/usr/share/gap/doc/ref/chap0.txt is in gap-online-help 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 |
[1XGAP - Reference Manual[101X
Release 4.6.5, 20-Jul-2013
The GAP Group
The GAP Group
Email: [7Xmailto:support@gap-system.org[107X
Homepage: [7Xhttp://www.gap-system.org[107X
-------------------------------------------------------
[1XCopyright[101X
[33X[0;0YCopyright © (1987-2013) for the core part of the [5XGAP[105X system by the [5XGAP[105X
Group.[133X
[33X[0;0YMost parts of this distribution, including the core part of the [5XGAP[105X system
are distributed under the terms of the GNU General Public License, see
[7Xhttp://www.gnu.org/licenses/gpl.html[107X or the file [11XGPL[111X in the [11Xetc[111X directory of
the [5XGAP[105X installation.[133X
[33X[0;0YMore detailed information about copyright and licenses of parts of this
distribution can be found in Section [14X1.4[114X of this manual.[133X
[33X[0;0Y[5XGAP[105X is developed over a long time and has many authors and contributors.
More detailed information can be found in Section [14X1.2[114X of this manual.[133X
-------------------------------------------------------
[1XContents (ref)[101X
1 [33X[0;0YPreface[133X
1.1 [33X[0;0YThe [5XGAP[105X System[133X
1.2 [33X[0;0YAuthors and Maintainers[133X
1.3 [33X[0;0YAcknowledgements[133X
1.4 [33X[0;0YCopyright and License[133X
1.5 [33X[0;0YFurther Information about [5XGAP[105X[133X
2 [33X[0;0YThe Help System[133X
2.1 [33X[0;0YInvoking the Help[133X
2.2 [33X[0;0YBrowsing through the Sections[133X
2.3 [33X[0;0YChanging the Help Viewer[133X
2.3-1 SetHelpViewer
2.4 [33X[0;0YThe Pager Command[133X
2.4-1 Pager
3 [33X[0;0YRunning GAP[133X
3.1 [33X[0;0YCommand Line Options[133X
3.2 [33X[0;0YThe gap.ini and gaprc files[133X
3.2-1 [33X[0;0YThe gap.ini file[133X
3.2-2 [33X[0;0YThe gaprc file[133X
3.2-3 [33X[0;0YConfiguring User preferences[133X
3.2-4 DeclareUserPreference
3.3 [33X[0;0YSaving and Loading a Workspace[133X
3.3-1 SaveWorkspace
3.4 [33X[0;0YTesting for the System Architecture[133X
3.4-1 ARCH_IS_UNIX
3.4-2 ARCH_IS_MAC_OS_X
3.4-3 ARCH_IS_WINDOWS
3.5 [33X[0;0YGlobal Values that Control the [5XGAP[105X Session[133X
3.5-1 GAPInfo
3.6 [33X[0;0YColoring the Prompt and Input[133X
3.6-1 ColorPrompt
4 [33X[0;0YThe Programming Language[133X
4.1 [33X[0;0YLanguage Overview[133X
4.2 [33X[0;0YLexical Structure[133X
4.3 [33X[0;0YSymbols[133X
4.4 [33X[0;0YWhitespaces[133X
4.5 [33X[0;0YKeywords[133X
4.6 [33X[0;0YIdentifiers[133X
4.6-1 IsValidIdentifier
4.7 [33X[0;0YExpressions[133X
4.8 [33X[0;0YVariables[133X
4.8-1 IsBound
4.8-2 Unbind
4.9 [33X[0;0YMore About Global Variables[133X
4.9-1 IsReadOnlyGlobal
4.9-2 MakeReadOnlyGlobal
4.9-3 MakeReadWriteGlobal
4.9-4 ValueGlobal
4.9-5 IsBoundGlobal
4.9-6 UnbindGlobal
4.9-7 BindGlobal
4.9-8 NamesGVars
4.9-9 NamesSystemGVars
4.9-10 NamesUserGVars
4.9-11 TemporaryGlobalVarName
4.10 [33X[0;0YNamespaces for [5XGAP[105X packages[133X
4.11 [33X[0;0YFunction Calls[133X
4.11-1 [33X[0;0YFunction Call With Arguments[133X
4.11-2 [33X[0;0YFunction Call With Options[133X
4.12 [33X[0;0YComparisons[133X
4.13 [33X[0;0YArithmetic Operators[133X
4.14 [33X[0;0YStatements[133X
4.15 [33X[0;0YAssignments[133X
4.16 [33X[0;0YProcedure Calls[133X
4.17 [33X[0;0YIf[133X
4.18 [33X[0;0YWhile[133X
4.19 [33X[0;0YRepeat[133X
4.20 [33X[0;0YFor[133X
4.21 [33X[0;0YBreak[133X
4.22 [33X[0;0YContinue[133X
4.23 [33X[0;0YFunction[133X
4.24 [33X[0;0YReturn (With or without Value)[133X
5 [33X[0;0YFunctions[133X
5.1 [33X[0;0YInformation about a function[133X
5.1-1 NameFunction
5.1-2 NumberArgumentsFunction
5.1-3 NamesLocalVariablesFunction
5.1-4 FilenameFunc
5.1-5 StartlineFunc
5.1-6 PageSource
5.2 [33X[0;0YCalling a function with a list argument that is interpreted as several
arguments[133X
5.2-1 CallFuncList
5.3 [33X[0;0YFunctions that do nothing[133X
5.3-1 ReturnTrue
5.3-2 ReturnFalse
5.3-3 ReturnFail
5.3-4 IdFunc
5.4 [33X[0;0YFunction Types[133X
5.4-1 IsFunction
5.4-2 IsOperation
5.4-3 FunctionsFamily
5.5 [33X[0;0YNaming Conventions[133X
6 [33X[0;0YMain Loop and Break Loop[133X
6.1 [33X[0;0YMain Loop[133X
6.2 [33X[0;0YSpecial Rules for Input Lines[133X
6.3 [33X[0;0YView and Print[133X
6.3-1 [33X[0;0YDefault delegations in the library[133X
6.3-2 [33X[0;0YRecommendations for the implementation[133X
6.3-3 View
6.3-4 Print
6.3-5 ViewObj
6.3-6 Display
6.3-7 SetNameObject
6.4 [33X[0;0YBreak Loops[133X
6.4-1 [33X[0;0Yquit from a break loop[133X
6.4-2 [33X[0;0Yreturn from a break loop[133X
6.4-3 OnBreak
6.4-4 OnBreakMessage
6.4-5 Where
6.5 [33X[0;0YVariable Access in a Break Loop[133X
6.5-1 [33X[0;0YDownEnv and UpEnv[133X
6.6 [33X[0;0YError and ErrorCount[133X
6.6-1 Error
6.6-2 ErrorCount
6.7 [33X[0;0YLeaving GAP[133X
6.7-1 QUIT
6.7-2 InstallAtExit
6.7-3 SaveOnExitFile
6.8 [33X[0;0YLine Editing[133X
6.9 [33X[0;0YEditing using the [10Xreadline[110X library[133X
6.9-1 [33X[0;0YReadline customization[133X
6.9-2 [33X[0;0YThe command line history[133X
6.9-3 SaveCommandLineHistory
6.9-4 [33X[0;0YWriting your own command line editing functions[133X
6.10 [33X[0;0YEditing Files[133X
6.10-1 Edit
6.11 [33X[0;0YEditor Support[133X
6.12 [33X[0;0YChanging the Screen Size[133X
6.12-1 SizeScreen
6.13 [33X[0;0YTeaching Mode[133X
6.13-1 TeachingMode
7 [33X[0;0YDebugging and Profiling Facilities[133X
7.1 [33X[0;0YRecovery from NoMethodFound-Errors[133X
7.1-1 ShowArguments
7.1-2 ShowArgument
7.1-3 ShowDetails
7.1-4 ShowMethods
7.1-5 ShowOtherMethods
7.2 [33X[0;0YInspecting Applicable Methods[133X
7.2-1 ApplicableMethod
7.3 [33X[0;0YTracing Methods[133X
7.3-1 TraceMethods
7.3-2 UntraceMethods
7.3-3 TraceImmediateMethods
7.4 [33X[0;0YInfo Functions[133X
7.4-1 NewInfoClass
7.4-2 DeclareInfoClass
7.4-3 SetInfoLevel
7.4-4 InfoLevel
7.4-5 Info
7.4-6 [33X[0;0YCustomizing [2XInfo[102X ([14X7.4-5[114X) statements[133X
7.4-7 InfoWarning
7.5 [33X[0;0YAssertions[133X
7.5-1 SetAssertionLevel
7.5-2 AssertionLevel
7.5-3 Assert
7.6 [33X[0;0YTiming[133X
7.6-1 Runtimes
7.6-2 Runtime
7.6-3 time
7.7 [33X[0;0YProfiling[133X
7.7-1 ProfileGlobalFunctions
7.7-2 ProfileOperations
7.7-3 ProfileOperationsAndMethods
7.7-4 ProfileFunctions
7.7-5 UnprofileFunctions
7.7-6 ProfileMethods
7.7-7 UnprofileMethods
7.7-8 DisplayProfile
7.7-9 ClearProfile
7.7-10 [33X[0;0YAn Example of Profiling[133X
7.7-11 DisplayCacheStats
7.7-12 ClearCacheStats
7.8 [33X[0;0YInformation about the version used[133X
7.9 [33X[0;0YTest Files[133X
7.9-1 ReadTest
7.9-2 [33X[0;0YStarting and stopping test[133X
7.9-3 Test
7.10 [33X[0;0YDebugging Recursion[133X
7.10-1 SetRecursionTrapInterval
7.11 [33X[0;0YGlobal Memory Information[133X
7.11-1 GasmanStatistics
7.11-2 GasmanMessageStatus
7.11-3 GasmanLimits
8 [33X[0;0YOptions Stack[133X
8.1 [33X[0;0YFunctions Dealing with the Options Stack[133X
8.1-1 PushOptions
8.1-2 PopOptions
8.1-3 ResetOptionsStack
8.1-4 OnQuit
8.1-5 ValueOption
8.1-6 DisplayOptionsStack
8.1-7 InfoOptions
8.2 [33X[0;0YOptions Stack – an Example[133X
9 [33X[0;0YFiles and Filenames[133X
9.1 [33X[0;0YPortability[133X
9.1-1 LastSystemError
9.2 [33X[0;0YGAP Root Directories[133X
9.3 [33X[0;0YDirectories[133X
9.3-1 IsDirectory
9.3-2 Directory
9.3-3 DirectoryTemporary
9.3-4 DirectoryCurrent
9.3-5 DirectoriesLibrary
9.3-6 DirectoriesSystemPrograms
9.3-7 DirectoryContents
9.3-8 DirectoryDesktop
9.3-9 DirectoryHome
9.4 [33X[0;0YFile Names[133X
9.4-1 [33X[0;0YFilename[133X
9.5 [33X[0;0YSpecial Filenames[133X
9.6 [33X[0;0YFile Access[133X
9.6-1 IsExistingFile
9.6-2 IsReadableFile
9.6-3 IsWritableFile
9.6-4 IsExecutableFile
9.6-5 IsDirectoryPath
9.7 [33X[0;0YFile Operations[133X
9.7-1 Read
9.7-2 ReadAsFunction
9.7-3 [33X[0;0YPrintTo and AppendTo[133X
9.7-4 [33X[0;0YLogTo[133X
9.7-5 [33X[0;0YInputLogTo[133X
9.7-6 [33X[0;0YOutputLogTo[133X
9.7-7 CrcFile
9.7-8 RemoveFile
9.7-9 Reread
10 [33X[0;0YStreams[133X
10.1 [33X[0;0YCategories for Streams and the StreamsFamily[133X
10.1-1 IsStream
10.1-2 IsClosedStream
10.1-3 IsInputStream
10.1-4 IsInputTextStream
10.1-5 IsInputTextNone
10.1-6 IsOutputStream
10.1-7 IsOutputTextStream
10.1-8 IsOutputTextNone
10.1-9 StreamsFamily
10.2 [33X[0;0YOperations applicable to All Streams[133X
10.2-1 CloseStream
10.2-2 FileDescriptorOfStream
10.2-3 UNIXSelect
10.3 [33X[0;0YOperations for Input Streams[133X
10.3-1 Read
10.3-2 ReadAsFunction
10.3-3 ReadTest
10.3-4 ReadByte
10.3-5 ReadLine
10.3-6 ReadAll
10.3-7 IsEndOfStream
10.3-8 PositionStream
10.3-9 RewindStream
10.3-10 SeekPositionStream
10.4 [33X[0;0YOperations for Output Streams[133X
10.4-1 WriteByte
10.4-2 WriteLine
10.4-3 WriteAll
10.4-4 [33X[0;0YPrintTo and AppendTo (for streams)[133X
10.4-5 LogTo
10.4-6 InputLogTo
10.4-7 OutputLogTo
10.4-8 SetPrintFormattingStatus
10.5 [33X[0;0YFile Streams[133X
10.5-1 InputTextFile
10.5-2 OutputTextFile
10.6 [33X[0;0YUser Streams[133X
10.6-1 InputTextUser
10.6-2 OutputTextUser
10.6-3 InputFromUser
10.7 [33X[0;0YString Streams[133X
10.7-1 InputTextString
10.7-2 OutputTextString
10.8 [33X[0;0YInput-Output Streams[133X
10.8-1 IsInputOutputStream
10.8-2 InputOutputLocalProcess
10.8-3 ReadAllLine
10.9 [33X[0;0YDummy Streams[133X
10.9-1 InputTextNone
10.9-2 OutputTextNone
10.10 [33X[0;0YHandling of Streams in the Background[133X
10.10-1 InstallCharReadHookFunc
10.10-2 UnInstallCharReadHookFunc
10.11 [33X[0;0YComma separated files[133X
10.11-1 ReadCSV
10.11-2 PrintCSV
11 [33X[0;0YProcesses[133X
11.1 [33X[0;0YProcess and Exec[133X
11.1-1 Process
11.1-2 Exec
12 [33X[0;0YObjects and Elements[133X
12.1 [33X[0;0YObjects[133X
12.1-1 IsObject
12.2 [33X[0;0YElements as equivalence classes[133X
12.3 [33X[0;0YSets[133X
12.4 [33X[0;0YDomains[133X
12.5 [33X[0;0YIdentical Objects[133X
12.5-1 IsIdenticalObj
12.5-2 IsNotIdenticalObj
12.6 [33X[0;0YMutability and Copyability[133X
12.6-1 IsCopyable
12.6-2 IsMutable
12.6-3 Immutable
12.6-4 MakeImmutable
12.6-5 [33X[0;0YMutability of Iterators[133X
12.6-6 [33X[0;0YMutability of Results of Arithmetic Operations[133X
12.7 [33X[0;0YDuplication of Objects[133X
12.7-1 ShallowCopy
12.7-2 StructuralCopy
12.8 [33X[0;0YOther Operations Applicable to any Object[133X
12.8-1 SetName
12.8-2 Name
12.8-3 IsInternallyConsistent
12.8-4 MemoryUsage
13 [33X[0;0YTypes of Objects[133X
13.1 [33X[0;0YFamilies[133X
13.1-1 FamilyObj
13.2 [33X[0;0YFilters[133X
13.2-1 RankFilter
13.2-2 NamesFilter
13.2-3 ShowImpliedFilters
13.3 [33X[0;0YCategories[133X
13.3-1 CategoriesOfObject
13.4 [33X[0;0YRepresentation[133X
13.4-1 RepresentationsOfObject
13.5 [33X[0;0YAttributes[133X
13.5-1 KnownAttributesOfObject
13.6 [33X[0;0YSetter and Tester for Attributes[133X
13.6-1 Tester
13.6-2 Setter
13.6-3 AttributeValueNotSet
13.6-4 InfoAttributes
13.6-5 DisableAttributeValueStoring
13.6-6 EnableAttributeValueStoring
13.7 [33X[0;0YProperties[133X
13.7-1 KnownPropertiesOfObject
13.7-2 KnownTruePropertiesOfObject
13.8 [33X[0;0YOther Filters[133X
13.9 [33X[0;0YTypes[133X
13.9-1 TypeObj
13.9-2 DataType
14 [33X[0;0YIntegers[133X
14.1 [33X[0;0YIntegers: Global Variables[133X
14.1-1 Integers
14.1-2 IsIntegers
14.2 [33X[0;0YElementary Operations for Integers[133X
14.2-1 IsInt
14.2-2 IsPosInt
14.2-3 Int
14.2-4 IsEvenInt
14.2-5 IsOddInt
14.2-6 AbsInt
14.2-7 SignInt
14.2-8 LogInt
14.2-9 RootInt
14.2-10 SmallestRootInt
14.2-11 ListOfDigits
14.2-12 Random
14.3 [33X[0;0YQuotients and Remainders[133X
14.3-1 QuoInt
14.3-2 BestQuoInt
14.3-3 RemInt
14.3-4 GcdInt
14.3-5 Gcdex
14.3-6 LcmInt
14.3-7 CoefficientsQadic
14.3-8 CoefficientsMultiadic
14.3-9 ChineseRem
14.3-10 PowerModInt
14.4 [33X[0;0YPrime Integers and Factorization[133X
14.4-1 Primes
14.4-2 IsPrimeInt
14.4-3 PrimalityProof
14.4-4 IsPrimePowerInt
14.4-5 NextPrimeInt
14.4-6 PrevPrimeInt
14.4-7 FactorsInt
14.4-8 PrimeDivisors
14.4-9 PartialFactorization
14.4-10 PrintFactorsInt
14.4-11 PrimePowersInt
14.4-12 DivisorsInt
14.5 [33X[0;0YResidue Class Rings[133X
14.5-1 \mod
14.5-2 ZmodnZ
14.5-3 ZmodnZObj
14.5-4 IsZmodnZObj
14.6 [33X[0;0YCheck Digits[133X
14.6-1 CheckDigitISBN
14.6-2 CheckDigitTestFunction
14.7 [33X[0;0YRandom Sources[133X
14.7-1 IsRandomSource
14.7-2 Random
14.7-3 State
14.7-4 IsMersenneTwister
14.7-5 RandomSource
15 [33X[0;0YNumber Theory[133X
15.1 [33X[0;0YInfoNumtheor (Info Class)[133X
15.1-1 InfoNumtheor
15.2 [33X[0;0YPrime Residues[133X
15.2-1 PrimeResidues
15.2-2 Phi
15.2-3 Lambda
15.2-4 GeneratorsPrimeResidues
15.3 [33X[0;0YPrimitive Roots and Discrete Logarithms[133X
15.3-1 OrderMod
15.3-2 LogMod
15.3-3 PrimitiveRootMod
15.3-4 IsPrimitiveRootMod
15.4 [33X[0;0YRoots Modulo Integers[133X
15.4-1 Jacobi
15.4-2 Legendre
15.4-3 RootMod
15.4-4 RootsMod
15.4-5 RootsUnityMod
15.5 [33X[0;0YMultiplicative Arithmetic Functions[133X
15.5-1 Sigma
15.5-2 Tau
15.5-3 MoebiusMu
15.6 [33X[0;0YContinued Fractions[133X
15.6-1 ContinuedFractionExpansionOfRoot
15.6-2 ContinuedFractionApproximationOfRoot
15.7 [33X[0;0YMiscellaneous[133X
15.7-1 TwoSquares
16 [33X[0;0YCombinatorics[133X
16.1 [33X[0;0YCombinatorial Numbers[133X
16.1-1 Factorial
16.1-2 Binomial
16.1-3 Bell
16.1-4 Bernoulli
16.1-5 Stirling1
16.1-6 Stirling2
16.2 [33X[0;0YCombinations, Arrangements and Tuples[133X
16.2-1 Combinations
16.2-2 [33X[0;0YIterator and enumerator of combinations[133X
16.2-3 NrCombinations
16.2-4 Arrangements
16.2-5 NrArrangements
16.2-6 UnorderedTuples
16.2-7 NrUnorderedTuples
16.2-8 Tuples
16.2-9 EnumeratorOfTuples
16.2-10 IteratorOfTuples
16.2-11 NrTuples
16.2-12 PermutationsList
16.2-13 NrPermutationsList
16.2-14 Derangements
16.2-15 NrDerangements
16.2-16 PartitionsSet
16.2-17 NrPartitionsSet
16.2-18 Partitions
16.2-19 IteratorOfPartitions
16.2-20 NrPartitions
16.2-21 OrderedPartitions
16.2-22 NrOrderedPartitions
16.2-23 PartitionsGreatestLE
16.2-24 PartitionsGreatestEQ
16.2-25 RestrictedPartitions
16.2-26 NrRestrictedPartitions
16.2-27 SignPartition
16.2-28 AssociatedPartition
16.2-29 PowerPartition
16.2-30 PartitionTuples
16.2-31 NrPartitionTuples
