group is linearly primitive,
##                   otherwise its minimal block size
##            [3]:   the absolute value is the number of the group's guardian,
##                   i.e. its position in 'IrredSolJSGens[<A>n</A>][<A>p</A>]',
##                   it's negative iff it equals its guardian
##            [4..]: the group's generators in normal form
##                   (with respect to its guardian's AG-system)
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable ("IrredSolGroupList");


#############################################################################
##
#F  IrreducibleSolvableGroup( <n>, <p>, <i> )
##
##  <#GAPDoc Label="IrreducibleSolvableGroup">
##  <ManSection>
##  <Func Name="IrreducibleSolvableGroup" Arg='n, p, i'/>
##
##  <Description>
##  This function is obsolete, because for <A>n</A> <M>= 2</M>,
##  <A>p</A> <M>= 13</M>,  two groups were missing from the
##  underlying database. It has been replaced by the function
##  <Ref Func="IrreducibleSolvableGroupMS"/>. Please note that the latter
##  function does not guarantee any ordering of the groups in the database.
##  However, for values of <A>n</A>, <A>p</A>, and <A>i</A> admissible to
##  <Ref Func="IrreducibleSolvableGroup"/>,
##  <Ref Func="IrreducibleSolvableGroupMS"/> returns a representative of the
##  same conjugacy class of subgroups of GL(<A>n</A>, <A>p</A>) as
##  <Ref Func="IrreducibleSolvableGroup"/> did before. 
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("IrreducibleSolvableGroup");

#############################################################################
##
#F  IrreducibleSolvableGroupMS( <n>, <p>, <i> )
##
##  <#GAPDoc Label="IrreducibleSolvableGroupMS">
##  <ManSection>
##  <Func Name="IrreducibleSolvableGroupMS" Arg='n, p, i'/>
##
##  <Description>
##  This function returns a representative of the <A>i</A>-th conjugacy class
##  of irreducible solvable subgroup of GL(<A>n</A>, <A>p</A>),
##  where <A>n</A> is an integer <M>&gt; 1</M>, <A>p</A> is a prime,
##  and <M><A>p</A>^{<A>n</A>} &lt; 256</M>.
##  <P/>
##  The numbering of the representatives should be 
##  considered arbitrary. However, it is guaranteed that the <A>i</A>-th 
##  group on this list will lie in the same conjugacy class in all future
##  versions of &GAP;, unless two (or more) groups on the list are discovered
##  to be duplicates,
##  in which case <Ref Func="IrreducibleSolvableGroupMS"/> will return
##  <K>fail</K> for all but one of the duplicates. 
##  <P/>
##  For values of <A>n</A>, <A>p</A>, and <A>i</A> admissible to
##  <Ref Func="IrreducibleSolvableGroup"/>,
##  <Ref Func="IrreducibleSolvableGroupMS"/> returns a representative of
##  the same conjugacy class of subgroups of GL(<A>n</A>, <A>p</A>) as
##  <Ref Func="IrreducibleSolvableGroup"/>.
##  Note that it currently adds two more groups (missing from the
##  original list by Mark Short) for <A>n</A> <M>= 2</M>,
##  <A>p</A> <M>= 13</M>. 
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("IrreducibleSolvableGroupMS");

#############################################################################
##
#F  NumberIrreducibleSolvableGroups( <n>, <p> )
##
##  <#GAPDoc Label="NumberIrreducibleSolvableGroups">
##  <ManSection>
##  <Func Name="NumberIrreducibleSolvableGroups" Arg='n, p'/>
##
##  <Description>
##  This function returns the number of conjugacy classes of 
##  irreducible solvable subgroup of 
##  GL(<A>n</A>, <A>p</A>). 
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("NumberIrreducibleSolvableGroups");
DeclareSynonym("NrIrreducibleSolvableGroups",NumberIrreducibleSolvableGroups);

