/usr/share/gap/prim/irredsol.gd is in gap-prim-groups 4r6p5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | #############################################################################
##
#W irredsol.gd GAP group library Mark Short
#W Burkhard Höfling
##
##
#Y Copyright (C) 1993, Murdoch University, Perth, Australia
##
## This file contains the functions and data for the irreducible solvable
## matrix group library. It contains exactly one member for each of the
## 372 conjugacy classes of irreducible solvable subgroups of $GL(n,p)$
## where $1 < n$, $p$ is a prime, and $p^n < 256$.
##
## By well-known theory, this data also doubles as a library of primitive
## solvable permutation groups of non-prime degree $<256$.
##
## This file contains the data from Mark Short's thesis, plus two groups
## missing from that list, subsequently discovered by Alexander Hulpke.
##
#############################################################################
##
#V IrredSolJSGens[] . . . . . . . . . . . . . . . generators for the groups
##
## <ManSection>
## <Var Name="IrredSolJSGens"/>
##
## <Description>
## <C>IrredSolJSGens[<A>n</A>][<A>p</A>][<A>k</A>]</C> is a generating set
## for the <A>k</A>-th JS-maximal of GL(<A>n</A>,<A>p</A>).
## This generating set is polycyclic, i.e. forms an AG-system for the group.
## A JS-maximal is a maximal irreducible solvable subgroup of
## GL(<A>n</A>,<A>p</A>)
## (for a few exceptional small values of n and p this group isn't maximal).
## Every group in the library is generated with reference to the generating
## set of one of these JS-maximals, called its guardian (a group may be a
## subgroup of several JS-maximals but it only has one guardian).
## </Description>
## </ManSection>
##
DeclareGlobalVariable("IrredSolJSGens");
#############################################################################
##
#V IrredSolGroupList[] . . . . . . . . . . . . . . description of the groups
##
## <ManSection>
## <Var Name="IrredSolGroupList"/>
##
## <Description>
## <C>IrredSolGroupList[<A>n</A>][<A>p</A>][<A>i</A>]</C> is a list containing the information
## about the <A>i</A>-th group from GL(<A>n</A>,<A>p</A>).
## The groups are ordered with respect to the following criteria:
## 1. Increasing size
## 2. Increasing guardian number
## If two groups have the same size and guardian, they are in no particular
## order.
## <P/>
## The list <C>IrredSolGroupList[<A>n</A>][<A>p</A>][<A>i</A>]</C> contains the following info:
## Position: [1]: the size of the group
## [2]: 0 if group is linearly primitive,
## otherwise its minimal block size
## [3]: the absolute value is the number of the group's guardian,
## i.e. its position in 'IrredSolJSGens[<A>n</A>][<A>p</A>]',
## it's negative iff it equals its guardian
## [4..]: the group's generators in normal form
## (with respect to its guardian's AG-system)
## </Description>
## </ManSection>
##
DeclareGlobalVariable ("IrredSolGroupList");
#############################################################################
##
#F IrreducibleSolvableGroup( <n>, <p>, <i> )
##
## <#GAPDoc Label="IrreducibleSolvableGroup">
## <ManSection>
## <Func Name="IrreducibleSolvableGroup" Arg='n, p, i'/>
##
## <Description>
## This function is obsolete, because for <A>n</A> <M>= 2</M>,
## <A>p</A> <M>= 13</M>, two groups were missing from the
## underlying database. It has been replaced by the function
## <Ref Func="IrreducibleSolvableGroupMS"/>. Please note that the latter
## function does not guarantee any ordering of the groups in the database.
## However, for values of <A>n</A>, <A>p</A>, and <A>i</A> admissible to
## <Ref Func="IrreducibleSolvableGroup"/>,
## <Ref Func="IrreducibleSolvableGroupMS"/> returns a representative of the
## same conjugacy class of subgroups of GL(<A>n</A>, <A>p</A>) as
## <Ref Func="IrreducibleSolvableGroup"/> did before.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("IrreducibleSolvableGroup");
#############################################################################
##
#F IrreducibleSolvableGroupMS( <n>, <p>, <i> )
