/usr/share/gap/doc/ref/chap34.txt is in gap-online-help 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
[1X34 [33X[0;0YOrderings[133X[101X
[33X[0;0YIn [5XGAP[105X an ordering is a relation defined on a family, which is reflexive,
anti-symmetric and transitive.[133X
[1X34.1 [33X[0;0YIsOrdering (Filter)[133X[101X
[1X34.1-1 IsOrdering[101X
[29X[2XIsOrdering[102X( [3Xobj[103X ) [32X Category
[33X[0;0Yreturns [9Xtrue[109X if and only if the object [3Xord[103X is an ordering.[133X
[1X34.1-2 OrderingsFamily[101X
[29X[2XOrderingsFamily[102X( [3Xfam[103X ) [32X attribute
[33X[0;0Yfor a family [3Xfam[103X, returns the family of all orderings on elements of [3Xfam[103X.[133X
[1X34.2 [33X[0;0YBuilding new orderings[133X[101X
[1X34.2-1 OrderingByLessThanFunctionNC[101X
[29X[2XOrderingByLessThanFunctionNC[102X( [3Xfam[103X, [3Xlt[103X[, [3Xl[103X] ) [32X operation
[33X[0;0YCalled with two arguments, [2XOrderingByLessThanFunctionNC[102X returns the ordering
on the elements of the elements of the family [3Xfam[103X, according to the
[2XLessThanFunction[102X ([14X34.3-5[114X) value given by [3Xlt[103X, where [3Xlt[103X is a function that
takes two arguments in [3Xfam[103X and returns [9Xtrue[109X or [9Xfalse[109X.[133X
[33X[0;0YCalled with three arguments, for a family [3Xfam[103X, a function [3Xlt[103X that takes two
arguments in [3Xfam[103X and returns [9Xtrue[109X or [9Xfalse[109X, and a list [3Xl[103X of properties of
orderings, [2XOrderingByLessThanFunctionNC[102X returns the ordering on the elements
of [3Xfam[103X with [2XLessThanFunction[102X ([14X34.3-5[114X) value given by [3Xlt[103X and with the
properties from [3Xl[103X set to [9Xtrue[109X.[133X
[1X34.2-2 OrderingByLessThanOrEqualFunctionNC[101X
[29X[2XOrderingByLessThanOrEqualFunctionNC[102X( [3Xfam[103X, [3Xlteq[103X[, [3Xl[103X] ) [32X operation
[33X[0;0YCalled with two arguments, [2XOrderingByLessThanOrEqualFunctionNC[102X returns the
ordering on the elements of the elements of the family [3Xfam[103X according to the
[2XLessThanOrEqualFunction[102X ([14X34.3-6[114X) value given by [3Xlteq[103X, where [3Xlteq[103X is a
function that takes two arguments in [3Xfam[103X and returns [9Xtrue[109X or [9Xfalse[109X.[133X
[33X[0;0YCalled with three arguments, for a family [3Xfam[103X, a function [3Xlteq[103X that takes
two arguments in [3Xfam[103X and returns [9Xtrue[109X or [9Xfalse[109X, and a list [3Xl[103X of properties
of orderings, [2XOrderingByLessThanOrEqualFunctionNC[102X returns the ordering on
the elements of [3Xfam[103X with [2XLessThanOrEqualFunction[102X ([14X34.3-6[114X) value given by
[3Xlteq[103X and with the properties from [3Xl[103X set to [9Xtrue[109X.[133X
[33X[0;0YNotice that these functions do not check whether [3Xfam[103X and [3Xlt[103X or [3Xlteq[103X are
compatible, and whether the properties listed in [3Xl[103X are indeed satisfied.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xf := FreeSemigroup("a","b");;[127X[104X
[4X[25Xgap>[125X [27Xa := GeneratorsOfSemigroup(f)[1];;[127X[104X
[4X[25Xgap>[125X [27Xb := GeneratorsOfSemigroup(f)[2];;[127X[104X
[4X[25Xgap>[125X [27Xlt := function(x,y) return Length(x)<Length(y); end;[127X[104X
[4X[28Xfunction( x, y ) ... end[128X[104X
[4X[25Xgap>[125X [27Xfam := FamilyObj(a);;[127X[104X
[4X[25Xgap>[125X [27Xord := OrderingByLessThanFunctionNC(fam,lt);[127X[104X