16.3 [33X[0;0YFibonacci and Lucas Sequences[133X
16.3-1 Fibonacci
16.3-2 Lucas
16.4 [33X[0;0YPermanent of a Matrix[133X
16.4-1 Permanent
17 [33X[0;0YRational Numbers[133X
17.1 [33X[0;0YRationals: Global Variables[133X
17.1-1 Rationals
17.2 [33X[0;0YElementary Operations for Rationals[133X
17.2-1 IsRat
17.2-2 IsPosRat
17.2-3 IsNegRat
17.2-4 NumeratorRat
17.2-5 DenominatorRat
17.2-6 Rat
17.2-7 Random
18 [33X[0;0YCyclotomic Numbers[133X
18.1 [33X[0;0YOperations for Cyclotomics[133X
18.1-1 E
18.1-2 Cyclotomics
18.1-3 IsCyclotomic
18.1-4 IsIntegralCyclotomic
18.1-5 Int
18.1-6 String
18.1-7 Conductor
18.1-8 AbsoluteValue
18.1-9 RoundCyc
18.1-10 CoeffsCyc
18.1-11 DenominatorCyc
18.1-12 ExtRepOfObj
18.1-13 DescriptionOfRootOfUnity
18.1-14 IsGaussInt
18.1-15 IsGaussRat
18.1-16 DefaultField
18.2 [33X[0;0YInfinity[133X
18.2-1 IsInfinity
18.3 [33X[0;0YComparisons of Cyclotomics[133X
18.4 [33X[0;0YATLAS Irrationalities[133X
18.4-1 [33X[0;0YEB, EC, [22X...[122X, EH[133X
18.4-2 [33X[0;0YEI and ER[133X
18.4-3 [33X[0;0YEY, EX, [22X...[122X, ES[133X
18.4-4 [33X[0;0YEM, EL, [22X...[122X, EJ[133X
18.4-5 NK
18.4-6 AtlasIrrationality
18.5 [33X[0;0YGalois Conjugacy of Cyclotomics[133X
18.5-1 GaloisCyc
18.5-2 ComplexConjugate
18.5-3 StarCyc
18.5-4 Quadratic
18.5-5 GaloisMat
18.5-6 RationalizedMat
18.6 [33X[0;0YInternally Represented Cyclotomics[133X
18.6-1 SetCyclotomicsLimit
19 [33X[0;0YFloats[133X
19.1 [33X[0;0YA sample run[133X
19.2 [33X[0;0YMethods[133X
19.2-1 [33X[0;0YMathematical operations[133X
19.2-2 EqFloat
19.2-3 PrecisionFloat
19.2-4 [33X[0;0YInterval operations[133X
19.2-5 IsPInfinity
19.2-6 FLOAT
19.2-7 Float
19.2-8 Rat
19.2-9 SetFloats
19.3 [33X[0;0YHigh-precision-specific methods[133X
19.4 [33X[0;0YComplex arithmetic[133X
19.5 [33X[0;0YInterval-specific methods[133X
20 [33X[0;0YBooleans[133X
20.1 [33X[0;0YIsBool (Filter)[133X
20.1-1 IsBool
20.2 [33X[0;0YFail (Variable)[133X
20.2-1 fail
20.3 [33X[0;0YComparisons of Booleans[133X
20.3-1 [33X[0;0YEquality and inequality of Booleans[133X
20.3-2 [33X[0;0YOrdering of Booleans[133X
20.4 [33X[0;0YOperations for Booleans[133X
20.4-1 [33X[0;0YLogical disjunction[133X
20.4-2 [33X[0;0YLogical conjunction[133X
20.4-3 [33X[0;0YLogical negation[133X
21 [33X[0;0YLists[133X
21.1 [33X[0;0YList Categories[133X
21.1-1 IsList
21.1-2 IsDenseList
21.1-3 IsHomogeneousList
21.1-4 IsTable
21.1-5 IsRectangularTable
21.1-6 IsConstantTimeAccessList
21.2 [33X[0;0YBasic Operations for Lists[133X
21.2-1 \[\]
21.3 [33X[0;0YList Elements[133X
21.3-1 \{\}
21.4 [33X[0;0YList Assignment[133X
21.4-1 \{\}\:\=
21.4-2 Add
21.4-3 Remove
21.4-4 CopyListEntries
21.4-5 Append
21.5 [33X[0;0YIsBound and Unbind for Lists[133X
21.5-1 IsBound
21.5-2 Unbind
21.6 [33X[0;0YIdentical Lists[133X
21.7 [33X[0;0YDuplication of Lists[133X
21.8 [33X[0;0YMembership Test for Lists[133X
21.8-1 \in
21.9 [33X[0;0YEnlarging Internally Represented Lists[133X
21.9-1 EmptyPlist
21.10 [33X[0;0YComparisons of Lists[133X
21.11 [33X[0;0YArithmetic for Lists[133X
21.12 [33X[0;0YFilters Controlling the Arithmetic Behaviour of Lists[133X
21.12-1 IsGeneralizedRowVector
21.12-2 IsMultiplicativeGeneralizedRowVector
21.12-3 IsListDefault
21.12-4 NestingDepthA
21.12-5 NestingDepthM
21.13 [33X[0;0YAdditive Arithmetic for Lists[133X
21.13-1 [33X[0;0YZero for lists[133X
21.13-2 [33X[0;0YAdditiveInverse for lists[133X
21.13-3 [33X[0;0YAddition of lists[133X
21.13-4 [33X[0;0YSubtraction of lists[133X
21.14 [33X[0;0YMultiplicative Arithmetic for Lists[133X
21.14-1 [33X[0;0YOne for lists[133X
21.14-2 [33X[0;0YInverse for lists[133X
21.14-3 [33X[0;0YMultiplication of lists[133X
21.14-4 [33X[0;0YDivision of lists[133X
21.14-5 [33X[0;0Ymod for lists[133X
21.14-6 [33X[0;0YLeft quotients of lists[133X
21.15 [33X[0;0YMutability Status and List Arithmetic[133X
21.15-1 ListWithIdenticalEntries
21.16 [33X[0;0YFinding Positions in Lists[133X
21.16-1 Position
21.16-2 Positions
21.16-3 PositionCanonical
21.16-4 PositionNthOccurrence
21.16-5 PositionSorted
21.16-6 PositionSet
21.16-7 PositionProperty
21.16-8 PositionsProperty
21.16-9 PositionBound
21.16-10 PositionNot
21.16-11 PositionNonZero
21.16-12 PositionSublist
21.16-13 PositionFirstComponent
21.17 [33X[0;0YProperties and Attributes for Lists[133X
21.17-1 IsMatchingSublist
21.17-2 IsDuplicateFree
21.17-3 IsSortedList
21.17-4 IsSSortedList
21.17-5 Length
21.17-6 ConstantTimeAccessList
21.18 [33X[0;0YSorting Lists[133X
21.18-1 Sort
21.18-2 SortParallel
21.18-3 Sortex
21.18-4 SortingPerm
21.19 [33X[0;0YSorted Lists and Sets[133X
21.19-1 \in
21.19-2 IsEqualSet
21.19-3 IsSubsetSet
21.19-4 AddSet
21.19-5 RemoveSet
21.19-6 UniteSet
21.19-7 IntersectSet
21.19-8 SubtractSet
21.20 [33X[0;0YOperations for Lists[133X
21.20-1 Concatenation
21.20-2 Compacted
21.20-3 Collected
21.20-4 DuplicateFreeList
21.20-5 AsDuplicateFreeList
21.20-6 Flat
21.20-7 Reversed
21.20-8 Shuffle
21.20-9 IsLexicographicallyLess
21.20-10 Apply
21.20-11 Perform
21.20-12 PermListList
21.20-13 [33X[0;0YMaximum[133X
21.20-14 [33X[0;0YMinimum[133X
21.20-15 [33X[0;0YMaximumList and MinimumList[133X
21.20-16 [33X[0;0YCartesian[133X
21.20-17 [33X[0;0YIteratorOfCartesianProduct[133X
21.20-18 Permuted
21.20-19 List
21.20-20 Filtered
21.20-21 Number
21.20-22 First
21.20-23 ForAll
21.20-24 ForAny
21.20-25 Product
21.20-26 Sum
21.20-27 Iterated
21.20-28 ListN
21.21 [33X[0;0YAdvanced List Manipulations[133X
21.21-1 ListX
21.21-2 SetX
21.21-3 SumX
21.21-4 ProductX
21.22 [33X[0;0YRanges[133X
21.22-1 IsRange
21.22-2 ConvertToRangeRep
21.23 [33X[0;0YEnumerators[133X
21.23-1 IsQuickPositionList
22 [33X[0;0YBoolean Lists[133X
22.1 [33X[0;0YIsBlist (Filter)[133X
22.1-1 IsBlist
22.2 [33X[0;0YBoolean Lists Representing Subsets[133X
22.2-1 BlistList
22.2-2 ListBlist
22.2-3 SizeBlist
22.2-4 IsSubsetBlist
22.3 [33X[0;0YSet Operations via Boolean Lists[133X
22.3-1 [33X[0;0YUnionBlist[133X
22.3-2 [33X[0;0YIntersectionBlist[133X
22.3-3 DifferenceBlist
22.4 [33X[0;0YFunction that Modify Boolean Lists[133X
22.4-1 UniteBlist
22.4-2 UniteBlistList
22.4-3 IntersectBlist
22.4-4 SubtractBlist
22.5 [33X[0;0YMore about Boolean Lists[133X
22.5-1 IsBlistRep
23 [33X[0;0YRow Vectors[133X
23.1 [33X[0;0YIsRowVector (Filter)[133X
23.1-1 IsRowVector
23.2 [33X[0;0YOperators for Row Vectors[133X
23.2-1 NormedRowVector
23.3 [33X[0;0YRow Vectors over Finite Fields[133X
23.3-1 [33X[0;0YConvertToVectorRep[133X
23.3-2 NumberFFVector
23.4 [33X[0;0YCoefficient List Arithmetic[133X
23.4-1 AddRowVector
23.4-2 AddCoeffs
23.4-3 MultRowVector
23.4-4 CoeffsMod
23.5 [33X[0;0YShifting and Trimming Coefficient Lists[133X
23.5-1 LeftShiftRowVector
23.5-2 RightShiftRowVector
23.5-3 ShrinkRowVector
23.5-4 RemoveOuterCoeffs
23.6 [33X[0;0YFunctions for Coding Theory[133X
23.6-1 WeightVecFFE
23.6-2 DistanceVecFFE
23.6-3 DistancesDistributionVecFFEsVecFFE
23.6-4 DistancesDistributionMatFFEVecFFE
23.6-5 AClosestVectorCombinationsMatFFEVecFFE
23.6-6 CosetLeadersMatFFE
23.7 [33X[0;0YVectors as coefficients of polynomials[133X
23.7-1 ValuePol
23.7-2 ProductCoeffs
23.7-3 ReduceCoeffs
23.7-4 ReduceCoeffsMod
23.7-5 PowerModCoeffs
23.7-6 ShiftedCoeffs
24 [33X[0;0YMatrices[133X
24.1 [33X[0;0YInfoMatrix (Info Class)[133X
24.1-1 InfoMatrix
24.2 [33X[0;0YCategories of Matrices[133X
24.2-1 IsMatrix
24.2-2 IsOrdinaryMatrix
24.2-3 IsLieMatrix
24.3 [33X[0;0YOperators for Matrices[133X
24.4 [33X[0;0YProperties and Attributes of Matrices[133X
24.4-1 DimensionsMat
24.4-2 DefaultFieldOfMatrix
24.4-3 TraceMat
24.4-4 DeterminantMat
24.4-5 DeterminantMatDestructive
24.4-6 DeterminantMatDivFree
24.4-7 IsMonomialMatrix
24.4-8 IsDiagonalMat
24.4-9 IsUpperTriangularMat
24.4-10 IsLowerTriangularMat
24.5 [33X[0;0YMatrix Constructions[133X
24.5-1 IdentityMat
24.5-2 NullMat
24.5-3 EmptyMatrix
24.5-4 DiagonalMat
24.5-5 PermutationMat
24.5-6 TransposedMatImmutable
24.5-7 TransposedMatDestructive
24.5-8 KroneckerProduct
24.5-9 ReflectionMat
24.5-10 PrintArray
24.6 [33X[0;0YRandom Matrices[133X
24.6-1 RandomMat
24.6-2 RandomInvertibleMat
24.6-3 RandomUnimodularMat
24.7 [33X[0;0YMatrices Representing Linear Equations and the Gaussian Algorithm[133X
24.7-1 RankMat
24.7-2 TriangulizedMat
24.7-3 TriangulizeMat
24.7-4 NullspaceMat
24.7-5 NullspaceMatDestructive
24.7-6 SolutionMat
24.7-7 SolutionMatDestructive
24.7-8 BaseFixedSpace
24.8 [33X[0;0YEigenvectors and eigenvalues[133X
24.8-1 GeneralisedEigenvalues
24.8-2 GeneralisedEigenspaces
24.8-3 Eigenvalues
24.8-4 Eigenspaces
24.8-5 Eigenvectors
24.9 [33X[0;0YElementary Divisors[133X
24.9-1 ElementaryDivisorsMat
24.9-2 ElementaryDivisorsTransformationsMat
24.9-3 DiagonalizeMat
24.10 [33X[0;0YEchelonized Matrices[133X
24.10-1 SemiEchelonMat
24.10-2 SemiEchelonMatDestructive
24.10-3 SemiEchelonMatTransformation
24.10-4 SemiEchelonMats
24.10-5 SemiEchelonMatsDestructive
24.11 [33X[0;0YMatrices as Basis of a Row Space[133X
24.11-1 BaseMat
24.11-2 BaseMatDestructive
24.11-3 BaseOrthogonalSpaceMat
24.11-4 SumIntersectionMat
24.11-5 BaseSteinitzVectors
24.12 [33X[0;0YTriangular Matrices[133X
24.12-1 DiagonalOfMat
24.12-2 UpperSubdiagonal
24.12-3 DepthOfUpperTriangularMatrix
24.13 [33X[0;0YMatrices as Linear Mappings[133X
24.13-1 CharacteristicPolynomial
24.13-2 JordanDecomposition
24.13-3 BlownUpMat
24.13-4 BlownUpVector
24.13-5 CompanionMat
24.14 [33X[0;0YMatrices over Finite Fields[133X
24.14-1 ImmutableMatrix
24.14-2 ConvertToMatrixRep
24.14-3 ProjectiveOrder
24.14-4 SimultaneousEigenvalues
24.15 [33X[0;0YInverse and Nullspace of an Integer Matrix Modulo an Ideal[133X
24.15-1 InverseMatMod
24.15-2 NullspaceModQ
24.16 [33X[0;0YSpecial Multiplication Algorithms for Matrices over GF(2)[133X
24.16-1 PROD_GF2MAT_GF2MAT_SIMPLE
24.16-2 PROD_GF2MAT_GF2MAT_ADVANCED
24.17 [33X[0;0YBlock Matrices[133X
24.17-1 AsBlockMatrix
24.17-2 BlockMatrix
24.17-3 MatrixByBlockMatrix
25 [33X[0;0YIntegral matrices and lattices[133X
25.1 [33X[0;0YLinear equations over the integers and Integral Matrices[133X
25.1-1 NullspaceIntMat
25.1-2 SolutionIntMat
25.1-3 SolutionNullspaceIntMat
25.1-4 BaseIntMat
25.1-5 BaseIntersectionIntMats
25.1-6 ComplementIntMat
25.2 [33X[0;0YNormal Forms over the Integers[133X
25.2-1 TriangulizedIntegerMat
25.2-2 TriangulizedIntegerMatTransform
25.2-3 TriangulizeIntegerMat
25.2-4 HermiteNormalFormIntegerMat
25.2-5 HermiteNormalFormIntegerMatTransform
25.2-6 SmithNormalFormIntegerMat
25.2-7 SmithNormalFormIntegerMatTransforms
25.2-8 DiagonalizeIntMat
25.2-9 NormalFormIntMat
25.2-10 AbelianInvariantsOfList
25.3 [33X[0;0YDeterminant of an integer matrix[133X
25.3-1 DeterminantIntMat
25.4 [33X[0;0YDecompositions[133X
25.4-1 Decomposition
25.4-2 LinearIndependentColumns
25.4-3 PadicCoefficients
25.4-4 IntegralizedMat
25.4-5 DecompositionInt
25.5 [33X[0;0YLattice Reduction[133X
25.5-1 LLLReducedBasis
25.5-2 LLLReducedGramMat
25.6 [33X[0;0YOrthogonal Embeddings[133X
25.6-1 OrthogonalEmbeddings
25.6-2 ShortestVectors
26 [33X[0;0YVector and matrix objects[133X
26.1 [33X[0;0YFundamental ideas and rules[133X
26.2 [33X[0;0YCategories of vectors and matrices[133X
26.3 [33X[0;0YConstructing vector and matrix objects[133X
26.4 [33X[0;0YOperations for row vector objects[133X
26.5 [33X[0;0YOperations for row list matrix objects[133X
26.6 [33X[0;0YOperations for flat matrix objects[133X
27 [33X[0;0YStrings and Characters[133X
27.1 [33X[0;0YIsChar and IsString[133X
27.1-1 IsChar
27.1-2 IsString
27.1-3 [33X[0;0YStrings As Lists[133X
27.1-4 [33X[0;0YPrinting Strings[133X
27.2 [33X[0;0YSpecial Characters[133X
27.3 [33X[0;0YInternally Represented Strings[133X
27.3-1 IsStringRep
27.3-2 ConvertToStringRep
27.3-3 IsEmptyString
27.3-4 EmptyString
27.3-5 CharsFamily
27.4 [33X[0;0YRecognizing Characters[133X
27.4-1 IsDigitChar
27.4-2 IsLowerAlphaChar
27.4-3 IsUpperAlphaChar
27.4-4 IsAlphaChar
27.5 [33X[0;0YComparisons of Strings[133X
27.5-1 \=
27.5-2 \<
27.6 [33X[0;0YOperations to Produce or Manipulate Strings[133X
27.6-1 DisplayString
27.6-2 DEFAULTDISPLAYSTRING
27.6-3 ViewString
27.6-4 DEFAULTVIEWSTRING
27.6-5 PrintString
27.6-6 String
27.6-7 StripLineBreakCharacters
27.6-8 HexStringInt
27.6-9 StringPP
27.6-10 WordAlp
27.6-11 LowercaseString
27.6-12 SplitString
27.6-13 ReplacedString
27.6-14 NormalizeWhitespace
27.6-15 NormalizedWhitespace
27.6-16 RemoveCharacters
27.6-17 JoinStringsWithSeparator
27.6-18 Chomp
27.6-19 NumbersString
27.6-20 StringNumbers
27.7 [33X[0;0YCharacter Conversion[133X
27.7-1 IntChar
27.7-2 CharInt
27.7-3 SIntChar
27.7-4 CharSInt
27.8 [33X[0;0YOperations to Evaluate Strings[133X
27.8-1 Int
27.8-2 Ordinal
27.8-3 EvalString
27.8-4 CrcString
27.9 [33X[0;0YCalendar Arithmetic[133X
27.9-1 DaysInYear
27.9-2 DaysInMonth
27.9-3 DMYDay
27.9-4 DayDMY
27.9-5 WeekDay
27.9-6 StringDate
27.9-7 HMSMSec
27.9-8 SecHMSM
27.9-9 StringTime
27.9-10 SecondsDMYhms
27.9-11 DMYhmsSeconds
27.10 [33X[0;0YObtaining LaTeX Representations of Objects[133X
28 [33X[0;0YDictionaries and General Hash Tables[133X
28.1 [33X[0;0YUsing Dictionaries[133X
28.2 [33X[0;0YDictionaries[133X
28.2-1 NewDictionary
28.3 [33X[0;0YDictionaries via Binary Lists[133X
28.3-1 DictionaryByPosition
28.3-2 IsDictionary
28.3-3 IsLookupDictionary
28.3-4 AddDictionary
28.3-5 KnowsDictionary
28.3-6 LookupDictionary
28.4 [33X[0;0YGeneral Hash Tables[133X
28.5 [33X[0;0YHash keys[133X
28.5-1 DenseIntKey
28.5-2 SparseIntKey
28.6 [33X[0;0YDense hash tables[133X
28.6-1 DenseHashTable
28.7 [33X[0;0YSparse hash tables[133X
28.7-1 SparseHashTable
28.7-2 DoubleHashArraySize
29 [33X[0;0YRecords[133X
29.1 [33X[0;0YIsRecord and RecNames[133X
29.1-1 IsRecord
29.1-2 RecNames
29.2 [33X[0;0YAccessing Record Elements[133X
29.3 [33X[0;0YRecord Assignment[133X
29.4 [33X[0;0YIdentical Records[133X
29.5 [33X[0;0YComparisons of Records[133X
29.6 [33X[0;0YIsBound and Unbind for Records[133X
29.6-1 IsBound
29.6-2 Unbind
29.7 [33X[0;0YRecord Access Operations[133X
29.7-1 NameRNam
29.7-2 RNamObj
29.7-3 \.