#############################################################################
##
#F  AllIrreducibleSolvableGroups( <func1>, <val1>, <func2>, <val2>, ... )
##
##  <#GAPDoc Label="AllIrreducibleSolvableGroups">
##  <ManSection>
##  <Func Name="AllIrreducibleSolvableGroups"
##   Arg='func1, val1, func2, val2, ...'/>
##
##  <Description>
##  This function returns a list  of conjugacy class representatives <M>G</M>
##  of matrix groups over a prime field such that
##  <M>f(G) = v</M> or <M>f(G) \in v</M>, for all pairs <M>(f,v)</M> in
##  (<A>func1</A>, <A>val1</A>), (<A>func2</A>, <A>val2</A>), <M>\ldots</M>.
##  The following possibilities for the functions <M>f</M> 
##  are particularly efficient, because the values can be read off the
##  information in the data base:
##  <C>DegreeOfMatrixGroup</C> (or
##  <Ref Func="Dimension"/> or <Ref Func="DimensionOfMatrixGroup"/>) for the
##  linear degree,
##  <Ref Func="Characteristic"/> for the field characteristic,
##  <Ref Func="Size"/>, <C>IsPrimitiveMatrixGroup</C>
##  (or <C>IsLinearlyPrimitive</C>), and
##  <C>MinimalBlockDimension</C>>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("AllIrreducibleSolvableGroups");

#############################################################################
##
#F  OneIrreducibleSolvableGroup( <func1>, <val1>, <func2>, <val2>, ...)
##
##  <#GAPDoc Label="OneIrreducibleSolvableGroup">
##  <ManSection>
##  <Func Name="OneIrreducibleSolvableGroup"
##   Arg='func1, val1, func2, val2, ...'/>
##
##  <Description>
##  This function returns one solvable subgroup <M>G</M> of a
##  matrix group over a prime field such that
##  <M>f(G) = v</M> or <M>f(G) \in v</M>, for all pairs <M>(f,v)</M> in
##  (<A>func1</A>, <A>val1</A>), (<A>func2</A>, <A>val2</A>), <M>\ldots</M>.
##  The following possibilities for the functions <M>f</M>
##  are particularly efficient, because the values can be read off the
##  information in the data base:
##  <C>DegreeOfMatrixGroup</C> (or
##  <Ref Func="Dimension"/> or <Ref Func="DimensionOfMatrixGroup"/>) for the
##  linear degree,
##  <Ref Func="Characteristic"/> for the field characteristic,
##  <Ref Func="Size"/>, <C>IsPrimitiveMatrixGroup</C>
##  (or <C>IsLinearlyPrimitive</C>), and
##  <C>MinimalBlockDimension</C>>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("OneIrreducibleSolvableGroup");

#############################################################################
##
#A  DegreeOfMatrixGroup(<G>)
##
##  <ManSection>
##  <Attr Name="DegreeOfMatrixGroup" Arg='G'/>
##
##  <Description>
##  This function returns the dimension of the underlying vector space,
##  same as <C>DimensionOfMatrixGroup</C>
##  </Description>
##  </ManSection>
##
DeclareSynonymAttr ("DegreeOfMatrixGroup", DimensionOfMatrixGroup);

#############################################################################
##
#A  MinimalBlockDimension(<G>)
##
##  <ManSection>
##  <Attr Name="MinimalBlockDimension" Arg='G'/>
##
##  <Description>
##  The minimum integer <A>n</A> such that the matrix group has an imprimitivity
##  system consisting of <A>n</A>-dimensional subspaces of the underlying vector
##  space over <C>FieldOfMatrixGroup(G)</C>
##  </Description>
##  </ManSection>
##
DeclareAttribute("MinimalBlockDimension", IsMatrixGroup);

#############################################################################
##
#P  IsPrimitiveMatrixGroup(<G>)
##
##  <ManSection>
##  <Prop Name="IsPrimitiveMatrixGroup" Arg='G'/>
##
##  <Description>
##  <K>true</K> if <A>G</A> is primitive over <C>FieldOfMatrixGroup(G)</C> 
##  </Description>
##  </ManSection>
##
DeclareProperty("IsPrimitiveMatrixGroup", IsMatrixGroup);
DeclareSynonymAttr ("IsLinearlyPrimitive", IsPrimitiveMatrixGroup);


#############################################################################
##
#E