##
## <#GAPDoc Label="IrreducibleSolvableGroupMS">
## <ManSection>
## <Func Name="IrreducibleSolvableGroupMS" Arg='n, p, i'/>
##
## <Description>
## This function returns a representative of the <A>i</A>-th conjugacy class
## of irreducible solvable subgroup of GL(<A>n</A>, <A>p</A>),
## where <A>n</A> is an integer <M>> 1</M>, <A>p</A> is a prime,
## and <M><A>p</A>^{<A>n</A>} < 256</M>.
## <P/>
## The numbering of the representatives should be
## considered arbitrary. However, it is guaranteed that the <A>i</A>-th
## group on this list will lie in the same conjugacy class in all future
## versions of &GAP;, unless two (or more) groups on the list are discovered
## to be duplicates,
## in which case <Ref Func="IrreducibleSolvableGroupMS"/> will return
## <K>fail</K> for all but one of the duplicates.
## <P/>
## For values of <A>n</A>, <A>p</A>, and <A>i</A> admissible to
## <Ref Func="IrreducibleSolvableGroup"/>,
## <Ref Func="IrreducibleSolvableGroupMS"/> returns a representative of
## the same conjugacy class of subgroups of GL(<A>n</A>, <A>p</A>) as
## <Ref Func="IrreducibleSolvableGroup"/>.
## Note that it currently adds two more groups (missing from the
## original list by Mark Short) for <A>n</A> <M>= 2</M>,
## <A>p</A> <M>= 13</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("IrreducibleSolvableGroupMS");
#############################################################################
##
#F NumberIrreducibleSolvableGroups( <n>, <p> )
##
## <#GAPDoc Label="NumberIrreducibleSolvableGroups">
## <ManSection>
## <Func Name="NumberIrreducibleSolvableGroups" Arg='n, p'/>
##
## <Description>
## This function returns the number of conjugacy classes of
## irreducible solvable subgroup of
## GL(<A>n</A>, <A>p</A>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("NumberIrreducibleSolvableGroups");
DeclareSynonym("NrIrreducibleSolvableGroups",NumberIrreducibleSolvableGroups);
#############################################################################
##
#F AllIrreducibleSolvableGroups( <func1>, <val1>, <func2>, <val2>, ... )
##
## <#GAPDoc Label="AllIrreducibleSolvableGroups">
## <ManSection>
## <Func Name="AllIrreducibleSolvableGroups"
## Arg='func1, val1, func2, val2, ...'/>
##
## <Description>
## This function returns a list of conjugacy class representatives <M>G</M>
## of matrix groups over a prime field such that
## <M>f(G) = v</M> or <M>f(G) \in v</M>, for all pairs <M>(f,v)</M> in
## (<A>func1</A>, <A>val1</A>), (<A>func2</A>, <A>val2</A>), <M>\ldots</M>.
## The following possibilities for the functions <M>f</M>
## are particularly efficient, because the values can be read off the
## information in the data base:
## <C>DegreeOfMatrixGroup</C> (or
## <Ref Func="Dimension"/> or <Ref Func="DimensionOfMatrixGroup"/>) for the
## linear degree,
## <Ref Func="Characteristic"/> for the field characteristic,
## <Ref Func="Size"/>, <C>IsPrimitiveMatrixGroup</C>
## (or <C>IsLinearlyPrimitive</C>), and
## <C>MinimalBlockDimension</C>>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("AllIrreducibleSolvableGroups");
#############################################################################
##
#F OneIrreducibleSolvableGroup( <func1>, <val1>, <func2>, <val2>, ...)
##
## <#GAPDoc Label="OneIrreducibleSolvableGroup">
## <ManSection>
## <Func Name="OneIrreducibleSolvableGroup"
## Arg='func1, val1, func2, val2, ...'/>
##
## <Description>
## This function returns one solvable subgroup <M>G</M> of a
## matrix group over a prime field such that
## <M>f(G) = v</M> or <M>f(G) \in v</M>, for all pairs <M>(f,v)</M> in
## (<A>func1</A>, <A>val1</A>), (<A>func2</A>, <A>val2</A>), <M>\ldots</M>.
## The following possibilities for the functions <M>f</M>
## are particularly efficient, because the values can be read off the
## information in the data base:
## <C>DegreeOfMatrixGroup</C> (or
## <Ref Func="Dimension"/> or <Ref Func="DimensionOfMatrixGroup"/>) for the
## linear degree,
## <Ref Func="Characteristic"/> for the field characteristic,
## <Ref Func="Size"/>, <C>IsPrimitiveMatrixGroup</C>
## (or <C>IsLinearlyPrimitive</C>), and
## <C>MinimalBlockDimension</C>>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("OneIrreducibleSolvableGroup");
#############################################################################
##
#A DegreeOfMatrixGroup(<G>)
##
## <ManSection>
## <Attr Name="DegreeOfMatrixGroup" Arg='G'/>
##
## <Description>
## This function returns the dimension of the underlying vector space,
## same as <C>DimensionOfMatrixGroup</C>
## </Description>
## </ManSection>
##
DeclareSynonymAttr ("DegreeOfMatrixGroup", DimensionOfMatrixGroup);
#############################################################################
##
#A MinimalBlockDimension(<G>)
##
## <ManSection>
## <Attr Name="MinimalBlockDimension" Arg='G'/>
##
## <Description>
## The minimum integer <A>n</A> such that the matrix group has an imprimitivity
## system consisting of <A>n</A>-dimensional subspaces of the underlying vector
## space over <C>FieldOfMatrixGroup(G)</C>
## </Description>
## </ManSection>
##
DeclareAttribute("MinimalBlockDimension", IsMatrixGroup);
#############################################################################
##
#P IsPrimitiveMatrixGroup(<G>)
##
## <ManSection>
## <Prop Name="IsPrimitiveMatrixGroup" Arg='G'/>
##
## <Description>
## <K>true</K> if <A>G</A> is primitive over <C>FieldOfMatrixGroup(G)</C>
## </Description>
## </ManSection>
##
DeclareProperty("IsPrimitiveMatrixGroup", IsMatrixGroup);
DeclareSynonymAttr ("IsLinearlyPrimitive", IsPrimitiveMatrixGroup);
#############################################################################
##
#E
|