30 [33X[0;0YCollections[133X
30.1 [33X[0;0YIsCollection (Filter)[133X
30.1-1 IsCollection
30.2 [33X[0;0YCollection Families[133X
30.2-1 CollectionsFamily
30.2-2 IsCollectionFamily
30.2-3 ElementsFamily
30.2-4 CategoryCollections
30.3 [33X[0;0YLists and Collections[133X
30.3-1 IsListOrCollection
30.3-2 Enumerator
30.3-3 EnumeratorSorted
30.3-4 EnumeratorByFunctions
30.3-5 List
30.3-6 SortedList
30.3-7 SSortedList
30.3-8 AsList
30.3-9 AsSortedList
30.3-10 AsSSortedList
30.3-11 Elements
30.4 [33X[0;0YAttributes and Properties for Collections[133X
30.4-1 IsEmpty
30.4-2 IsFinite
30.4-3 IsTrivial
30.4-4 IsNonTrivial
30.4-5 IsWholeFamily
30.4-6 Size
30.4-7 Representative
30.4-8 RepresentativeSmallest
30.5 [33X[0;0YOperations for Collections[133X
30.5-1 IsSubset
30.5-2 [33X[0;0YIntersection[133X
30.5-3 [33X[0;0YUnion[133X
30.5-4 Difference
30.6 [33X[0;0YMembership Test for Collections[133X
30.6-1 \in
30.7 [33X[0;0YRandom Elements[133X
30.7-1 Random
30.7-2 PseudoRandom
30.7-3 RandomList
30.8 [33X[0;0YIterators[133X
30.8-1 Iterator
30.8-2 IteratorSorted
30.8-3 IsIterator
30.8-4 IsDoneIterator
30.8-5 NextIterator
30.8-6 IteratorList
30.8-7 TrivialIterator
30.8-8 IteratorByFunctions
31 [33X[0;0YDomains and their Elements[133X
31.1 [33X[0;0YOperational Structure of Domains[133X
31.2 [33X[0;0YEquality and Comparison of Domains[133X
31.3 [33X[0;0YConstructing Domains[133X
31.4 [33X[0;0YChanging the Structure[133X
31.5 [33X[0;0YChanging the Representation[133X
31.6 [33X[0;0YDomain Categories[133X
31.7 [33X[0;0YParents[133X
31.7-1 Parent
31.8 [33X[0;0YConstructing Subdomains[133X
31.9 [33X[0;0YOperations for Domains[133X
31.9-1 IsGeneralizedDomain
31.9-2 GeneratorsOfDomain
31.9-3 Domain
31.10 [33X[0;0YAttributes and Properties of Elements[133X
31.10-1 Characteristic
31.10-2 OneImmutable
31.10-3 ZeroImmutable
31.10-4 MultiplicativeZeroOp
31.10-5 IsOne
31.10-6 IsZero
31.10-7 IsIdempotent
31.10-8 InverseImmutable
31.10-9 AdditiveInverseImmutable
31.10-10 Order
31.11 [33X[0;0YComparison Operations for Elements[133X
31.11-1 [33X[0;0Y\= and \<[133X
31.11-2 CanEasilyCompareElements
31.12 [33X[0;0YArithmetic Operations for Elements[133X
31.12-1 [33X[0;0Y\+, \*, \/, \^, \mod[133X
31.12-2 LeftQuotient
31.12-3 Comm
31.12-4 LieBracket
31.12-5 Sqrt
31.13 [33X[0;0YRelations Between Domains[133X
31.13-1 UseSubsetRelation
31.13-2 UseFactorRelation
31.13-3 UseIsomorphismRelation
31.13-4 InstallSubsetMaintenance
31.13-5 InstallFactorMaintenance
31.13-6 InstallIsomorphismMaintenance
31.14 [33X[0;0YUseful Categories of Elements[133X
31.14-1 IsExtAElement
31.14-2 IsNearAdditiveElement
31.14-3 IsAdditiveElement
31.14-4 IsNearAdditiveElementWithZero
31.14-5 IsAdditiveElementWithZero
31.14-6 IsNearAdditiveElementWithInverse
31.14-7 IsAdditiveElementWithInverse
31.14-8 IsExtLElement
31.14-9 IsExtRElement
31.14-10 IsMultiplicativeElement
31.14-11 IsMultiplicativeElementWithOne
31.14-12 IsMultiplicativeElementWithZero
31.14-13 IsMultiplicativeElementWithInverse
31.14-14 IsVector
31.14-15 IsNearRingElement
31.14-16 IsRingElement
31.14-17 IsNearRingElementWithOne
31.14-18 IsRingElementWithOne
31.14-19 IsNearRingElementWithInverse
31.14-20 IsRingElementWithInverse
31.15 [33X[0;0YUseful Categories for all Elements of a Family[133X
31.15-1 IsAssociativeElement
31.15-2 IsAdditivelyCommutativeElement
31.15-3 IsCommutativeElement
31.15-4 IsFiniteOrderElement
31.15-5 IsJacobianElement
31.15-6 IsZeroSquaredElement
32 [33X[0;0YMappings[133X
32.1 [33X[0;0YIsDirectProductElement (Filter)[133X
32.1-1 IsDirectProductElement
32.2 [33X[0;0YCreating Mappings[133X
32.2-1 GeneralMappingByElements
32.2-2 [33X[0;0YMappingByFunction[133X
32.2-3 InverseGeneralMapping
32.2-4 CompositionMapping
32.2-5 CompositionMapping2
32.2-6 IsCompositionMappingRep
32.2-7 ConstituentsCompositionMapping
32.2-8 ZeroMapping
32.2-9 IdentityMapping
32.2-10 [33X[0;0YEmbedding[133X
32.2-11 [33X[0;0YProjection[133X
32.2-12 RestrictedMapping
32.3 [33X[0;0YProperties and Attributes of (General) Mappings[133X
32.3-1 IsTotal
32.3-2 IsSingleValued
32.3-3 IsMapping
32.3-4 IsInjective
32.3-5 IsSurjective
32.3-6 IsBijective
32.3-7 Range
32.3-8 Source
32.3-9 UnderlyingRelation
32.3-10 UnderlyingGeneralMapping
32.4 [33X[0;0YImages under Mappings[133X
32.4-1 ImagesSource
32.4-2 ImagesRepresentative
32.4-3 ImagesElm
32.4-4 ImagesSet
32.4-5 ImageElm
32.4-6 [33X[0;0YImage[133X
32.4-7 [33X[0;0YImages[133X
32.5 [33X[0;0YPreimages under Mappings[133X
32.5-1 PreImagesRange
32.5-2 PreImagesElm
32.5-3 PreImageElm
32.5-4 PreImagesRepresentative
32.5-5 PreImagesSet
32.5-6 [33X[0;0YPreImage[133X
32.5-7 [33X[0;0YPreImages[133X
32.6 [33X[0;0YArithmetic Operations for General Mappings[133X
32.7 [33X[0;0YMappings which are Compatible with Algebraic Structures[133X
32.8 [33X[0;0YMagma Homomorphisms[133X
32.8-1 IsMagmaHomomorphism
32.8-2 MagmaHomomorphismByFunctionNC
32.8-3 NaturalHomomorphismByGenerators
32.9 [33X[0;0YMappings that Respect Multiplication[133X
32.9-1 RespectsMultiplication
32.9-2 RespectsOne
32.9-3 RespectsInverses
32.9-4 IsGroupGeneralMapping
32.9-5 KernelOfMultiplicativeGeneralMapping
32.9-6 CoKernelOfMultiplicativeGeneralMapping
32.10 [33X[0;0YMappings that Respect Addition[133X
32.10-1 RespectsAddition
32.10-2 RespectsAdditiveInverses
32.10-3 RespectsZero
32.10-4 IsAdditiveGroupGeneralMapping
32.10-5 KernelOfAdditiveGeneralMapping
32.10-6 CoKernelOfAdditiveGeneralMapping
32.11 [33X[0;0YLinear Mappings[133X
32.11-1 RespectsScalarMultiplication
32.11-2 IsLeftModuleGeneralMapping
32.11-3 IsLinearMapping
32.12 [33X[0;0YRing Homomorphisms[133X
32.12-1 IsRingGeneralMapping
32.12-2 IsRingWithOneGeneralMapping
32.12-3 IsAlgebraGeneralMapping
32.12-4 IsAlgebraWithOneGeneralMapping
32.12-5 IsFieldHomomorphism
32.13 [33X[0;0YGeneral Mappings[133X
32.13-1 IsGeneralMapping
32.13-2 IsConstantTimeAccessGeneralMapping
32.13-3 IsEndoGeneralMapping
32.14 [33X[0;0YTechnical Matters Concerning General Mappings[133X
32.14-1 IsSPGeneralMapping
32.14-2 IsGeneralMappingFamily
32.14-3 FamilyRange
32.14-4 FamilySource
32.14-5 FamiliesOfGeneralMappingsAndRanges
32.14-6 GeneralMappingsFamily
32.14-7 TypeOfDefaultGeneralMapping
33 [33X[0;0YRelations[133X
33.1 [33X[0;0YGeneral Binary Relations[133X
33.1-1 IsBinaryRelation
33.1-2 BinaryRelationByElements
33.1-3 [33X[0;0YIdentityBinaryRelation[133X
33.1-4 EmptyBinaryRelation
33.2 [33X[0;0YProperties and Attributes of Binary Relations[133X
33.2-1 IsReflexiveBinaryRelation
33.2-2 IsSymmetricBinaryRelation
33.2-3 IsTransitiveBinaryRelation
33.2-4 IsAntisymmetricBinaryRelation
33.2-5 IsPreOrderBinaryRelation
33.2-6 IsPartialOrderBinaryRelation
33.2-7 IsHasseDiagram
33.2-8 IsEquivalenceRelation
33.2-9 Successors
33.2-10 DegreeOfBinaryRelation
33.2-11 PartialOrderOfHasseDiagram
33.3 [33X[0;0YBinary Relations on Points[133X
33.3-1 BinaryRelationOnPoints
33.3-2 RandomBinaryRelationOnPoints
33.3-3 [33X[0;0YAsBinaryRelationOnPoints[133X
33.4 [33X[0;0YClosure Operations and Other Constructors[133X
33.4-1 ReflexiveClosureBinaryRelation
33.4-2 SymmetricClosureBinaryRelation
33.4-3 TransitiveClosureBinaryRelation
33.4-4 HasseDiagramBinaryRelation
33.4-5 StronglyConnectedComponents
33.4-6 PartialOrderByOrderingFunction
33.5 [33X[0;0YEquivalence Relations[133X
33.5-1 EquivalenceRelationByPartition
33.5-2 EquivalenceRelationByRelation
33.5-3 EquivalenceRelationByPairs
33.5-4 EquivalenceRelationByProperty
33.6 [33X[0;0YAttributes of and Operations on Equivalence Relations[133X
33.6-1 EquivalenceRelationPartition
33.6-2 GeneratorsOfEquivalenceRelationPartition
33.6-3 JoinEquivalenceRelations
33.7 [33X[0;0YEquivalence Classes[133X
33.7-1 IsEquivalenceClass
33.7-2 EquivalenceClassRelation
33.7-3 EquivalenceClasses
33.7-4 EquivalenceClassOfElement
34 [33X[0;0YOrderings[133X
34.1 [33X[0;0YIsOrdering (Filter)[133X
34.1-1 IsOrdering
34.1-2 OrderingsFamily
34.2 [33X[0;0YBuilding new orderings[133X
34.2-1 OrderingByLessThanFunctionNC
34.2-2 OrderingByLessThanOrEqualFunctionNC
34.3 [33X[0;0YProperties and basic functionality[133X
34.3-1 IsWellFoundedOrdering
34.3-2 IsTotalOrdering
34.3-3 IsIncomparableUnder
34.3-4 FamilyForOrdering
34.3-5 LessThanFunction
34.3-6 LessThanOrEqualFunction
34.3-7 IsLessThanUnder
34.3-8 IsLessThanOrEqualUnder
34.4 [33X[0;0YOrderings on families of associative words[133X
34.4-1 IsOrderingOnFamilyOfAssocWords
34.4-2 IsTranslationInvariantOrdering
34.4-3 IsReductionOrdering
34.4-4 OrderingOnGenerators
34.4-5 LexicographicOrdering
34.4-6 ShortLexOrdering
34.4-7 IsShortLexOrdering
34.4-8 WeightLexOrdering
34.4-9 IsWeightLexOrdering
34.4-10 WeightOfGenerators
34.4-11 BasicWreathProductOrdering
34.4-12 IsBasicWreathProductOrdering
34.4-13 WreathProductOrdering
34.4-14 IsWreathProductOrdering
34.4-15 LevelsOfGenerators
35 [33X[0;0YMagmas[133X
35.1 [33X[0;0YMagma Categories[133X
35.1-1 IsMagma
35.1-2 IsMagmaWithOne
35.1-3 IsMagmaWithInversesIfNonzero
35.1-4 IsMagmaWithInverses
35.2 [33X[0;0YMagma Generation[133X
35.2-1 Magma
35.2-2 MagmaWithOne
35.2-3 MagmaWithInverses
35.2-4 MagmaByGenerators
35.2-5 MagmaWithOneByGenerators
35.2-6 MagmaWithInversesByGenerators
35.2-7 Submagma
35.2-8 SubmagmaWithOne
35.2-9 SubmagmaWithInverses
35.2-10 AsMagma
35.2-11 AsSubmagma
35.2-12 InjectionZeroMagma
35.3 [33X[0;0YMagmas Defined by Multiplication Tables[133X
35.3-1 MagmaByMultiplicationTable
35.3-2 MagmaWithOneByMultiplicationTable
35.3-3 MagmaWithInversesByMultiplicationTable
35.3-4 MagmaElement
35.3-5 [33X[0;0YMultiplicationTable[133X
35.4 [33X[0;0YAttributes and Properties for Magmas[133X
35.4-1 GeneratorsOfMagma
35.4-2 GeneratorsOfMagmaWithOne
35.4-3 GeneratorsOfMagmaWithInverses
35.4-4 Centralizer
35.4-5 Centre
35.4-6 Idempotents
35.4-7 IsAssociative
35.4-8 IsCentral
35.4-9 IsCommutative
35.4-10 MultiplicativeNeutralElement
35.4-11 MultiplicativeZero
35.4-12 IsMultiplicativeZero
35.4-13 SquareRoots
35.4-14 TrivialSubmagmaWithOne
36 [33X[0;0YWords[133X
36.1 [33X[0;0YCategories of Words and Nonassociative Words[133X
36.1-1 IsWord
36.1-2 IsWordCollection
36.1-3 IsNonassocWord
36.1-4 IsNonassocWordCollection
36.2 [33X[0;0YComparison of Words[133X
36.2-1 \=
36.2-2 \<
36.3 [33X[0;0YOperations for Words[133X
36.3-1 MappedWord
36.4 [33X[0;0YFree Magmas[133X
36.4-1 [33X[0;0YFreeMagma[133X
36.4-2 [33X[0;0YFreeMagmaWithOne[133X
36.5 [33X[0;0YExternal Representation for Nonassociative Words[133X
37 [33X[0;0YAssociative Words[133X
37.1 [33X[0;0YCategories of Associative Words[133X
37.1-1 IsAssocWord
37.2 [33X[0;0YFree Groups, Monoids and Semigroups[133X
37.2-1 [33X[0;0YFreeGroup[133X
37.2-2 IsFreeGroup
37.2-3 AssignGeneratorVariables
37.3 [33X[0;0YComparison of Associative Words[133X
37.3-1 \=
37.3-2 \<
37.3-3 IsShortLexLessThanOrEqual
37.3-4 IsBasicWreathLessThanOrEqual
37.4 [33X[0;0YOperations for Associative Words[133X
37.4-1 Length
37.4-2 ExponentSumWord
37.4-3 Subword
37.4-4 PositionWord
37.4-5 [33X[0;0YSubstitutedWord[133X
37.4-6 EliminatedWord
37.5 [33X[0;0YOperations for Associative Words by their Syllables[133X
37.5-1 NumberSyllables
37.5-2 ExponentSyllable
37.5-3 GeneratorSyllable
37.5-4 SubSyllables
37.6 [33X[0;0YRepresentations for Associative Words[133X
37.6-1 IsLetterAssocWordRep
37.6-2 IsLetterWordsFamily
37.6-3 IsBLetterAssocWordRep
37.6-4 IsBLetterWordsFamily
37.6-5 IsSyllableAssocWordRep
37.6-6 IsSyllableWordsFamily
37.6-7 Is16BitsFamily
37.6-8 LetterRepAssocWord
37.6-9 AssocWordByLetterRep
37.7 [33X[0;0YThe External Representation for Associative Words[133X
37.8 [33X[0;0YStraight Line Programs[133X
37.8-1 IsStraightLineProgram
37.8-2 StraightLineProgram
37.8-3 LinesOfStraightLineProgram
37.8-4 NrInputsOfStraightLineProgram
37.8-5 ResultOfStraightLineProgram
37.8-6 StringOfResultOfStraightLineProgram
37.8-7 CompositionOfStraightLinePrograms
37.8-8 IntegratedStraightLineProgram
37.8-9 RestrictOutputsOfSLP
37.8-10 IntermediateResultOfSLP