[4X[28XOrdering[128X[104X
[4X[32X[104X
[1X34.3 [33X[0;0YProperties and basic functionality[133X[101X
[1X34.3-1 IsWellFoundedOrdering[101X
[29X[2XIsWellFoundedOrdering[102X( [3Xord[103X ) [32X property
[33X[0;0Yfor an ordering [3Xord[103X, returns [9Xtrue[109X if and only if the ordering is well
founded. An ordering [3Xord[103X is well founded if it admits no infinite descending
chains. Normally this property is set at the time of creation of the
ordering and there is no general method to check whether a certain ordering
is well founded.[133X
[1X34.3-2 IsTotalOrdering[101X
[29X[2XIsTotalOrdering[102X( [3Xord[103X ) [32X property
[33X[0;0Yfor an ordering [3Xord[103X, returns true if and only if the ordering is total. An
ordering [3Xord[103X is total if any two elements of the family are comparable under
[3Xord[103X. Normally this property is set at the time of creation of the ordering
and there is no general method to check whether a certain ordering is total.[133X
[1X34.3-3 IsIncomparableUnder[101X
[29X[2XIsIncomparableUnder[102X( [3Xord[103X, [3Xel1[103X, [3Xel2[103X ) [32X operation
[33X[0;0Yfor an ordering [3Xord[103X on the elements of the family of [3Xel1[103X and [3Xel2[103X, returns
[9Xtrue[109X if [3Xel1[103X [22X≠[122X [3Xel2[103X and [10XIsLessThanUnder[110X([3Xord[103X,[3Xel1[103X,[3Xel2[103X),
[10XIsLessThanUnder[110X([3Xord[103X,[3Xel2[103X,[3Xel1[103X) are both [9Xfalse[109X; and returns [9Xfalse[109X otherwise.[133X
[1X34.3-4 FamilyForOrdering[101X
[29X[2XFamilyForOrdering[102X( [3Xord[103X ) [32X attribute
[33X[0;0Yfor an ordering [3Xord[103X, returns the family of elements that the ordering [3Xord[103X
compares.[133X
[1X34.3-5 LessThanFunction[101X
[29X[2XLessThanFunction[102X( [3Xord[103X ) [32X attribute
[33X[0;0Yfor an ordering [3Xord[103X, returns a function [22Xf[122X which takes two elements [22Xel1[122X, [22Xel2[122X
in [10XFamilyForOrdering[110X([3Xord[103X) and returns [9Xtrue[109X if [22Xel1[122X is strictly less than [22Xel2[122X
(with respect to [3Xord[103X), and returns [9Xfalse[109X otherwise.[133X
[1X34.3-6 LessThanOrEqualFunction[101X
[29X[2XLessThanOrEqualFunction[102X( [3Xord[103X ) [32X attribute
[33X[0;0Yfor an ordering [3Xord[103X, returns a function that takes two elements [22Xel1[122X, [22Xel2[122X in
[10XFamilyForOrdering[110X([3Xord[103X) and returns [9Xtrue[109X if [22Xel1[122X is less than [13Xor equal to[113X [22Xel2[122X
(with respect to [3Xord[103X), and returns [9Xfalse[109X otherwise.[133X
[1X34.3-7 IsLessThanUnder[101X
[29X[2XIsLessThanUnder[102X( [3Xord[103X, [3Xel1[103X, [3Xel2[103X ) [32X operation
[33X[0;0Yfor an ordering [3Xord[103X on the elements of the family of [3Xel1[103X and [3Xel2[103X, returns
[9Xtrue[109X if [3Xel1[103X is (strictly) less than [3Xel2[103X with respect to [3Xord[103X, and [9Xfalse[109X
otherwise.[133X
[1X34.3-8 IsLessThanOrEqualUnder[101X
[29X[2XIsLessThanOrEqualUnder[102X( [3Xord[103X, [3Xel1[103X, [3Xel2[103X ) [32X operation
[33X[0;0Yfor an ordering [3Xord[103X on the elements of the family of [3Xel1[103X and [3Xel2[103X, returns
[9Xtrue[109X if [3Xel1[103X is less than or equal to [3Xel2[103X with respect to [3Xord[103X, and [9Xfalse[109X
