/usr/share/gap/doc/ref/chap52.txt is in gap-online-help 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
[1X52 [33X[0;0YMonoids[133X[101X
[33X[0;0YThis chapter describes functions for monoids. Currently there are only few
of them. More general functions for magmas and semigroups can be found in
ChaptersĀ [14X35[114X and [14X51[114X.[133X
[1X52.1 [33X[0;0YFunctions for Monoids[133X[101X
[1X52.1-1 IsMonoid[101X
[29X[2XIsMonoid[102X( [3XD[103X ) [32X property
[33X[0;0YA [13Xmonoid[113X is a magma-with-one (seeĀ [14X35[114X) with associative multiplication.[133X
[1X52.1-2 [33X[0;0YMonoid[133X[101X
[29X[2XMonoid[102X( [3Xgen1[103X, [3Xgen2[103X, [3X...[103X ) [32X function
[29X[2XMonoid[102X( [3Xgens[103X[, [3Xid[103X] ) [32X function
[33X[0;0YIn the first form, [2XMonoid[102X returns the monoid generated by the arguments
[3Xgen1[103X, [3Xgen2[103X, [22X...[122X, that is, the closure of these elements under multiplication
and taking the 0-th power. In the second form, [2XMonoid[102X returns the monoid
generated by the elements in the homogeneous list [3Xgens[103X; a square matrix as
only argument is treated as one generator, not as a list of generators. In
the second form, the identity element [3Xid[103X may be given as the second
argument.[133X
[33X[0;0YIt is [13Xnot[113X checked whether the underlying multiplication is associative, use
[2XMagmaWithOne[102X ([14X35.2-2[114X) and [2XIsAssociative[102X ([14X35.4-7[114X) if you want to check
whether a magma-with-one is in fact a monoid.[133X
[1X52.1-3 Submonoid[101X
[29X[2XSubmonoid[102X( [3XM[103X, [3Xgens[103X ) [32X function
[29X[2XSubmonoidNC[102X( [3XM[103X, [3Xgens[103X ) [32X function
[33X[0;0Yare just synonyms of [2XSubmagmaWithOne[102X ([14X35.2-8[114X) and [2XSubmagmaWithOneNC[102X
([14X35.2-8[114X), respectively.[133X
[1X52.1-4 MonoidByGenerators[101X
[29X[2XMonoidByGenerators[102X( [3Xgens[103X[, [3Xone[103X] ) [32X operation
[33X[0;0Yis the underlying operation of [2XMonoid[102X ([14X52.1-2[114X).[133X
[1X52.1-5 AsMonoid[101X
[29X[2XAsMonoid[102X( [3XC[103X ) [32X attribute
[33X[0;0YIf [3XC[103X is a collection whose elements form a monoid (seeĀ [2XIsMonoid[102X ([14X52.1-1[114X))
then [2XAsMonoid[102X returns this monoid. Otherwise [9Xfail[109X is returned.[133X
[1X52.1-6 AsSubmonoid[101X
[29X[2XAsSubmonoid[102X( [3XD[103X, [3XC[103X ) [32X operation
[33X[0;0YLet [3XD[103X be a domain and [3XC[103X a collection. If [3XC[103X is a subset of [3XD[103X that forms a
monoid then [2XAsSubmonoid[102X returns this monoid, with parent [3XD[103X. Otherwise [9Xfail[109X
is returned.[133X
[1X52.1-7 GeneratorsOfMonoid[101X
[29X[2XGeneratorsOfMonoid[102X( [3XM[103X ) [32X attribute
[33X[0;0YMonoid generators of a monoid [3XM[103X are the same as magma-with-one generators
(seeĀ [2XGeneratorsOfMagmaWithOne[102X ([14X35.4-2[114X)).[133X
[1X52.1-8 TrivialSubmonoid[101X
[29X[2XTrivialSubmonoid[102X( [3XM[103X ) [32X attribute
[33X[0;0Yis just a synonym for [2XTrivialSubmagmaWithOne[102X ([14X35.4-14[114X).[133X
[1X52.1-9 [33X[0;0YFreeMonoid[133X[101X
[29X[2XFreeMonoid[102X( [[3Xwfilt[103X, ][3Xrank[103X[, [3Xname[103X] ) [32X function
[29X[2XFreeMonoid[102X( [[3Xwfilt[103X, ][3Xname1[103X, [3Xname2[103X, [3X...[103X ) [32X function
[29X[2XFreeMonoid[102X( [[3Xwfilt[103X, ][3Xnames[103X ) [32X function
[29X[2XFreeMonoid[102X( [[3Xwfilt[103X, ][3Xinfinity[103X, [3Xname[103X, [3Xinit[103X ) [32X function
[33X[0;0YCalled with a positive integer [3Xrank[103X, [2XFreeMonoid[102X returns a free monoid on
[3Xrank[103X generators. If the optional argument [3Xname[103X is given then the generators
are printed as [3Xname[103X[10X1[110X, [3Xname[103X[10X2[110X etc., that is, each name is the concatenation of
the string [3Xname[103X and an integer from [10X1[110X to [3Xrange[103X. The default for [3Xname[103X is the
string [10X"m"[110X.[133X
[33X[0;0YCalled in the second form, [2XFreeMonoid[102X returns a free monoid on as many
generators as arguments, printed as [3Xname1[103X, [3Xname2[103X etc.[133X
[33X[0;0YCalled in the third form, [2XFreeMonoid[102X returns a free monoid on as many
generators as the length of the list [3Xnames[103X, the [22Xi[122X-th generator being printed
as [3Xnames[103X[10X[[110X[22Xi[122X[10X][110X.[133X
[33X[0;0YCalled in the fourth form, [2XFreeMonoid[102X returns a free monoid on infinitely
many generators, where the first generators are printed by the names in the
list [3Xinit[103X, and the other generators by [3Xname[103X and an appended number.[133X
[33X[0;0YIf the extra argument [3Xwfilt[103X is given, it must be either
[2XIsSyllableWordsFamily[102X ([14X37.6-6[114X) or [2XIsLetterWordsFamily[102X ([14X37.6-2[114X) or
[2XIsWLetterWordsFamily[102X ([14X37.6-4[114X) or [2XIsBLetterWordsFamily[102X ([14X37.6-4[114X). This filter
then specifies the representation used for the elements of the free monoid
(seeĀ [14X37.6[114X). If no such filter is given, a letter representation is used.[133X
[33X[0;0YAlso see ChapterĀ [14X52[114X.[133X
[1X52.1-10 MonoidByMultiplicationTable[101X
[29X[2XMonoidByMultiplicationTable[102X( [3XA[103X ) [32X function
[33X[0;0Yreturns the monoid whose multiplication is defined by the square matrix [3XA[103X
(seeĀ [2XMagmaByMultiplicationTable[102X ([14X35.3-1[114X)) if such a monoid exists. Otherwise
[9Xfail[109X is returned.[133X
|