37.8-11 IntermediateResultOfSLPWithoutOverwrite
37.8-12 IntermediateResultsOfSLPWithoutOverwrite
37.8-13 ProductOfStraightLinePrograms
37.8-14 SlotUsagePattern
37.9 [33X[0;0YStraight Line Program Elements[133X
37.9-1 IsStraightLineProgElm
37.9-2 StraightLineProgElm
37.9-3 StraightLineProgGens
37.9-4 EvalStraightLineProgElm
37.9-5 StretchImportantSLPElement
38 [33X[0;0YRewriting Systems[133X
38.1 [33X[0;0YOperations on rewriting systems[133X
38.1-1 IsRewritingSystem
38.1-2 Rules
38.1-3 OrderOfRewritingSystem
38.1-4 ReducedForm
38.1-5 [33X[0;0YIsConfluent[133X
38.1-6 ConfluentRws
38.1-7 IsReduced
38.1-8 ReduceRules
38.1-9 AddRule
38.1-10 AddRuleReduced
38.1-11 MakeConfluent
38.1-12 GeneratorsOfRws
38.2 [33X[0;0YOperations on elements of the algebra[133X
38.2-1 ReducedProduct
38.3 [33X[0;0YProperties of rewriting systems[133X
38.3-1 IsBuiltFromAdditiveMagmaWithInverses
38.4 [33X[0;0YRewriting in Groups and Monoids[133X
38.5 [33X[0;0YDeveloping rewriting systems[133X
39 [33X[0;0YGroups[133X
39.1 [33X[0;0YGroup Elements[133X
39.2 [33X[0;0YCreating Groups[133X
39.2-1 Group
39.2-2 GroupByGenerators
39.2-3 GroupWithGenerators
39.2-4 GeneratorsOfGroup
39.2-5 AsGroup
39.2-6 ConjugateGroup
39.2-7 IsGroup
39.2-8 InfoGroup
39.3 [33X[0;0YSubgroups[133X
39.3-1 Subgroup
39.3-2 [33X[0;0YIndex ([5XGAP[105X operation)[133X
39.3-3 IndexInWholeGroup
39.3-4 AsSubgroup
39.3-5 IsSubgroup
39.3-6 IsNormal
39.3-7 IsCharacteristicSubgroup
39.3-8 ConjugateSubgroup
39.3-9 ConjugateSubgroups
39.3-10 IsSubnormal
39.3-11 SubgroupByProperty
39.3-12 SubgroupShell
39.4 [33X[0;0YClosures of (Sub)groups[133X
39.4-1 ClosureGroup
39.4-2 ClosureGroupAddElm
39.4-3 ClosureGroupDefault
39.4-4 ClosureSubgroup
39.5 [33X[0;0YExpressing Group Elements as Words in Generators[133X
39.5-1 EpimorphismFromFreeGroup
39.5-2 Factorization
39.6 [33X[0;0YStructure Descriptions[133X
39.6-1 StructureDescription
39.7 [33X[0;0YCosets[133X
39.7-1 RightCoset
39.7-2 RightCosets
39.7-3 CanonicalRightCosetElement
39.7-4 IsRightCoset
39.7-5 CosetDecomposition
39.8 [33X[0;0YTransversals[133X
39.8-1 RightTransversal
39.9 [33X[0;0YDouble Cosets[133X
39.9-1 DoubleCoset
39.9-2 RepresentativesContainedRightCosets
39.9-3 DoubleCosets
39.9-4 IsDoubleCoset
39.9-5 DoubleCosetRepsAndSizes
39.9-6 InfoCoset
39.10 [33X[0;0YConjugacy Classes[133X
39.10-1 ConjugacyClass
39.10-2 ConjugacyClasses
39.10-3 ConjugacyClassesByRandomSearch
39.10-4 ConjugacyClassesByOrbits
39.10-5 NrConjugacyClasses
39.10-6 RationalClass
39.10-7 RationalClasses
39.10-8 GaloisGroup
39.10-9 [33X[0;0YIsConjugate[133X
39.10-10 NthRootsInGroup
39.11 [33X[0;0YNormal Structure[133X
39.11-1 [33X[0;0YNormalizer[133X
39.11-2 Core
39.11-3 PCore
39.11-4 NormalClosure
39.11-5 NormalIntersection
39.11-6 ComplementClassesRepresentatives
39.11-7 InfoComplement
39.12 [33X[0;0YSpecific and Parametrized Subgroups[133X
39.12-1 TrivialSubgroup
39.12-2 CommutatorSubgroup
39.12-3 DerivedSubgroup
39.12-4 CommutatorLength
39.12-5 FittingSubgroup
39.12-6 FrattiniSubgroup
39.12-7 PrefrattiniSubgroup
39.12-8 PerfectResiduum
39.12-9 RadicalGroup
39.12-10 Socle
39.12-11 SupersolvableResiduum
39.12-12 PRump
39.13 [33X[0;0YSylow Subgroups and Hall Subgroups[133X
39.13-1 SylowSubgroup
39.13-2 SylowComplement
39.13-3 HallSubgroup
39.13-4 SylowSystem
39.13-5 ComplementSystem
39.13-6 HallSystem
39.14 [33X[0;0YSubgroups characterized by prime powers[133X
39.14-1 Omega
39.14-2 Agemo
39.15 [33X[0;0YGroup Properties[133X
39.15-1 IsCyclic
39.15-2 IsElementaryAbelian
39.15-3 IsNilpotentGroup
39.15-4 NilpotencyClassOfGroup
39.15-5 IsPerfectGroup
39.15-6 IsSolvableGroup
39.15-7 IsPolycyclicGroup
39.15-8 IsSupersolvableGroup
39.15-9 IsMonomialGroup
39.15-10 IsSimpleGroup
39.15-11 IsAlmostSimpleGroup
39.15-12 [33X[0;0YIsomorphismTypeInfoFiniteSimpleGroup[133X
39.15-13 SimpleGroup
39.15-14 SimpleGroupsIterator
39.15-15 SmallSimpleGroup
39.15-16 AllSmallNonabelianSimpleGroups
39.15-17 IsFinitelyGeneratedGroup
39.15-18 IsSubsetLocallyFiniteGroup
39.15-19 IsPGroup
39.15-20 PrimePGroup
39.15-21 PClassPGroup
39.15-22 RankPGroup
39.15-23 IsPSolvable
39.15-24 IsPNilpotent
39.16 [33X[0;0YNumerical Group Attributes[133X
39.16-1 AbelianInvariants
39.16-2 Exponent
39.16-3 EulerianFunction
39.17 [33X[0;0YSubgroup Series[133X
39.17-1 ChiefSeries
39.17-2 ChiefSeriesThrough
39.17-3 ChiefSeriesUnderAction
39.17-4 SubnormalSeries
39.17-5 CompositionSeries
39.17-6 DisplayCompositionSeries
39.17-7 DerivedSeriesOfGroup
39.17-8 DerivedLength
39.17-9 [33X[0;0YElementaryAbelianSeries[133X
39.17-10 InvariantElementaryAbelianSeries
39.17-11 LowerCentralSeriesOfGroup
39.17-12 UpperCentralSeriesOfGroup
39.17-13 PCentralSeries
39.17-14 JenningsSeries
39.17-15 DimensionsLoewyFactors
39.17-16 AscendingChain
39.17-17 IntermediateGroup
39.17-18 IntermediateSubgroups
39.18 [33X[0;0YFactor Groups[133X
39.18-1 NaturalHomomorphismByNormalSubgroup
39.18-2 FactorGroup
39.18-3 CommutatorFactorGroup
39.18-4 MaximalAbelianQuotient
39.18-5 HasAbelianFactorGroup
39.18-6 HasElementaryAbelianFactorGroup
39.18-7 CentralizerModulo
39.19 [33X[0;0YSets of Subgroups[133X
39.19-1 ConjugacyClassSubgroups
39.19-2 IsConjugacyClassSubgroupsRep
39.19-3 ConjugacyClassesSubgroups
39.19-4 ConjugacyClassesMaximalSubgroups
39.19-5 AllSubgroups
39.19-6 MaximalSubgroupClassReps
39.19-7 MaximalSubgroups
39.19-8 NormalSubgroups
39.19-9 MaximalNormalSubgroups
39.19-10 MinimalNormalSubgroups
39.20 [33X[0;0YSubgroup Lattice[133X
39.20-1 LatticeSubgroups
39.20-2 ClassElementLattice
39.20-3 DotFileLatticeSubgroups
39.20-4 MaximalSubgroupsLattice
39.20-5 MinimalSupergroupsLattice
39.20-6 RepresentativesPerfectSubgroups
39.20-7 ConjugacyClassesPerfectSubgroups
39.20-8 Zuppos
39.20-9 InfoLattice
39.21 [33X[0;0YSpecific Methods for Subgroup Lattice Computations[133X
39.21-1 LatticeByCyclicExtension
39.21-2 InvariantSubgroupsElementaryAbelianGroup
39.21-3 SubgroupsSolvableGroup
39.21-4 SizeConsiderFunction
39.21-5 ExactSizeConsiderFunction
39.21-6 InfoPcSubgroup
39.22 [33X[0;0YSpecial Generating Sets[133X
39.22-1 GeneratorsSmallest
39.22-2 LargestElementGroup
39.22-3 MinimalGeneratingSet
39.22-4 SmallGeneratingSet
39.22-5 IndependentGeneratorsOfAbelianGroup
39.22-6 IndependentGeneratorExponents
39.23 [33X[0;0Y1-Cohomology[133X
39.23-1 [33X[0;0YOneCocycles[133X
39.23-2 OneCoboundaries
39.23-3 OCOneCocycles
39.23-4 ComplementClassesRepresentativesEA
39.23-5 InfoCoh
39.24 [33X[0;0YSchur Covers and Multipliers[133X
39.24-1 EpimorphismSchurCover
39.24-2 SchurCover
39.24-3 AbelianInvariantsMultiplier
39.24-4 Epicentre
39.24-5 NonabelianExteriorSquare
39.24-6 EpimorphismNonabelianExteriorSquare
39.24-7 IsCentralFactor
39.24-8 [33X[0;0YCovering groups of symmetric groups[133X
39.24-9 BasicSpinRepresentationOfSymmetricGroup
39.24-10 SchurCoverOfSymmetricGroup
39.24-11 DoubleCoverOfAlternatingGroup
39.25 [33X[0;0YTests for the Availability of Methods[133X
39.25-1 CanEasilyTestMembership
39.25-2 CanEasilyComputeWithIndependentGensAbelianGroup
39.25-3 CanComputeSize
39.25-4 CanComputeSizeAnySubgroup
39.25-5 CanComputeIndex
39.25-6 CanComputeIsSubset
39.25-7 KnowsHowToDecompose
40 [33X[0;0YGroup Homomorphisms[133X
40.1 [33X[0;0YCreating Group Homomorphisms[133X
40.1-1 GroupHomomorphismByImages
40.1-2 GroupHomomorphismByImagesNC
40.1-3 GroupGeneralMappingByImages
40.1-4 [33X[0;0YGroupHomomorphismByFunction[133X
40.1-5 AsGroupGeneralMappingByImages
40.2 [33X[0;0YOperations for Group Homomorphisms[133X
40.3 [33X[0;0YEfficiency of Homomorphisms[133X
40.3-1 [33X[0;0YMappings given on generators[133X
40.3-2 [33X[0;0YAction homomorphisms[133X
40.3-3 [33X[0;0YMappings given by functions[133X
40.3-4 [33X[0;0YOther operations[133X
40.3-5 ImagesSmallestGenerators
40.4 [33X[0;0YHomomorphism for very large groups[133X
40.5 [33X[0;0YNice Monomorphisms[133X
40.5-1 IsHandledByNiceMonomorphism
40.5-2 NiceMonomorphism
40.5-3 NiceObject
40.5-4 IsCanonicalNiceMonomorphism
40.6 [33X[0;0YGroup Automorphisms[133X
40.6-1 ConjugatorIsomorphism
40.6-2 ConjugatorAutomorphism
40.6-3 InnerAutomorphism
40.6-4 IsConjugatorIsomorphism
40.6-5 ConjugatorOfConjugatorIsomorphism
40.7 [33X[0;0YGroups of Automorphisms[133X
40.7-1 AutomorphismGroup
40.7-2 IsGroupOfAutomorphisms
40.7-3 AutomorphismDomain
40.7-4 IsAutomorphismGroup
40.7-5 InnerAutomorphismsAutomorphismGroup
40.7-6 InducedAutomorphism
40.8 [33X[0;0YCalculating with Group Automorphisms[133X
40.8-1 AssignNiceMonomorphismAutomorphismGroup
40.8-2 NiceMonomorphismAutomGroup
40.9 [33X[0;0YSearching for Homomorphisms[133X
40.9-1 IsomorphismGroups
40.9-2 AllHomomorphismClasses
40.9-3 AllHomomorphisms
40.9-4 GQuotients
40.9-5 IsomorphicSubgroups
40.9-6 MorClassLoop
40.10 [33X[0;0YRepresentations for Group Homomorphisms[133X
40.10-1 IsGroupGeneralMappingByImages
40.10-2 MappingGeneratorsImages
40.10-3 IsGroupGeneralMappingByAsGroupGeneralMappingByImages
40.10-4 IsPreimagesByAsGroupGeneralMappingByImages
40.10-5 IsPermGroupGeneralMapping
40.10-6 IsToPermGroupGeneralMappingByImages
40.10-7 IsGroupGeneralMappingByPcgs
40.10-8 IsPcGroupGeneralMappingByImages
40.10-9 IsToPcGroupGeneralMappingByImages
40.10-10 IsFromFpGroupGeneralMappingByImages
40.10-11 IsFromFpGroupStdGensGeneralMappingByImages
41 [33X[0;0YGroup Actions[133X
41.1 [33X[0;0YAbout Group Actions[133X
41.2 [33X[0;0YBasic Actions[133X
41.2-1 OnPoints
41.2-2 OnRight
41.2-3 OnLeftInverse
41.2-4 OnSets
41.2-5 OnTuples
41.2-6 OnPairs
41.2-7 OnSetsSets
41.2-8 OnSetsDisjointSets
41.2-9 OnSetsTuples
41.2-10 OnTuplesSets
41.2-11 OnTuplesTuples
41.2-12 OnLines
41.2-13 OnIndeterminates
41.2-14 Permuted
41.2-15 OnSubspacesByCanonicalBasis
41.3 [33X[0;0YAction on canonical representatives[133X
41.4 [33X[0;0YOrbits[133X
41.4-1 Orbit
41.4-2 Orbits
41.4-3 [33X[0;0YOrbitsDomain[133X
41.4-4 OrbitLength
41.4-5 [33X[0;0YOrbitLengths[133X
41.4-6 [33X[0;0YOrbitLengthsDomain[133X
41.5 [33X[0;0YStabilizers[133X
41.5-1 OrbitStabilizer
41.5-2 Stabilizer
41.5-3 OrbitStabilizerAlgorithm
41.6 [33X[0;0YElements with Prescribed Images[133X
41.6-1 RepresentativeAction
41.7 [33X[0;0YThe Permutation Image of an Action[133X
41.7-1 [33X[0;0YActionHomomorphism[133X
41.7-2 Action
41.7-3 SparseActionHomomorphism
41.8 [33X[0;0YAction of a group on itself[133X
41.8-1 FactorCosetAction
41.8-2 RegularActionHomomorphism
41.8-3 AbelianSubfactorAction
41.9 [33X[0;0YPermutations Induced by Elements and Cycles[133X
41.9-1 [33X[0;0YPermutation[133X
41.9-2 PermutationCycle
41.9-3 Cycle
41.9-4 CycleLength
41.9-5 Cycles
41.9-6 CycleLengths
41.9-7 [33X[0;0YCycleIndex[133X
41.10 [33X[0;0YTests for Actions[133X
41.10-1 [33X[0;0YIsTransitive[133X
41.10-2 [33X[0;0YTransitivity[133X
41.10-3 [33X[0;0YRankAction[133X
41.10-4 [33X[0;0YIsSemiRegular[133X
41.10-5 [33X[0;0YIsRegular[133X
41.10-6 [33X[0;0YEarns[133X
41.10-7 [33X[0;0YIsPrimitive[133X
41.11 [33X[0;0YBlock Systems[133X
41.11-1 [33X[0;0YBlocks[133X
41.11-2 [33X[0;0YMaximalBlocks[133X
41.11-3 [33X[0;0YRepresentativesMinimalBlocks[133X
41.11-4 AllBlocks
41.12 [33X[0;0YExternal Sets[133X
41.12-1 IsExternalSet
41.12-2 ExternalSet
41.12-3 ActingDomain
41.12-4 FunctionAction
41.12-5 HomeEnumerator
41.12-6 IsExternalSubset
41.12-7 ExternalSubset
41.12-8 IsExternalOrbit
41.12-9 ExternalOrbit
41.12-10 StabilizerOfExternalSet
41.12-11 [33X[0;0YExternalOrbits[133X
41.12-12 [33X[0;0YExternalOrbitsStabilizers[133X
41.12-13 CanonicalRepresentativeOfExternalSet
41.12-14 CanonicalRepresentativeDeterminatorOfExternalSet
41.12-15 ActorOfExternalSet
41.12-16 UnderlyingExternalSet
41.12-17 SurjectiveActionHomomorphismAttr
42 [33X[0;0YPermutations[133X
42.1 [33X[0;0YIsPerm (Filter)[133X
42.1-1 IsPerm
42.1-2 IsPermCollection
42.1-3 PermutationsFamily
42.2 [33X[0;0YComparison of Permutations[133X
42.2-1 \=
42.2-2 DistancePerms
42.2-3 SmallestGeneratorPerm
42.3 [33X[0;0YMoved Points of Permutations[133X
42.3-1 SmallestMovedPoint
42.3-2 LargestMovedPoint
42.3-3 MovedPoints