otherwise.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(ord,a,a*b);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsLessThanOrEqualUnder(ord,a*b,a*b);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsIncomparableUnder(ord,a,b);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XFamilyForOrdering(ord) = FamilyObj(a);[127X[104X
[4X[28Xtrue[128X[104X
[4X[32X[104X
[1X34.4 [33X[0;0YOrderings on families of associative words[133X[101X
[33X[0;0YWe now consider orderings on families of associative words.[133X
[33X[0;0YExamples of families of associative words are the families of elements of a
free semigroup or a free monoid; these are the two cases that we consider
mostly. Associated with those families is an alphabet, which is the
semigroup (resp. monoid) generating set of the correspondent free semigroup
(resp. free monoid). For definitions of the orderings considered, see Sims
[Sim94].[133X
[1X34.4-1 IsOrderingOnFamilyOfAssocWords[101X
[29X[2XIsOrderingOnFamilyOfAssocWords[102X( [3Xord[103X ) [32X property
[33X[0;0Yfor an ordering [3Xord[103X, returns true if [3Xord[103X is an ordering over a family of
associative words.[133X
[1X34.4-2 IsTranslationInvariantOrdering[101X
[29X[2XIsTranslationInvariantOrdering[102X( [3Xord[103X ) [32X property
[33X[0;0Yfor an ordering [3Xord[103X on a family of associative words, returns [9Xtrue[109X if and
only if the ordering is translation invariant.[133X
[33X[0;0YThis is a property of orderings on families of associative words. An
ordering [3Xord[103X over a family [22XF[122X, with alphabet [22XX[122X is translation invariant if
[10XIsLessThanUnder([110X [3Xord[103X, [22Xu[122X, [22Xv[122X [10X)[110X implies that for any [22Xa, b ∈ X^*[122X,
[10XIsLessThanUnder([110X [3Xord[103X, [22Xa*u*b[122X, [22Xa*v*b[122X [10X)[110X.[133X
[1X34.4-3 IsReductionOrdering[101X
[29X[2XIsReductionOrdering[102X( [3Xord[103X ) [32X property
[33X[0;0Yfor an ordering [3Xord[103X on a family of associative words, returns [9Xtrue[109X if and
only if the ordering is a reduction ordering. An ordering [3Xord[103X is a reduction
ordering if it is founded and translation invariant.[133X
[1X34.4-4 OrderingOnGenerators[101X
[29X[2XOrderingOnGenerators[102X( [3Xord[103X ) [32X attribute
[33X[0;0Yfor an ordering [3Xord[103X on a family of associative words, returns a list in
which the generators are considered. This could be indeed the ordering of
the generators in the ordering, but, for example, if a weight is associated
to each generator then this is not true anymore. See the example for
[2XWeightLexOrdering[102X ([14X34.4-8[114X).[133X
[1X34.4-5 LexicographicOrdering[101X
[29X[2XLexicographicOrdering[102X( [3XD[103X[, [3Xgens[103X] ) [32X operation
[33X[0;0YLet [3XD[103X be a free semigroup, a free monoid, or the elements family of such a
domain. Called with only argument [3XD[103X, [2XLexicographicOrdering[102X returns the
lexicographic ordering on the elements of [3XD[103X.[133X
[33X[0;0YThe optional argument [3Xgens[103X can be either the list of free generators of [3XD[103X,
in the desired order, or a list of the positions of these generators, in the
desired order, and [2XLexicographicOrdering[102X returns the lexicographic ordering
on the elements of [3XD[103X with the ordering on the generators as given.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xf := FreeSemigroup(3);[127X[104X
[4X[28X<free semigroup on the generators [ s1, s2, s3 ]>[128X[104X
[4X[25Xgap>[125X [27Xlex := LexicographicOrdering(f,[2,3,1]);[127X[104X