42.3-4 NrMovedPoints
42.4 [33X[0;0YSign and Cycle Structure[133X
42.4-1 SignPerm
42.4-2 CycleStructurePerm
42.5 [33X[0;0YCreating Permutations[133X
42.5-1 ListPerm
42.5-2 PermList
42.5-3 MappingPermListList
42.5-4 RestrictedPerm
43 [33X[0;0YPermutation Groups[133X
43.1 [33X[0;0YIsPermGroup (Filter)[133X
43.1-1 IsPermGroup
43.2 [33X[0;0YThe Natural Action[133X
43.2-1 OrbitPerms
43.2-2 OrbitsPerms
43.3 [33X[0;0YComputing a Permutation Representation[133X
43.3-1 IsomorphismPermGroup
43.3-2 SmallerDegreePermutationRepresentation
43.4 [33X[0;0YSymmetric and Alternating Groups[133X
43.4-1 IsNaturalSymmetricGroup
43.4-2 IsSymmetricGroup
43.4-3 IsAlternatingGroup
43.4-4 SymmetricParentGroup
43.5 [33X[0;0YPrimitive Groups[133X
43.5-1 ONanScottType
43.5-2 SocleTypePrimitiveGroup
43.6 [33X[0;0YStabilizer Chains[133X
43.7 [33X[0;0YRandomized Methods for Permutation Groups[133X
43.8 [33X[0;0YConstruction of Stabilizer Chains[133X
43.8-1 StabChain
43.8-2 StabChainOptions
43.8-3 DefaultStabChainOptions
43.8-4 StabChainBaseStrongGenerators
43.8-5 MinimalStabChain
43.9 [33X[0;0YStabilizer Chain Records[133X
43.10 [33X[0;0YOperations for Stabilizer Chains[133X
43.10-1 BaseStabChain
43.10-2 BaseOfGroup
43.10-3 SizeStabChain
43.10-4 StrongGeneratorsStabChain
43.10-5 GroupStabChain
43.10-6 OrbitStabChain
43.10-7 IndicesStabChain
43.10-8 ListStabChain
43.10-9 ElementsStabChain
43.10-10 InverseRepresentative
43.10-11 SiftedPermutation
43.10-12 MinimalElementCosetStabChain
43.10-13 LargestElementStabChain
43.10-14 ApproximateSuborbitsStabilizerPermGroup
43.11 [33X[0;0YLow Level Routines to Modify and Create Stabilizer Chains[133X
43.11-1 CopyStabChain
43.11-2 CopyOptionsDefaults
43.11-3 ChangeStabChain
43.11-4 ExtendStabChain
43.11-5 ReduceStabChain
43.11-6 RemoveStabChain
43.11-7 EmptyStabChain
43.11-8 InsertTrivialStabilizer
43.11-9 IsFixedStabilizer
43.11-10 AddGeneratorsExtendSchreierTree
43.12 [33X[0;0YBacktrack[133X
43.12-1 SubgroupProperty
43.12-2 ElementProperty
43.12-3 TwoClosure
43.12-4 InfoBckt
43.13 [33X[0;0YWorking with large degree permutation groups[133X
44 [33X[0;0YMatrix Groups[133X
44.1 [33X[0;0YIsMatrixGroup (Filter)[133X
44.1-1 IsMatrixGroup
44.2 [33X[0;0YAttributes and Properties for Matrix Groups[133X
44.2-1 DimensionOfMatrixGroup
44.2-2 DefaultFieldOfMatrixGroup
44.2-3 FieldOfMatrixGroup
44.2-4 TransposedMatrixGroup
44.2-5 IsFFEMatrixGroup
44.3 [33X[0;0YActions of Matrix Groups[133X
44.3-1 ProjectiveActionOnFullSpace
44.3-2 ProjectiveActionHomomorphismMatrixGroup
44.3-3 BlowUpIsomorphism
44.4 [33X[0;0YGL and SL[133X
44.4-1 IsGeneralLinearGroup
44.4-2 IsNaturalGL
44.4-3 IsSpecialLinearGroup
44.4-4 IsNaturalSL
44.4-5 IsSubgroupSL
44.5 [33X[0;0YInvariant Forms[133X
44.5-1 InvariantBilinearForm
44.5-2 IsFullSubgroupGLorSLRespectingBilinearForm
44.5-3 InvariantSesquilinearForm
44.5-4 IsFullSubgroupGLorSLRespectingSesquilinearForm
44.5-5 InvariantQuadraticForm
44.5-6 IsFullSubgroupGLorSLRespectingQuadraticForm
44.6 [33X[0;0YMatrix Groups in Characteristic 0[133X
44.6-1 IsCyclotomicMatrixGroup
44.6-2 IsRationalMatrixGroup
44.6-3 IsIntegerMatrixGroup
44.6-4 IsNaturalGLnZ
44.6-5 IsNaturalSLnZ
44.6-6 InvariantLattice
44.6-7 NormalizerInGLnZ
44.6-8 CentralizerInGLnZ
44.6-9 ZClassRepsQClass
44.6-10 IsBravaisGroup
44.6-11 BravaisGroup
44.6-12 BravaisSubgroups
44.6-13 BravaisSupergroups
44.6-14 NormalizerInGLnZBravaisGroup
44.7 [33X[0;0YActing OnRight and OnLeft[133X
44.7-1 CrystGroupDefaultAction
44.7-2 SetCrystGroupDefaultAction
45 [33X[0;0YPolycyclic Groups[133X
45.1 [33X[0;0YPolycyclic Generating Systems[133X
45.2 [33X[0;0YComputing a Pcgs[133X
45.2-1 Pcgs
45.2-2 IsPcgs
45.2-3 CanEasilyComputePcgs
45.3 [33X[0;0YDefining a Pcgs Yourself[133X
45.3-1 PcgsByPcSequence
45.4 [33X[0;0YElementary Operations for a Pcgs[133X
45.4-1 RelativeOrders
45.4-2 IsFiniteOrdersPcgs
45.4-3 IsPrimeOrdersPcgs
45.4-4 PcSeries
45.4-5 GroupOfPcgs
45.4-6 OneOfPcgs
45.5 [33X[0;0YElementary Operations for a Pcgs and an Element[133X
45.5-1 RelativeOrderOfPcElement
45.5-2 ExponentOfPcElement
45.5-3 ExponentsOfPcElement
45.5-4 DepthOfPcElement
45.5-5 LeadingExponentOfPcElement
45.5-6 PcElementByExponents
45.5-7 LinearCombinationPcgs
45.5-8 SiftedPcElement
45.5-9 CanonicalPcElement
45.5-10 ReducedPcElement
45.5-11 CleanedTailPcElement
45.5-12 HeadPcElementByNumber
45.6 [33X[0;0YExponents of Special Products[133X
45.6-1 ExponentsConjugateLayer
45.6-2 ExponentsOfRelativePower
45.6-3 ExponentsOfConjugate
45.6-4 ExponentsOfCommutator
45.7 [33X[0;0YSubgroups of Polycyclic Groups - Induced Pcgs[133X
45.7-1 IsInducedPcgs
45.7-2 InducedPcgsByPcSequence
45.7-3 ParentPcgs
45.7-4 InducedPcgs
45.7-5 InducedPcgsByGenerators
45.7-6 InducedPcgsByPcSequenceAndGenerators
45.7-7 LeadCoeffsIGS
45.7-8 ExtendedPcgs
45.7-9 SubgroupByPcgs
45.8 [33X[0;0YSubgroups of Polycyclic Groups – Canonical Pcgs[133X
45.8-1 IsCanonicalPcgs
45.8-2 CanonicalPcgs
45.9 [33X[0;0YFactor Groups of Polycyclic Groups – Modulo Pcgs[133X
45.9-1 ModuloPcgs
45.9-2 IsModuloPcgs
45.9-3 NumeratorOfModuloPcgs
45.9-4 DenominatorOfModuloPcgs
45.9-5 \mod
45.9-6 CorrespondingGeneratorsByModuloPcgs
45.9-7 CanonicalPcgsByGeneratorsWithImages
45.10 [33X[0;0YFactor Groups of Polycyclic Groups in their Own Representation[133X
45.10-1 ProjectedPcElement
45.10-2 ProjectedInducedPcgs
45.10-3 LiftedPcElement
45.10-4 LiftedInducedPcgs
45.11 [33X[0;0YPcgs and Normal Series[133X
45.11-1 IsPcgsElementaryAbelianSeries
45.11-2 PcgsElementaryAbelianSeries
45.11-3 IndicesEANormalSteps
45.11-4 EANormalSeriesByPcgs
45.11-5 IsPcgsCentralSeries
45.11-6 PcgsCentralSeries
45.11-7 IndicesCentralNormalSteps
45.11-8 CentralNormalSeriesByPcgs
45.11-9 IsPcgsPCentralSeriesPGroup
45.11-10 PcgsPCentralSeriesPGroup
45.11-11 IndicesPCentralNormalStepsPGroup
45.11-12 PCentralNormalSeriesByPcgsPGroup
45.11-13 IsPcgsChiefSeries
45.11-14 PcgsChiefSeries
45.11-15 IndicesChiefNormalSteps
45.11-16 ChiefNormalSeriesByPcgs
45.11-17 IndicesNormalSteps
45.11-18 NormalSeriesByPcgs
45.12 [33X[0;0YSum and Intersection of Pcgs[133X
45.12-1 SumFactorizationFunctionPcgs
45.13 [33X[0;0YSpecial Pcgs[133X
45.13-1 IsSpecialPcgs
45.13-2 [33X[0;0YSpecialPcgs[133X
45.13-3 LGWeights
45.13-4 LGLayers
45.13-5 LGFirst
45.13-6 LGLength
45.13-7 IsInducedPcgsWrtSpecialPcgs
45.13-8 InducedPcgsWrtSpecialPcgs
45.14 [33X[0;0YAction on Subfactors Defined by a Pcgs[133X
45.14-1 VectorSpaceByPcgsOfElementaryAbelianGroup
45.14-2 LinearAction
45.14-3 LinearActionLayer
45.14-4 AffineAction
45.14-5 AffineActionLayer
45.15 [33X[0;0YOrbit Stabilizer Methods for Polycyclic Groups[133X
45.15-1 StabilizerPcgs
45.15-2 Pcgs_OrbitStabilizer
45.16 [33X[0;0YOperations which have Special Methods for Groups with Pcgs[133X
45.17 [33X[0;0YConjugacy Classes in Solvable Groups[133X
45.17-1 ClassesSolvableGroup
45.17-2 CentralizerSizeLimitConsiderFunction
46 [33X[0;0YPc Groups[133X
46.1 [33X[0;0YThe family pcgs[133X
46.1-1 FamilyPcgs
46.1-2 IsFamilyPcgs
46.1-3 InducedPcgsWrtFamilyPcgs
46.1-4 IsParentPcgsFamilyPcgs
46.2 [33X[0;0YElements of pc groups[133X
46.2-1 [33X[0;0YComparison of elements of pc groups[133X
46.2-2 [33X[0;0YArithmetic operations for elements of pc groups[133X
46.3 [33X[0;0YPc groups versus fp groups[133X
46.3-1 IsPcGroup
46.3-2 IsomorphismFpGroupByPcgs
46.4 [33X[0;0YConstructing Pc Groups[133X
46.4-1 PcGroupFpGroup
46.4-2 SingleCollector
46.4-3 SetConjugate
46.4-4 SetCommutator
46.4-5 SetPower
46.4-6 GroupByRws
46.4-7 IsConfluent
46.4-8 IsomorphismRefinedPcGroup
46.4-9 RefinedPcGroup
46.5 [33X[0;0YComputing Pc Groups[133X
46.5-1 PcGroupWithPcgs
46.5-2 IsomorphismPcGroup
46.5-3 IsomorphismSpecialPcGroup
46.6 [33X[0;0YSaving a Pc Group[133X
46.6-1 GapInputPcGroup
46.7 [33X[0;0YOperations for Pc Groups[133X
46.8 [33X[0;0Y[22X2[122X-Cohomology and Extensions[133X
46.8-1 TwoCoboundaries
46.8-2 TwoCocycles
46.8-3 TwoCohomology
46.8-4 Extensions
46.8-5 Extension
46.8-6 SplitExtension
46.8-7 ModuleOfExtension
46.8-8 CompatiblePairs
46.8-9 ExtensionRepresentatives
46.8-10 SplitExtensions
46.9 [33X[0;0YCoding a Pc Presentation[133X
46.9-1 CodePcgs
46.9-2 CodePcGroup
46.9-3 PcGroupCode
46.10 [33X[0;0YRandom Isomorphism Testing[133X
46.10-1 RandomIsomorphismTest
47 [33X[0;0YFinitely Presented Groups[133X
47.1 [33X[0;0YIsSubgroupFpGroup and IsFpGroup[133X
47.1-1 IsSubgroupFpGroup
47.1-2 IsFpGroup
47.1-3 InfoFpGroup
47.2 [33X[0;0YCreating Finitely Presented Groups[133X
47.2-1 \/
47.2-2 FactorGroupFpGroupByRels
47.2-3 ParseRelators
47.2-4 StringFactorizationWord
47.3 [33X[0;0YComparison of Elements of Finitely Presented Groups[133X
47.3-1 \=
47.3-2 \<
47.3-3 FpElmComparisonMethod
47.3-4 SetReducedMultiplication
47.4 [33X[0;0YPreimages in the Free Group[133X
47.4-1 FreeGroupOfFpGroup
47.4-2 FreeGeneratorsOfFpGroup
47.4-3 RelatorsOfFpGroup
47.4-4 UnderlyingElement
47.4-5 ElementOfFpGroup
47.5 [33X[0;0YOperations for Finitely Presented Groups[133X
47.5-1 PseudoRandom
47.6 [33X[0;0YCoset Tables and Coset Enumeration[133X
47.6-1 CosetTable
47.6-2 TracedCosetFpGroup
47.6-3 FactorCosetAction
47.6-4 CosetTableBySubgroup
47.6-5 CosetTableFromGensAndRels
47.6-6 CosetTableDefaultMaxLimit
47.6-7 CosetTableDefaultLimit
47.6-8 MostFrequentGeneratorFpGroup
47.6-9 IndicesInvolutaryGenerators
47.7 [33X[0;0YStandardization of coset tables[133X
47.7-1 CosetTableStandard
47.7-2 StandardizeTable
47.8 [33X[0;0YCoset tables for subgroups in the whole group[133X
47.8-1 CosetTableInWholeGroup
47.8-2 SubgroupOfWholeGroupByCosetTable
47.9 [33X[0;0YAugmented Coset Tables and Rewriting[133X
47.9-1 AugmentedCosetTableInWholeGroup
47.9-2 AugmentedCosetTableMtc
47.9-3 AugmentedCosetTableRrs
47.9-4 RewriteWord
47.10 [33X[0;0YLow Index Subgroups[133X
47.10-1 LowIndexSubgroupsFpGroupIterator
47.11 [33X[0;0YConverting Groups to Finitely Presented Groups[133X
47.11-1 IsomorphismFpGroup
47.11-2 IsomorphismFpGroupByGenerators
47.12 [33X[0;0YNew Presentations and Presentations for Subgroups[133X
47.12-1 IsomorphismSimplifiedFpGroup
47.13 [33X[0;0YPreimages under Homomorphisms from an FpGroup[133X
47.13-1 SubgroupOfWholeGroupByQuotientSubgroup
47.13-2 IsSubgroupOfWholeGroupByQuotientRep
47.13-3 AsSubgroupOfWholeGroupByQuotient
47.13-4 DefiningQuotientHomomorphism
47.14 [33X[0;0YQuotient Methods[133X
47.14-1 PQuotient
47.14-2 EpimorphismQuotientSystem
47.14-3 EpimorphismPGroup
47.14-4 EpimorphismNilpotentQuotient
47.14-5 SolvableQuotient
47.14-6 EpimorphismSolvableQuotient
47.14-7 LargerQuotientBySubgroupAbelianization
47.15 [33X[0;0YAbelian Invariants for Subgroups[133X
47.15-1 AbelianInvariantsSubgroupFpGroup
47.15-2 AbelianInvariantsSubgroupFpGroupMtc
47.15-3 [33X[0;0YAbelianInvariantsSubgroupFpGroupRrs[133X
47.15-4 AbelianInvariantsNormalClosureFpGroup
47.15-5 AbelianInvariantsNormalClosureFpGroupRrs
47.16 [33X[0;0YTesting Finiteness of Finitely Presented Groups[133X
47.16-1 IsInfiniteAbelianizationGroup
47.16-2 NewmanInfinityCriterion
48 [33X[0;0YPresentations and Tietze Transformations[133X
48.1 [33X[0;0YCreating Presentations[133X
48.1-1 PresentationFpGroup
48.1-2 TzSort
48.1-3 GeneratorsOfPresentation
48.1-4 FpGroupPresentation
48.1-5 PresentationViaCosetTable
48.1-6 SimplifiedFpGroup
48.2 [33X[0;0YSubgroup Presentations[133X
48.2-1 PresentationSubgroup
48.2-2 [33X[0;0YPresentationSubgroupRrs[133X
48.2-3 PrimaryGeneratorWords
48.2-4 PresentationSubgroupMtc
48.2-5 PresentationNormalClosureRrs
48.2-6 PresentationNormalClosure
48.3 [33X[0;0YRelators in a Presentation[133X
48.3-1 TietzeWordAbstractWord
48.3-2 AbstractWordTietzeWord
48.4 [33X[0;0YPrinting Presentations[133X
48.4-1 TzPrintGenerators
48.4-2 TzPrintRelators
48.4-3 TzPrintLengths
48.4-4 TzPrintStatus
48.4-5 TzPrintPresentation
48.4-6 TzPrint
48.4-7 TzPrintPairs
48.5 [33X[0;0YChanging Presentations[133X
48.5-1 AddGenerator
48.5-2 TzNewGenerator
48.5-3 AddRelator
48.5-4 RemoveRelator
48.6 [33X[0;0YTietze Transformations[133X
48.6-1 TzGo
48.6-2 SimplifyPresentation
48.6-3 TzGoGo
48.7 [33X[0;0YElementary Tietze Transformations[133X
48.7-1 [33X[0;0YTzEliminate[133X
48.7-2 TzSearch
48.7-3 TzSearchEqual
48.7-4 TzFindCyclicJoins
48.8 [33X[0;0YTietze Transformations that introduce new Generators[133X
48.8-1 [33X[0;0YTzSubstitute[133X
48.8-2 TzSubstituteCyclicJoins
48.9 [33X[0;0YTracing generator images through Tietze transformations[133X
48.9-1 TzInitGeneratorImages
48.9-2 OldGeneratorsOfPresentation
48.9-3 TzImagesOldGens
48.9-4 TzPreImagesNewGens
48.9-5 TzPrintGeneratorImages
48.10 [33X[0;0YThe Decoding Tree Procedure[133X
48.10-1 DecodeTree
48.11 [33X[0;0YTietze Options[133X
48.11-1 TzOptions
48.11-2 TzPrintOptions
49 [33X[0;0YGroup Products[133X
49.1 [33X[0;0YDirect Products[133X
49.1-1 DirectProduct
49.2 [33X[0;0YSemidirect Products[133X
49.2-1 [33X[0;0YSemidirectProduct[133X
49.3 [33X[0;0YSubdirect Products[133X
49.3-1 SubdirectProduct
49.3-2 SubdirectProducts
49.4 [33X[0;0YWreath Products[133X
49.4-1 WreathProduct
49.4-2 WreathProductImprimitiveAction
49.4-3 WreathProductProductAction
49.4-4 KuKGenerators
49.5 [33X[0;0YFree Products[133X
49.5-1 [33X[0;0YFreeProduct[133X
49.6 [33X[0;0YEmbeddings and Projections for Group Products[133X
49.6-1 Embedding
49.6-2 Projection
50 [33X[0;0YGroup Libraries[133X
50.1 [33X[0;0YBasic Groups[133X
50.1-1 TrivialGroup
50.1-2 CyclicGroup
50.1-3 AbelianGroup
50.1-4 ElementaryAbelianGroup
50.1-5 DihedralGroup
50.1-6 QuaternionGroup
50.1-7 ExtraspecialGroup
50.1-8 [33X[0;0YAlternatingGroup[133X
50.1-9 [33X[0;0YSymmetricGroup[133X
50.1-10 MathieuGroup
50.1-11 SuzukiGroup
50.1-12 ReeGroup
50.2 [33X[0;0YClassical Groups[133X
50.2-1 [33X[0;0YGeneralLinearGroup[133X
50.2-2 [33X[0;0YSpecialLinearGroup[133X
50.2-3 GeneralUnitaryGroup
50.2-4 SpecialUnitaryGroup
50.2-5 [33X[0;0YSymplecticGroup[133X
50.2-6 GeneralOrthogonalGroup
50.2-7 SpecialOrthogonalGroup
50.2-8 Omega
50.2-9 GeneralSemilinearGroup
50.2-10 SpecialSemilinearGroup
50.2-11 ProjectiveGeneralLinearGroup
50.2-12 ProjectiveSpecialLinearGroup
50.2-13 ProjectiveGeneralUnitaryGroup
50.2-14 ProjectiveSpecialUnitaryGroup
50.2-15 ProjectiveSymplecticGroup
50.2-16 ProjectiveOmega
50.3 [33X[0;0YConjugacy Classes in Classical Groups[133X
50.3-1 NrConjugacyClassesGL
50.4 [33X[0;0YConstructors for Basic Groups[133X
50.5 [33X[0;0YSelection Functions[133X
50.6 [33X[0;0YTransitive Permutation Groups[133X
50.6-1 TransitiveGroup
50.6-2 NrTransitiveGroups
50.6-3 TransitiveIdentification
50.7 [33X[0;0YSmall Groups[133X
50.7-1 SmallGroup
50.7-2 AllSmallGroups
50.7-3 OneSmallGroup
50.7-4 NumberSmallGroups
50.7-5 IdSmallGroup
50.7-6 IdsOfAllSmallGroups
50.7-7 IdGap3SolvableGroup
50.7-8 SmallGroupsInformation
50.7-9 UnloadSmallGroupsData
50.8 [33X[0;0YFinite Perfect Groups[133X
50.8-1 SizesPerfectGroups
50.8-2 [33X[0;0YPerfectGroup[133X
50.8-3 PerfectIdentification
50.8-4 NumberPerfectGroups
50.8-5 NumberPerfectLibraryGroups
50.8-6 SizeNumbersPerfectGroups
50.8-7 [33X[0;0YDisplayInformationPerfectGroups[133X
50.8-8 [33X[0;0YMore about the Perfect Groups Library[133X
50.9 [33X[0;0YPrimitive Permutation Groups[133X
50.9-1 PrimitiveGroup
50.9-2 NrPrimitiveGroups
50.9-3 PrimitiveGroupsIterator
50.9-4 COHORTS_PRIMITIVE_GROUPS
50.10 [33X[0;0YIndex numbers of primitive groups[133X
50.10-1 PrimitiveIdentification
50.10-2 SimsNo
50.10-3 PRIMITIVE_INDICES_MAGMA
50.11 [33X[0;0YIrreducible Solvable Matrix Groups[133X
50.11-1 IrreducibleSolvableGroupMS
50.11-2 NumberIrreducibleSolvableGroups
50.11-3 AllIrreducibleSolvableGroups
50.11-4 OneIrreducibleSolvableGroup
50.11-5 PrimitiveIndexIrreducibleSolvableGroup
50.11-6 IrreducibleSolvableGroup
50.12 [33X[0;0YIrreducible Maximal Finite Integral Matrix Groups[133X
50.12-1 ImfNumberQQClasses
50.12-2 DisplayImfInvariants
50.12-3 ImfInvariants
50.12-4 ImfMatrixGroup
50.12-5 IsomorphismPermGroup
50.12-6 IsomorphismPermGroupImfGroup
51 [33X[0;0YSemigroups[133X
51.1 [33X[0;0YIsSemigroup (Filter)[133X
51.1-1 IsSemigroup
51.1-2 [33X[0;0YSemigroup[133X
51.1-3 Subsemigroup
51.1-4 SemigroupByGenerators
51.1-5 AsSemigroup
51.1-6 AsSubsemigroup
51.1-7 GeneratorsOfSemigroup
51.1-8 [33X[0;0YFreeSemigroup[133X
51.1-9 SemigroupByMultiplicationTable
51.2 [33X[0;0YProperties of Semigroups[133X
51.2-1 IsRegularSemigroup
51.2-2 IsRegularSemigroupElement
51.2-3 IsSimpleSemigroup
51.2-4 IsZeroSimpleSemigroup
51.2-5 IsZeroGroup
51.2-6 IsReesCongruenceSemigroup
51.3 [33X[0;0YMaking transformation semigroups[133X
51.3-1 IsTransformationSemigroup
51.3-2 DegreeOfTransformationSemigroup
51.3-3 IsomorphismTransformationSemigroup
51.3-4 IsFullTransformationSemigroup
51.3-5 FullTransformationSemigroup
51.4 [33X[0;0YIdeals of semigroups[133X
51.4-1 SemigroupIdealByGenerators
51.4-2 ReesCongruenceOfSemigroupIdeal
51.4-3 IsLeftSemigroupIdeal
51.5 [33X[0;0YCongruences for semigroups[133X
51.5-1 IsSemigroupCongruence
51.5-2 IsReesCongruence
51.6 [33X[0;0YQuotients[133X
51.6-1 IsQuotientSemigroup
51.6-2 HomomorphismQuotientSemigroup
51.6-3 QuotientSemigroupPreimage
51.7 [33X[0;0YGreen's Relations[133X
51.7-1 GreensRRelation
51.7-2 IsGreensRelation
51.7-3 IsGreensClass
51.7-4 IsGreensLessThanOrEqual
51.7-5 RClassOfHClass
51.7-6 EggBoxOfDClass
51.7-7 DisplayEggBoxOfDClass
51.7-8 GreensRClassOfElement
51.7-9 GreensRClasses
51.7-10 GroupHClassOfGreensDClass
51.7-11 IsGroupHClass
51.7-12 IsRegularDClass
51.8 [33X[0;0YRees Matrix Semigroups[133X
51.8-1 ReesMatrixSemigroup
51.8-2 ReesZeroMatrixSemigroup
51.8-3 IsReesMatrixSemigroup
51.8-4 IsReesZeroMatrixSemigroup
51.8-5 ReesMatrixSemigroupElement
51.8-6 IsReesMatrixSemigroupElement
51.8-7 SandwichMatrixOfReesMatrixSemigroup
51.8-8 RowIndexOfReesMatrixSemigroupElement
51.8-9 ReesZeroMatrixSemigroupElementIsZero
51.8-10 AssociatedReesMatrixSemigroupOfDClass
51.8-11 IsomorphismReesMatrixSemigroup
52 [33X[0;0YMonoids[133X
52.1 [33X[0;0YFunctions for Monoids[133X
52.1-1 IsMonoid
52.1-2 [33X[0;0YMonoid[133X
52.1-3 Submonoid
52.1-4 MonoidByGenerators
52.1-5 AsMonoid
52.1-6 AsSubmonoid
52.1-7 GeneratorsOfMonoid
52.1-8 TrivialSubmonoid
52.1-9 [33X[0;0YFreeMonoid[133X
52.1-10 MonoidByMultiplicationTable
53 [33X[0;0YFinitely Presented Semigroups and Monoids[133X
53.1 [33X[0;0YIsSubsemigroupFpSemigroup (Filter)[133X
53.1-1 IsSubsemigroupFpSemigroup
53.1-2 IsSubmonoidFpMonoid
53.1-3 IsFpSemigroup
53.1-4 IsFpMonoid
53.1-5 IsElementOfFpSemigroup
53.1-6 IsElementOfFpMonoid
53.1-7 FpGrpMonSmgOfFpGrpMonSmgElement
53.2 [33X[0;0YCreating Finitely Presented Semigroups[133X
53.2-1 \/
53.2-2 FactorFreeSemigroupByRelations
53.2-3 IsomorphismFpSemigroup
53.3 [33X[0;0YComparison of Elements of Finitely Presented Semigroups[133X
53.3-1 \=
53.4 [33X[0;0YPreimages in the Free Semigroup[133X
53.4-1 UnderlyingElement
53.4-2 ElementOfFpSemigroup
53.4-3 FreeSemigroupOfFpSemigroup
53.4-4 FreeGeneratorsOfFpSemigroup
53.4-5 RelationsOfFpSemigroup
53.5 [33X[0;0YFinitely presented monoids[133X
53.5-1 \/
53.6 [33X[0;0YRewriting Systems and the Knuth-Bendix Procedure[133X
53.6-1 ReducedConfluentRewritingSystem
53.6-2 KB_REW
53.6-3 [33X[0;0YKnuthBendixRewritingSystem[133X
53.6-4 SemigroupOfRewritingSystem
53.6-5 MonoidOfRewritingSystem
53.6-6 FreeSemigroupOfRewritingSystem
53.6-7 FreeMonoidOfRewritingSystem
53.7 [33X[0;0YTodd-Coxeter Procedure[133X
53.7-1 CosetTableOfFpSemigroup
54 [33X[0;0YTransformations[133X
54.1 [33X[0;0YFunctions for Transformations[133X
54.1-1 IsTransformation
54.1-2 TransformationFamily
54.1-3 Transformation
54.1-4 IdentityTransformation
54.1-5 RandomTransformation
54.1-6 DegreeOfTransformation
54.1-7 ImageListOfTransformation
54.1-8 ImageSetOfTransformation
54.1-9 RankOfTransformation
54.1-10 KernelOfTransformation
54.1-11 PreimagesOfTransformation
54.1-12 RestrictedTransformation
54.1-13 AsTransformation
54.1-14 PermLeftQuoTransformation
54.1-15 BinaryRelationTransformation
54.1-16 TransformationRelation
55 [33X[0;0YAdditive Magmas[133X
55.1 [33X[0;0Y(Near-)Additive Magma Categories[133X
55.1-1 IsNearAdditiveMagma
55.1-2 IsNearAdditiveMagmaWithZero
55.1-3 IsNearAdditiveGroup
55.1-4 IsAdditiveMagma
55.1-5 IsAdditiveMagmaWithZero
55.1-6 IsAdditiveGroup
55.2 [33X[0;0Y(Near-)Additive Magma Generation[133X
55.2-1 NearAdditiveMagma
55.2-2 NearAdditiveMagmaWithZero
55.2-3 NearAdditiveGroup
55.2-4 NearAdditiveMagmaByGenerators
55.2-5 NearAdditiveMagmaWithZeroByGenerators
55.2-6 NearAdditiveGroupByGenerators
55.2-7 SubnearAdditiveMagma
55.2-8 SubnearAdditiveMagmaWithZero
55.2-9 SubnearAdditiveGroup
55.3 [33X[0;0YAttributes and Properties for (Near-)Additive Magmas[133X
55.3-1 IsAdditivelyCommutative
55.3-2 GeneratorsOfNearAdditiveMagma
55.3-3 GeneratorsOfNearAdditiveMagmaWithZero
55.3-4 GeneratorsOfNearAdditiveGroup
55.3-5 AdditiveNeutralElement
55.3-6 TrivialSubnearAdditiveMagmaWithZero
55.4 [33X[0;0YOperations for (Near-)Additive Magmas[133X
55.4-1 [33X[0;0YClosureNearAdditiveGroup[133X
55.4-2 ShowAdditionTable
56 [33X[0;0YRings[133X
56.1 [33X[0;0YGenerating Rings[133X
56.1-1 IsRing
56.1-2 [33X[0;0YRing[133X
56.1-3 [33X[0;0YDefaultRing[133X
56.1-4 RingByGenerators
56.1-5 DefaultRingByGenerators
56.1-6 GeneratorsOfRing
56.1-7 Subring
56.1-8 [33X[0;0YClosureRing[133X
56.1-9 Quotient
56.2 [33X[0;0YIdeals in Rings[133X
56.2-1 TwoSidedIdeal
56.2-2 TwoSidedIdealNC
56.2-3 IsTwoSidedIdeal
56.2-4 TwoSidedIdealByGenerators
56.2-5 LeftIdealByGenerators
56.2-6 RightIdealByGenerators
56.2-7 GeneratorsOfTwoSidedIdeal
56.2-8 GeneratorsOfLeftIdeal
56.2-9 GeneratorsOfRightIdeal
56.2-10 LeftActingRingOfIdeal
56.2-11 AsLeftIdeal
56.3 [33X[0;0YRings With One[133X
56.3-1 IsRingWithOne
56.3-2 [33X[0;0YRingWithOne[133X
56.3-3 RingWithOneByGenerators
56.3-4 GeneratorsOfRingWithOne
56.3-5 SubringWithOne
56.4 [33X[0;0YProperties of Rings[133X
56.4-1 IsIntegralRing
56.4-2 IsUniqueFactorizationRing
56.4-3 IsLDistributive
56.4-4 IsRDistributive
56.4-5 IsDistributive
56.4-6 IsAnticommutative
56.4-7 IsZeroSquaredRing
56.4-8 IsJacobianRing
56.5 [33X[0;0YUnits and Factorizations[133X
56.5-1 IsUnit
56.5-2 Units
56.5-3 IsAssociated
56.5-4 Associates
56.5-5 StandardAssociate
56.5-6 StandardAssociateUnit
56.5-7 IsIrreducibleRingElement
56.5-8 IsPrime
56.5-9 Factors
56.5-10 PadicValuation
56.6 [33X[0;0YEuclidean Rings[133X
56.6-1 IsEuclideanRing
56.6-2 EuclideanDegree
56.6-3 EuclideanQuotient
56.6-4 EuclideanRemainder
56.6-5 QuotientRemainder
56.7 [33X[0;0YGcd and Lcm[133X
56.7-1 [33X[0;0YGcd[133X
56.7-2 GcdOp
56.7-3 [33X[0;0YGcdRepresentation[133X
56.7-4 GcdRepresentationOp
56.7-5 ShowGcd
56.7-6 [33X[0;0YLcm[133X
56.7-7 LcmOp
56.7-8 QuotientMod
56.7-9 PowerMod
56.7-10 InterpolatedPolynomial
56.8 [33X[0;0YHomomorphisms of Rings[133X
56.8-1 RingGeneralMappingByImages
56.8-2 RingHomomorphismByImages
56.8-3 RingHomomorphismByImagesNC
56.8-4 NaturalHomomorphismByIdeal
57 [33X[0;0YModules[133X
57.1 [33X[0;0YGenerating modules[133X
57.1-1 IsLeftOperatorAdditiveGroup
57.1-2 IsLeftModule
57.1-3 GeneratorsOfLeftOperatorAdditiveGroup
57.1-4 GeneratorsOfLeftModule
57.1-5 AsLeftModule
57.1-6 IsRightOperatorAdditiveGroup
57.1-7 IsRightModule
57.1-8 GeneratorsOfRightOperatorAdditiveGroup
57.1-9 GeneratorsOfRightModule
57.1-10 LeftModuleByGenerators
57.1-11 LeftActingDomain
57.2 [33X[0;0YSubmodules[133X
57.2-1 Submodule
57.2-2 SubmoduleNC
57.2-3 ClosureLeftModule
57.2-4 TrivialSubmodule
57.3 [33X[0;0YFree Modules[133X
57.3-1 IsFreeLeftModule
57.3-2 FreeLeftModule
57.3-3 Dimension
57.3-4 IsFiniteDimensional
57.3-5 UseBasis
57.3-6 IsRowModule
57.3-7 IsMatrixModule
57.3-8 IsFullRowModule
57.3-9 FullRowModule
57.3-10 IsFullMatrixModule
57.3-11 FullMatrixModule
58 [33X[0;0YFields and Division Rings[133X
58.1 [33X[0;0YGenerating Fields[133X
58.1-1 IsDivisionRing
58.1-2 IsField
58.1-3 Field
58.1-4 DefaultField
58.1-5 DefaultFieldByGenerators
58.1-6 GeneratorsOfDivisionRing
58.1-7 GeneratorsOfField
58.1-8 DivisionRingByGenerators
58.1-9 AsDivisionRing
58.2 [33X[0;0YSubfields of Fields[133X