[4X[28XOrdering[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(lex,f.2*f.3,f.3);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(lex,f.3,f.2);[127X[104X
[4X[28Xfalse[128X[104X
[4X[32X[104X
[1X34.4-6 ShortLexOrdering[101X
[29X[2XShortLexOrdering[102X( [3XD[103X[, [3Xgens[103X] ) [32X operation
[33X[0;0YLet [3XD[103X be a free semigroup, a free monoid, or the elements family of such a
domain. Called with only argument [3XD[103X, [2XShortLexOrdering[102X returns the shortlex
ordering on the elements of [3XD[103X.[133X
[33X[0;0YThe optional argument [3Xgens[103X can be either the list of free generators of [3XD[103X,
in the desired order, or a list of the positions of these generators, in the
desired order, and [2XShortLexOrdering[102X returns the shortlex ordering on the
elements of [3XD[103X with the ordering on the generators as given.[133X
[1X34.4-7 IsShortLexOrdering[101X
[29X[2XIsShortLexOrdering[102X( [3Xord[103X ) [32X property
[33X[0;0Yfor an ordering [3Xord[103X of a family of associative words, returns [9Xtrue[109X if and
only if [3Xord[103X is a shortlex ordering.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xf := FreeSemigroup(3);[127X[104X
[4X[28X<free semigroup on the generators [ s1, s2, s3 ]>[128X[104X
[4X[25Xgap>[125X [27Xsl := ShortLexOrdering(f,[2,3,1]);[127X[104X
[4X[28XOrdering[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(sl,f.1,f.2);[127X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(sl,f.3,f.2);[127X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(sl,f.3,f.1);[127X[104X
[4X[28Xtrue[128X[104X
[4X[32X[104X
[1X34.4-8 WeightLexOrdering[101X
[29X[2XWeightLexOrdering[102X( [3XD[103X, [3Xgens[103X, [3Xwt[103X ) [32X operation
[33X[0;0YLet [3XD[103X be a free semigroup, a free monoid, or the elements family of such a
domain. [3Xgens[103X can be either the list of free generators of [3XD[103X, in the desired
order, or a list of the positions of these generators, in the desired order.
Let [3Xwt[103X be a list of weights. [2XWeightLexOrdering[102X returns the weightlex
ordering on the elements of [3XD[103X with the ordering on the generators and
weights of the generators as given.[133X
[1X34.4-9 IsWeightLexOrdering[101X
[29X[2XIsWeightLexOrdering[102X( [3Xord[103X ) [32X property
[33X[0;0Yfor an ordering [3Xord[103X on a family of associative words, returns [9Xtrue[109X if and
only if [3Xord[103X is a weightlex ordering.[133X
[1X34.4-10 WeightOfGenerators[101X
[29X[2XWeightOfGenerators[102X( [3Xord[103X ) [32X attribute
[33X[0;0Yfor a weightlex ordering [3Xord[103X, returns a list with length the size of the
alphabet of the family. This list gives the weight of each of the letters of
the alphabet which are used for weightlex orderings with respect to the
ordering given by [2XOrderingOnGenerators[102X ([14X34.4-4[114X).[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xf := FreeSemigroup(3);[127X[104X
[4X[28X<free semigroup on the generators [ s1, s2, s3 ]>[128X[104X
[4X[25Xgap>[125X [27Xwtlex := WeightLexOrdering(f,[f.2,f.3,f.1],[3,2,1]);[127X[104X
[4X[28XOrdering[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(wtlex,f.1,f.2);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(wtlex,f.3,f.2);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(wtlex,f.3,f.1);[127X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27XOrderingOnGenerators(wtlex);[127X[104X