58.2-1 Subfield
58.2-2 FieldOverItselfByGenerators
58.2-3 PrimitiveElement
58.2-4 PrimeField
58.2-5 IsPrimeField
58.2-6 DegreeOverPrimeField
58.2-7 DefiningPolynomial
58.2-8 RootOfDefiningPolynomial
58.2-9 FieldExtension
58.2-10 Subfields
58.3 [33X[0;0YGalois Action[133X
58.3-1 GaloisGroup
58.3-2 MinimalPolynomial
58.3-3 TracePolynomial
58.3-4 Norm
58.3-5 [33X[0;0YTraces of field elements and matrices[133X
58.3-6 Conjugates
58.3-7 NormalBase
59 [33X[0;0YFinite Fields[133X
59.1 [33X[0;0YFinite Field Elements[133X
59.1-1 IsFFE
59.1-2 Z
59.1-3 IsLexOrderedFFE
59.2 [33X[0;0YOperations for Finite Field Elements[133X
59.2-1 DegreeFFE
59.2-2 LogFFE
59.2-3 IntFFE
59.2-4 IntFFESymm
59.2-5 IntVecFFE
59.2-6 AsInternalFFE
59.3 [33X[0;0YCreating Finite Fields[133X
59.3-1 DefaultField
59.3-2 GaloisField
59.3-3 PrimitiveRoot
59.4 [33X[0;0YFrobenius Automorphisms[133X
59.4-1 FrobeniusAutomorphism
59.5 [33X[0;0YConway Polynomials[133X
59.5-1 ConwayPolynomial
59.5-2 IsCheapConwayPolynomial
59.5-3 RandomPrimitivePolynomial
59.6 [33X[0;0YPrinting, Viewing and Displaying Finite Field Elements[133X
59.6-1 ViewObj
60 [33X[0;0YAbelian Number Fields[133X
60.1 [33X[0;0YConstruction of Abelian Number Fields[133X
60.1-1 CyclotomicField
60.1-2 AbelianNumberField
60.1-3 GaussianRationals
60.2 [33X[0;0YOperations for Abelian Number Fields[133X
60.2-1 Factors
60.2-2 IsNumberField
60.2-3 IsAbelianNumberField
60.2-4 IsCyclotomicField
60.2-5 GaloisStabilizer
60.3 [33X[0;0YIntegral Bases of Abelian Number Fields[133X
60.3-1 ZumbroichBase
60.3-2 LenstraBase
60.4 [33X[0;0YGalois Groups of Abelian Number Fields[133X
60.4-1 GaloisGroup
60.4-2 ANFAutomorphism
60.5 [33X[0;0YGaussians[133X
60.5-1 GaussianIntegers
60.5-2 IsGaussianIntegers
61 [33X[0;0YVector Spaces[133X
61.1 [33X[0;0YIsLeftVectorSpace (Filter)[133X
61.1-1 IsLeftVectorSpace
61.2 [33X[0;0YConstructing Vector Spaces[133X
61.2-1 VectorSpace
61.2-2 Subspace
61.2-3 AsVectorSpace
61.2-4 AsSubspace
61.3 [33X[0;0YOperations and Attributes for Vector Spaces[133X
61.3-1 GeneratorsOfLeftVectorSpace
61.3-2 TrivialSubspace
61.4 [33X[0;0YDomains of Subspaces of Vector Spaces[133X
61.4-1 Subspaces
61.4-2 IsSubspacesVectorSpace
61.5 [33X[0;0YBases of Vector Spaces[133X
61.5-1 IsBasis
61.5-2 Basis
61.5-3 CanonicalBasis
61.5-4 RelativeBasis
61.6 [33X[0;0YOperations for Vector Space Bases[133X
61.6-1 BasisVectors
61.6-2 UnderlyingLeftModule
61.6-3 Coefficients
61.6-4 LinearCombination
61.6-5 EnumeratorByBasis
61.6-6 IteratorByBasis
61.7 [33X[0;0YOperations for Special Kinds of Bases[133X
61.7-1 IsCanonicalBasis
61.7-2 IsIntegralBasis
61.7-3 IsNormalBasis
61.8 [33X[0;0YMutable Bases[133X
61.8-1 IsMutableBasis
61.8-2 MutableBasis
61.8-3 NrBasisVectors
61.8-4 ImmutableBasis
61.8-5 IsContainedInSpan
61.8-6 CloseMutableBasis
61.9 [33X[0;0YRow and Matrix Spaces[133X
61.9-1 IsRowSpace
61.9-2 IsMatrixSpace
61.9-3 IsGaussianSpace
61.9-4 FullRowSpace
61.9-5 FullMatrixSpace
61.9-6 DimensionOfVectors
61.9-7 IsSemiEchelonized
61.9-8 SemiEchelonBasis
61.9-9 IsCanonicalBasisFullRowModule
61.9-10 IsCanonicalBasisFullMatrixModule
61.9-11 NormedRowVectors
61.9-12 SiftedVector
61.10 [33X[0;0YVector Space Homomorphisms[133X
61.10-1 LeftModuleGeneralMappingByImages
61.10-2 LeftModuleHomomorphismByImages
61.10-3 LeftModuleHomomorphismByMatrix
61.10-4 NaturalHomomorphismBySubspace
61.10-5 Hom
61.10-6 End
61.10-7 IsFullHomModule
61.10-8 IsPseudoCanonicalBasisFullHomModule
61.10-9 IsLinearMappingsModule
61.11 [33X[0;0YVector Spaces Handled By Nice Bases[133X
61.11-1 NiceFreeLeftModule
61.11-2 NiceVector
61.11-3 NiceFreeLeftModuleInfo
61.11-4 NiceBasis
61.11-5 IsBasisByNiceBasis
61.11-6 IsHandledByNiceBasis
61.12 [33X[0;0YHow to Implement New Kinds of Vector Spaces[133X
61.12-1 DeclareHandlingByNiceBasis
61.12-2 NiceBasisFiltersInfo
61.12-3 CheckForHandlingByNiceBasis
62 [33X[0;0YAlgebras[133X
62.1 [33X[0;0YInfoAlgebra (Info Class)[133X
62.1-1 InfoAlgebra
62.2 [33X[0;0YConstructing Algebras by Generators[133X
62.2-1 Algebra
62.2-2 AlgebraWithOne
62.3 [33X[0;0YConstructing Algebras as Free Algebras[133X
62.3-1 FreeAlgebra
62.3-2 FreeAlgebraWithOne
62.3-3 FreeAssociativeAlgebra
62.3-4 FreeAssociativeAlgebraWithOne
62.4 [33X[0;0YConstructing Algebras by Structure Constants[133X
62.4-1 AlgebraByStructureConstants
62.4-2 StructureConstantsTable
62.4-3 EmptySCTable
62.4-4 SetEntrySCTable
62.4-5 GapInputSCTable
62.4-6 TestJacobi
62.4-7 IdentityFromSCTable
62.4-8 QuotientFromSCTable
62.5 [33X[0;0YSome Special Algebras[133X
62.5-1 QuaternionAlgebra
62.5-2 ComplexificationQuat
62.5-3 OctaveAlgebra
62.5-4 FullMatrixAlgebra
62.5-5 NullAlgebra
62.6 [33X[0;0YSubalgebras[133X
62.6-1 Subalgebra
62.6-2 SubalgebraNC
62.6-3 SubalgebraWithOne
62.6-4 SubalgebraWithOneNC
62.6-5 TrivialSubalgebra
62.7 [33X[0;0YIdeals[133X
62.8 [33X[0;0YCategories and Properties of Algebras[133X
62.8-1 IsFLMLOR
62.8-2 IsFLMLORWithOne
62.8-3 IsAlgebra
62.8-4 IsAlgebraWithOne
62.8-5 IsLieAlgebra
62.8-6 IsSimpleAlgebra
62.8-7 IsFiniteDimensional
62.8-8 IsQuaternion
62.9 [33X[0;0YAttributes and Operations for Algebras[133X
62.9-1 GeneratorsOfAlgebra
62.9-2 GeneratorsOfAlgebraWithOne
62.9-3 ProductSpace
62.9-4 PowerSubalgebraSeries
62.9-5 AdjointBasis
62.9-6 IndicesOfAdjointBasis
62.9-7 AsAlgebra
62.9-8 AsAlgebraWithOne
62.9-9 AsSubalgebra
62.9-10 AsSubalgebraWithOne
62.9-11 MutableBasisOfClosureUnderAction
62.9-12 MutableBasisOfNonassociativeAlgebra
62.9-13 MutableBasisOfIdealInNonassociativeAlgebra
62.9-14 DirectSumOfAlgebras
62.9-15 FullMatrixAlgebraCentralizer
62.9-16 RadicalOfAlgebra
62.9-17 CentralIdempotentsOfAlgebra
62.9-18 DirectSumDecomposition
62.9-19 LeviMalcevDecomposition
62.9-20 Grading
62.10 [33X[0;0YHomomorphisms of Algebras[133X
62.10-1 AlgebraGeneralMappingByImages
62.10-2 AlgebraHomomorphismByImages
62.10-3 AlgebraHomomorphismByImagesNC
62.10-4 AlgebraWithOneGeneralMappingByImages
62.10-5 AlgebraWithOneHomomorphismByImages
62.10-6 AlgebraWithOneHomomorphismByImagesNC
62.10-7 NaturalHomomorphismByIdeal
62.10-8 OperationAlgebraHomomorphism
62.10-9 NiceAlgebraMonomorphism
62.10-10 IsomorphismFpAlgebra
62.10-11 IsomorphismMatrixAlgebra
62.10-12 IsomorphismSCAlgebra
62.10-13 RepresentativeLinearOperation
62.11 [33X[0;0YRepresentations of Algebras[133X
62.11-1 LeftAlgebraModuleByGenerators
62.11-2 RightAlgebraModuleByGenerators
62.11-3 BiAlgebraModuleByGenerators
62.11-4 LeftAlgebraModule
62.11-5 RightAlgebraModule
62.11-6 BiAlgebraModule
62.11-7 GeneratorsOfAlgebraModule
62.11-8 IsAlgebraModuleElement
62.11-9 IsLeftAlgebraModuleElement
62.11-10 IsRightAlgebraModuleElement
62.11-11 LeftActingAlgebra
62.11-12 RightActingAlgebra
62.11-13 ActingAlgebra
62.11-14 IsBasisOfAlgebraModuleElementSpace
62.11-15 MatrixOfAction
62.11-16 SubAlgebraModule
62.11-17 LeftModuleByHomomorphismToMatAlg
62.11-18 RightModuleByHomomorphismToMatAlg
62.11-19 AdjointModule
62.11-20 FaithfulModule
62.11-21 ModuleByRestriction
62.11-22 NaturalHomomorphismBySubAlgebraModule
62.11-23 DirectSumOfAlgebraModules
62.11-24 TranslatorSubalgebra
63 [33X[0;0YFinitely Presented Algebras[133X
64 [33X[0;0YLie Algebras[133X
64.1 [33X[0;0YLie Objects[133X
64.1-1 LieObject
64.1-2 IsLieObject
64.1-3 LieFamily
64.1-4 UnderlyingFamily
64.1-5 UnderlyingRingElement
64.2 [33X[0;0YConstructing Lie algebras[133X
64.2-1 LieAlgebraByStructureConstants
64.2-2 RestrictedLieAlgebraByStructureConstants
64.2-3 LieAlgebra
64.2-4 FreeLieAlgebra
64.2-5 FullMatrixLieAlgebra
64.2-6 RightDerivations
64.2-7 SimpleLieAlgebra
64.3 [33X[0;0YDistinguished Subalgebras[133X
64.3-1 LieCentre
64.3-2 LieCentralizer
64.3-3 LieNormalizer
64.3-4 LieDerivedSubalgebra
64.3-5 LieNilRadical
64.3-6 LieSolvableRadical
64.3-7 CartanSubalgebra
64.4 [33X[0;0YSeries of Ideals[133X
64.4-1 LieDerivedSeries
64.4-2 LieLowerCentralSeries
64.4-3 LieUpperCentralSeries
64.5 [33X[0;0YProperties of a Lie Algebra[133X
64.5-1 IsLieAbelian
64.5-2 IsLieNilpotent
64.5-3 IsLieSolvable
64.6 [33X[0;0YSemisimple Lie Algebras and Root Systems[133X
64.6-1 SemiSimpleType
64.6-2 ChevalleyBasis
64.6-3 IsRootSystem
64.6-4 IsRootSystemFromLieAlgebra
64.6-5 RootSystem
64.6-6 UnderlyingLieAlgebra
64.6-7 PositiveRoots
64.6-8 NegativeRoots
64.6-9 PositiveRootVectors
64.6-10 NegativeRootVectors
64.6-11 SimpleSystem
64.6-12 CartanMatrix
64.6-13 BilinearFormMat
64.6-14 CanonicalGenerators
64.7 [33X[0;0YSemisimple Lie Algebras and Weyl Groups of Root Systems[133X
64.7-1 IsWeylGroup
64.7-2 SparseCartanMatrix
64.7-3 WeylGroup
64.7-4 ApplySimpleReflection
64.7-5 LongestWeylWordPerm
64.7-6 ConjugateDominantWeight
64.7-7 WeylOrbitIterator
64.8 [33X[0;0YRestricted Lie algebras[133X
64.8-1 IsRestrictedLieAlgebra
64.8-2 PthPowerImages
64.8-3 PthPowerImage
64.8-4 JenningsLieAlgebra
64.8-5 PCentralLieAlgebra
64.8-6 NaturalHomomorphismOfLieAlgebraFromNilpotentGroup
64.9 [33X[0;0YThe Adjoint Representation[133X
64.9-1 AdjointMatrix
64.9-2 AdjointAssociativeAlgebra
64.9-3 KillingMatrix
64.9-4 KappaPerp
64.9-5 IsNilpotentElement
64.9-6 NonNilpotentElement
64.9-7 FindSl2
64.10 [33X[0;0YUniversal Enveloping Algebras[133X
64.10-1 UniversalEnvelopingAlgebra
64.11 [33X[0;0YFinitely Presented Lie Algebras[133X
64.11-1 FpLieAlgebraByCartanMatrix
64.11-2 NilpotentQuotientOfFpLieAlgebra
64.12 [33X[0;0YModules over Lie Algebras and Their Cohomology[133X
64.12-1 IsCochain
64.12-2 Cochain
64.12-3 CochainSpace
64.12-4 ValueCochain
64.12-5 LieCoboundaryOperator
64.12-6 Cocycles
64.12-7 Coboundaries
64.13 [33X[0;0YModules over Semisimple Lie Algebras[133X
64.13-1 DominantWeights
64.13-2 DominantCharacter
64.13-3 DecomposeTensorProduct
64.13-4 DimensionOfHighestWeightModule
64.14 [33X[0;0YAdmissible Lattices in UEA[133X
64.14-1 IsUEALatticeElement
64.14-2 LatticeGeneratorsInUEA
64.14-3 ObjByExtRep
64.14-4 IsWeightRepElement
64.14-5 HighestWeightModule
64.15 [33X[0;0YTensor Products and Exterior and Symmetric Powers[133X
64.15-1 TensorProductOfAlgebraModules
64.15-2 ExteriorPowerOfAlgebraModule
64.15-3 SymmetricPowerOfAlgebraModule
65 [33X[0;0YMagma Rings[133X
65.1 [33X[0;0YFree Magma Rings[133X
65.1-1 FreeMagmaRing
65.1-2 GroupRing
65.1-3 IsFreeMagmaRing
65.1-4 IsFreeMagmaRingWithOne
65.1-5 IsGroupRing
65.1-6 UnderlyingMagma
65.1-7 AugmentationIdeal
65.2 [33X[0;0YElements of Free Magma Rings[133X
65.2-1 IsMagmaRingObjDefaultRep
65.2-2 IsElementOfFreeMagmaRing
65.2-3 IsElementOfFreeMagmaRingFamily
65.2-4 CoefficientsAndMagmaElements
65.2-5 ZeroCoefficient
65.2-6 ElementOfMagmaRing
65.3 [33X[0;0YNatural Embeddings related to Magma Rings[133X
65.4 [33X[0;0YMagma Rings modulo Relations[133X
65.4-1 IsElementOfMagmaRingModuloRelations
65.4-2 IsElementOfMagmaRingModuloRelationsFamily
65.4-3 NormalizedElementOfMagmaRingModuloRelations
65.4-4 IsMagmaRingModuloRelations
65.5 [33X[0;0YMagma Rings modulo the Span of a Zero Element[133X
65.5-1 IsElementOfMagmaRingModuloSpanOfZeroFamily
65.5-2 IsMagmaRingModuloSpanOfZero
65.5-3 MagmaRingModuloSpanOfZero
65.6 [33X[0;0YTechnical Details about the Implementation of Magma Rings[133X
66 [33X[0;0YPolynomials and Rational Functions[133X
66.1 [33X[0;0YIndeterminates[133X
66.1-1 [33X[0;0YIndeterminate[133X
66.1-2 IndeterminateNumberOfUnivariateRationalFunction
66.1-3 IndeterminateOfUnivariateRationalFunction
66.1-4 IndeterminateName
66.1-5 CIUnivPols
66.2 [33X[0;0YOperations for Rational Functions[133X
66.3 [33X[0;0YComparison of Rational Functions[133X
66.4 [33X[0;0YProperties and Attributes of Rational Functions[133X
66.4-1 IsPolynomialFunction
66.4-2 NumeratorOfRationalFunction
66.4-3 DenominatorOfRationalFunction
66.4-4 IsPolynomial
66.4-5 AsPolynomial
66.4-6 IsUnivariateRationalFunction
66.4-7 CoefficientsOfUnivariateRationalFunction
66.4-8 IsUnivariatePolynomial
66.4-9 CoefficientsOfUnivariatePolynomial
66.4-10 IsLaurentPolynomial
66.4-11 IsConstantRationalFunction
66.4-12 IsPrimitivePolynomial
66.4-13 SplittingField