[4X[28X[ s2, s3, s1 ][128X[104X
[4X[25Xgap>[125X [27XWeightOfGenerators(wtlex);[127X[104X
[4X[28X[ 3, 2, 1 ][128X[104X
[4X[32X[104X
[1X34.4-11 BasicWreathProductOrdering[101X
[29X[2XBasicWreathProductOrdering[102X( [3XD[103X[, [3Xgens[103X] ) [32X operation
[33X[0;0YLet [3XD[103X be a free semigroup, a free monoid, or the elements family of such a
domain. Called with only argument [3XD[103X, [2XBasicWreathProductOrdering[102X returns the
basic wreath product ordering on the elements of [3XD[103X.[133X
[33X[0;0YThe optional argument [3Xgens[103X can be either the list of free generators of [3XD[103X,
in the desired order, or a list of the positions of these generators, in the
desired order, and [2XBasicWreathProductOrdering[102X returns the lexicographic
ordering on the elements of [3XD[103X with the ordering on the generators as given.[133X
[1X34.4-12 IsBasicWreathProductOrdering[101X
[29X[2XIsBasicWreathProductOrdering[102X( [3Xord[103X ) [32X property
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xf := FreeSemigroup(3);[127X[104X
[4X[28X<free semigroup on the generators [ s1, s2, s3 ]>[128X[104X
[4X[25Xgap>[125X [27Xbasic := BasicWreathProductOrdering(f,[2,3,1]);[127X[104X
[4X[28XOrdering[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(basic,f.3,f.1);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(basic,f.3*f.2,f.1);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(basic,f.3*f.2*f.1,f.1*f.3);[127X[104X
[4X[28Xfalse[128X[104X
[4X[32X[104X
[1X34.4-13 WreathProductOrdering[101X
[29X[2XWreathProductOrdering[102X( [3XD[103X[, [3Xgens[103X], [3Xlevels[103X ) [32X operation
[33X[0;0YLet [3XD[103X be a free semigroup, a free monoid, or the elements family of such a
domain, let [3Xgens[103X be either the list of free generators of [3XD[103X, in the desired
order, or a list of the positions of these generators, in the desired order,
and let [3Xlevels[103X be a list of levels for the generators. If [3Xgens[103X is omitted
then the default ordering is taken. [2XWreathProductOrdering[102X returns the wreath
product ordering on the elements of [3XD[103X with the ordering on the generators as
given.[133X
[1X34.4-14 IsWreathProductOrdering[101X
[29X[2XIsWreathProductOrdering[102X( [3Xord[103X ) [32X property
[33X[0;0Yspecifies whether an ordering is a wreath product ordering (see
[2XWreathProductOrdering[102X ([14X34.4-13[114X)).[133X
[1X34.4-15 LevelsOfGenerators[101X
[29X[2XLevelsOfGenerators[102X( [3Xord[103X ) [32X attribute
[33X[0;0Yfor a wreath product ordering [3Xord[103X, returns the levels of the generators as
given at creation (with respect to [2XOrderingOnGenerators[102X ([14X34.4-4[114X)).[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xf := FreeSemigroup(3);[127X[104X
[4X[28X<free semigroup on the generators [ s1, s2, s3 ]>[128X[104X
[4X[25Xgap>[125X [27Xwrp := WreathProductOrdering(f,[1,2,3],[1,1,2,]);[127X[104X
[4X[28XOrdering[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(wrp,f.3,f.1);[127X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(wrp,f.3,f.2);[127X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27XIsLessThanUnder(wrp,f.1,f.2);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XLevelsOfGenerators(wrp);[127X[104X
[4X[28X[ 1, 1, 2 ][128X[104X
[4X[32X[104X
|