66.5 [33X[0;0YUnivariate Polynomials[133X
66.5-1 UnivariatePolynomial
66.5-2 UnivariatePolynomialByCoefficients
66.5-3 DegreeOfLaurentPolynomial
66.5-4 RootsOfPolynomial
66.5-5 RootsOfUPol
66.5-6 QuotRemLaurpols
66.5-7 UnivariatenessTestRationalFunction
66.5-8 InfoPoly
66.6 [33X[0;0YPolynomials as Univariate Polynomials in one Indeterminate[133X
66.6-1 DegreeIndeterminate
66.6-2 PolynomialCoefficientsOfPolynomial
66.6-3 LeadingCoefficient
66.6-4 LeadingMonomial
66.6-5 Derivative
66.6-6 Discriminant
66.6-7 Resultant
66.7 [33X[0;0YMultivariate Polynomials[133X
66.7-1 [33X[0;0YValue[133X
66.8 [33X[0;0YMinimal Polynomials[133X
66.8-1 MinimalPolynomial
66.9 [33X[0;0YCyclotomic Polynomials[133X
66.9-1 CyclotomicPolynomial
66.10 [33X[0;0YPolynomial Factorization[133X
66.10-1 Factors
66.10-2 FactorsSquarefree
66.11 [33X[0;0YPolynomials over the Rationals[133X
66.11-1 PrimitivePolynomial
66.11-2 PolynomialModP
66.11-3 GaloisType
66.11-4 ProbabilityShapes
66.12 [33X[0;0YFactorization of Polynomials over the Rationals[133X
66.12-1 BombieriNorm
66.12-2 MinimizedBombieriNorm
66.12-3 HenselBound
66.12-4 OneFactorBound
66.13 [33X[0;0YLaurent Polynomials[133X
66.13-1 LaurentPolynomialByCoefficients
66.13-2 CoefficientsOfLaurentPolynomial
66.13-3 IndeterminateNumberOfLaurentPolynomial
66.14 [33X[0;0YUnivariate Rational Functions[133X
66.14-1 UnivariateRationalFunctionByCoefficients
66.15 [33X[0;0YPolynomial Rings and Function Fields[133X
66.15-1 [33X[0;0YPolynomialRing[133X
66.15-2 IndeterminatesOfPolynomialRing
66.15-3 CoefficientsRing
66.15-4 IsPolynomialRing
66.15-5 IsFiniteFieldPolynomialRing
66.15-6 IsAbelianNumberFieldPolynomialRing
66.15-7 IsRationalsPolynomialRing
66.15-8 [33X[0;0YFunctionField[133X
66.15-9 IsFunctionField
66.16 [33X[0;0YUnivariate Polynomial Rings[133X
66.16-1 [33X[0;0YUnivariatePolynomialRing[133X
66.16-2 IsUnivariatePolynomialRing
66.17 [33X[0;0YMonomial Orderings[133X
66.17-1 IsMonomialOrdering
66.17-2 LeadingMonomialOfPolynomial
66.17-3 LeadingTermOfPolynomial
66.17-4 LeadingCoefficientOfPolynomial
66.17-5 MonomialComparisonFunction
66.17-6 MonomialExtrepComparisonFun
66.17-7 MonomialLexOrdering
66.17-8 MonomialGrlexOrdering
66.17-9 MonomialGrevlexOrdering
66.17-10 EliminationOrdering
66.17-11 PolynomialReduction
66.17-12 PolynomialReducedRemainder
66.17-13 PolynomialDivisionAlgorithm
66.17-14 MonomialExtGrlexLess
66.18 [33X[0;0YGroebner Bases[133X
66.18-1 [33X[0;0YGroebnerBasis[133X
66.18-2 [33X[0;0YReducedGroebnerBasis[133X
66.18-3 StoredGroebnerBasis
66.18-4 InfoGroebner
66.19 [33X[0;0YRational Function Families[133X
66.19-1 RationalFunctionsFamily
66.19-2 IsPolynomialFunctionsFamily
66.19-3 CoefficientsFamily
66.20 [33X[0;0YThe Representations of Rational Functions[133X
66.21 [33X[0;0YThe Defining Attributes of Rational Functions[133X
66.21-1 IsRationalFunctionDefaultRep
66.21-2 ExtRepNumeratorRatFun
66.21-3 ExtRepDenominatorRatFun
66.21-4 ZeroCoefficientRatFun
66.21-5 IsPolynomialDefaultRep
66.21-6 ExtRepPolynomialRatFun
66.21-7 IsLaurentPolynomialDefaultRep
66.22 [33X[0;0YCreation of Rational Functions[133X
66.22-1 RationalFunctionByExtRep
66.22-2 PolynomialByExtRep
66.22-3 LaurentPolynomialByExtRep
66.23 [33X[0;0YArithmetic for External Representations of Polynomials[133X
66.23-1 ZippedSum
66.23-2 ZippedProduct
66.23-3 QuotientPolynomialsExtRep
66.24 [33X[0;0YCancellation Tests for Rational Functions[133X
66.24-1 RationalFunctionByExtRepWithCancellation
66.24-2 TryGcdCancelExtRepPolynomials
66.24-3 HeuristicCancelPolynomials
67 [33X[0;0YAlgebraic extensions of fields[133X
67.1 [33X[0;0YCreation of Algebraic Extensions[133X
67.1-1 AlgebraicExtension
67.1-2 IsAlgebraicExtension
67.2 [33X[0;0YElements in Algebraic Extensions[133X
67.2-1 IsAlgebraicElement
68 [33X[0;0Yp-adic Numbers (preliminary)[133X
68.1 [33X[0;0YPure p-adic Numbers[133X
68.1-1 PurePadicNumberFamily
68.1-2 PadicNumber
68.1-3 Valuation
68.1-4 ShiftedPadicNumber
68.1-5 IsPurePadicNumber
68.1-6 IsPurePadicNumberFamily
68.2 [33X[0;0YExtensions of the p-adic Numbers[133X
68.2-1 PadicExtensionNumberFamily
68.2-2 PadicNumber
68.2-3 IsPadicExtensionNumber
68.2-4 IsPadicExtensionNumberFamily
69 [33X[0;0YThe MeatAxe[133X
69.1 [33X[0;0YMeatAxe Modules[133X
69.1-1 [33X[0;0YGModuleByMats[133X
69.2 [33X[0;0YModule Constructions[133X
69.2-1 PermutationGModule
69.2-2 TensorProductGModule
69.2-3 WedgeGModule
69.3 [33X[0;0YSelecting a Different MeatAxe[133X
69.3-1 MTX
69.4 [33X[0;0YAccessing a Module[133X
69.4-1 MTX.Generators
69.4-2 MTX.Dimension
69.4-3 MTX.Field
69.5 [33X[0;0YIrreducibility Tests[133X
69.5-1 MTX.IsIrreducible
69.5-2 MTX.IsAbsolutelyIrreducible
69.5-3 MTX.DegreeSplittingField
69.6 [33X[0;0YDecomposition of modules[133X
69.6-1 MTX.IsIndecomposable
69.6-2 MTX.Indecomposition
69.6-3 MTX.HomogeneousComponents
69.7 [33X[0;0YFinding Submodules[133X
69.7-1 MTX.SubmoduleGModule
69.7-2 MTX.ProperSubmoduleBasis
69.7-3 MTX.BasesSubmodules
69.7-4 MTX.BasesMinimalSubmodules
69.7-5 MTX.BasesMaximalSubmodules
69.7-6 MTX.BasisRadical
69.7-7 MTX.BasisSocle
69.7-8 MTX.BasesMinimalSupermodules
69.7-9 MTX.BasesCompositionSeries
69.7-10 MTX.CompositionFactors
69.7-11 MTX.CollectedFactors
69.8 [33X[0;0YInduced Actions[133X
69.8-1 MTX.NormedBasisAndBaseChange
69.8-2 MTX.InducedActionSubmodule
69.8-3 MTX.InducedActionFactorModule
69.8-4 MTX.InducedActionMatrix
69.8-5 MTX.InducedAction
69.9 [33X[0;0YModule Homomorphisms[133X
69.9-1 MTX.BasisModuleHomomorphisms
69.9-2 MTX.BasisModuleEndomorphisms
69.9-3 MTX.IsomorphismModules
69.9-4 MTX.ModuleAutomorphisms
69.10 [33X[0;0YModule Homomorphisms for irreducible modules[133X
69.10-1 MTX.IsEquivalent
69.10-2 MTX.IsomorphismIrred
69.10-3 MTX.Homomorphism
69.10-4 MTX.Homomorphisms
69.10-5 MTX.Distinguish
69.11 [33X[0;0YMeatAxe Functionality for Invariant Forms[133X
69.11-1 MTX.InvariantBilinearForm
69.11-2 MTX.InvariantSesquilinearForm
69.11-3 MTX.InvariantQuadraticForm
69.11-4 MTX.BasisInOrbit
69.11-5 MTX.OrthogonalSign
69.12 [33X[0;0YThe Smash MeatAxe[133X
69.12-1 SMTX.RandomIrreducibleSubGModule
69.12-2 SMTX.GoodElementGModule
69.12-3 SMTX.SortHomGModule
69.12-4 SMTX.MinimalSubGModules
69.12-5 SMTX.Setter
69.12-6 SMTX.Getter
69.12-7 SMTX.IrreducibilityTest
69.12-8 SMTX.AbsoluteIrreducibilityTest
69.12-9 SMTX.MinimalSubGModule
69.12-10 SMTX.MatrixSum
69.12-11 SMTX.CompleteBasis
69.13 [33X[0;0YSmash MeatAxe Flags[133X
69.13-1 SMTX.Subbasis
69.13-2 SMTX.AlgEl
69.13-3 SMTX.AlgElMat
69.13-4 SMTX.AlgElCharPol
69.13-5 SMTX.AlgElCharPolFac
69.13-6 SMTX.AlgElNullspaceVec
69.13-7 SMTX.AlgElNullspaceDimension
69.13-8 SMTX.CentMat
69.13-9 SMTX.CentMatMinPoly
70 [33X[0;0YTables of Marks[133X
70.1 [33X[0;0YMore about Tables of Marks[133X
70.2 [33X[0;0YTable of Marks Objects in GAP[133X
70.3 [33X[0;0YConstructing Tables of Marks[133X
70.3-1 TableOfMarks
70.3-2 TableOfMarksByLattice
70.3-3 LatticeSubgroupsByTom
70.4 [33X[0;0YPrinting Tables of Marks[133X
70.4-1 ViewObj
70.4-2 PrintObj
70.4-3 Display
70.5 [33X[0;0YSorting Tables of Marks[133X
70.5-1 SortedTom
70.5-2 PermutationTom
70.6 [33X[0;0YTechnical Details about Tables of Marks[133X
70.6-1 InfoTom
70.6-2 IsTableOfMarks
70.6-3 TableOfMarksFamily
70.6-4 TableOfMarksComponents
70.6-5 ConvertToTableOfMarks
70.7 [33X[0;0YAttributes of Tables of Marks[133X
70.7-1 MarksTom
70.7-2 NrSubsTom
70.7-3 LengthsTom
70.7-4 ClassTypesTom
70.7-5 ClassNamesTom
70.7-6 FusionsTom
70.7-7 UnderlyingGroup
70.7-8 IdempotentsTom
70.7-9 Identifier
70.7-10 MatTom
70.7-11 MoebiusTom
70.7-12 WeightsTom
70.8 [33X[0;0YProperties of Tables of Marks[133X
70.8-1 IsAbelianTom
70.9 [33X[0;0YOther Operations for Tables of Marks[133X
70.9-1 IsInternallyConsistent
70.9-2 DerivedSubgroupTom
70.9-3 DerivedSubgroupsTomPossible
70.9-4 NormalizerTom
70.9-5 ContainedTom
70.9-6 ContainingTom
70.9-7 CyclicExtensionsTom
70.9-8 DecomposedFixedPointVector
70.9-9 EulerianFunctionByTom
70.9-10 IntersectionsTom
70.9-11 FactorGroupTom
70.9-12 MaximalSubgroupsTom
70.9-13 MinimalSupergroupsTom
70.10 [33X[0;0YAccessing Subgroups via Tables of Marks[133X
70.10-1 GeneratorsSubgroupsTom
70.10-2 StraightLineProgramsTom
70.10-3 IsTableOfMarksWithGens
70.10-4 RepresentativeTom
70.11 [33X[0;0YThe Interface between Tables of Marks and Character Tables[133X
70.11-1 FusionCharTableTom
70.11-2 PermCharsTom
70.12 [33X[0;0YGeneric Construction of Tables of Marks[133X
70.12-1 TableOfMarksCyclic
70.12-2 TableOfMarksDihedral
70.12-3 TableOfMarksFrobenius
70.13 [33X[0;0YThe Library of Tables of Marks[133X
71 [33X[0;0YCharacter Tables[133X
71.1 [33X[0;0YSome Remarks about Character Theory in [5XGAP[105X[133X
71.2 [33X[0;0YHistory of Character Theory Stuff in GAP[133X
71.3 [33X[0;0YCreating Character Tables[133X
71.3-1 [33X[0;0YCharacterTable[133X
71.3-2 [33X[0;0YBrauerTable[133X
71.3-3 CharacterTableRegular
71.3-4 SupportedCharacterTableInfo
71.3-5 ConvertToCharacterTable
71.4 [33X[0;0YCharacter Table Categories[133X
71.4-1 IsNearlyCharacterTable
71.4-2 InfoCharacterTable
71.4-3 NearlyCharacterTablesFamily
71.5 [33X[0;0YConventions for Character Tables[133X
71.6 [33X[0;0YThe Interface between Character Tables and Groups[133X
71.6-1 UnderlyingGroup
71.6-2 ConjugacyClasses
71.6-3 IdentificationOfConjugacyClasses
71.6-4 CharacterTableWithStoredGroup
71.6-5 CompatibleConjugacyClasses
71.7 [33X[0;0YOperators for Character Tables[133X
71.8 [33X[0;0YAttributes and Properties for Groups and Character Tables[133X
71.8-1 [33X[0;0YCharacterDegrees[133X
71.8-2 [33X[0;0YIrr[133X
71.8-3 [33X[0;0YLinearCharacters[133X
71.8-4 [33X[0;0YOrdinaryCharacterTable[133X
71.8-5 [33X[0;0YGroup Operations Applicable to Character Tables[133X
71.9 [33X[0;0YAttributes and Properties only for Character Tables[133X
71.9-1 OrdersClassRepresentatives
71.9-2 SizesCentralizers
71.9-3 SizesConjugacyClasses
71.9-4 AutomorphismsOfTable
71.9-5 [33X[0;0YUnderlyingCharacteristic[133X
71.9-6 [33X[0;0YClass Names and Character Names[133X
71.9-7 [33X[0;0YClass Parameters and Character Parameters[133X
71.9-8 Identifier
71.9-9 InfoText
71.9-10 InverseClasses
71.9-11 RealClasses
71.9-12 ClassOrbit
71.9-13 ClassRoots
71.10 [33X[0;0YNormal Subgroups Represented by Lists of Class Positions[133X
71.10-1 ClassPositionsOfNormalSubgroups
71.10-2 ClassPositionsOfAgemo
71.10-3 ClassPositionsOfCentre
71.10-4 ClassPositionsOfDirectProductDecompositions
71.10-5 ClassPositionsOfDerivedSubgroup
71.10-6 ClassPositionsOfElementaryAbelianSeries
71.10-7 ClassPositionsOfFittingSubgroup
71.10-8 ClassPositionsOfLowerCentralSeries
71.10-9 ClassPositionsOfUpperCentralSeries
71.10-10 ClassPositionsOfSupersolvableResiduum
71.10-11 ClassPositionsOfPCore
71.10-12 ClassPositionsOfNormalClosure
71.11 [33X[0;0YOperations Concerning Blocks[133X
71.11-1 PrimeBlocks
71.11-2 SameBlock
71.11-3 BlocksInfo
71.11-4 DecompositionMatrix
71.11-5 LaTeXStringDecompositionMatrix
71.12 [33X[0;0YOther Operations for Character Tables[133X
71.12-1 Index
71.12-2 IsInternallyConsistent
71.12-3 IsPSolvableCharacterTable
71.12-4 IsClassFusionOfNormalSubgroup
71.12-5 Indicator
71.12-6 NrPolyhedralSubgroups
71.12-7 ClassMultiplicationCoefficient
71.12-8 ClassStructureCharTable
71.12-9 MatClassMultCoeffsCharTable
71.13 [33X[0;0YPrinting Character Tables[133X
71.13-1 ViewObj
71.13-2 PrintObj
71.13-3 Display
71.13-4 DisplayOptions
71.13-5 PrintCharacterTable
71.14 [33X[0;0YComputing the Irreducible Characters of a Group[133X
71.14-1 IrrDixonSchneider
71.14-2 IrrConlon
71.14-3 IrrBaumClausen
71.14-4 IrreducibleRepresentations
71.14-5 IrreducibleRepresentationsDixon
71.15 [33X[0;0YRepresentations Given by Modules[133X
71.15-1 IrreducibleModules
71.15-2 AbsolutelyIrreducibleModules
71.15-3 RegularModule
71.16 [33X[0;0YThe Dixon-Schneider Algorithm[133X
71.17 [33X[0;0YAdvanced Methods for Dixon-Schneider Calculations[133X
71.17-1 DixonRecord
71.17-2 DixonInit
71.17-3 DixontinI
71.17-4 DixonSplit
71.17-5 BestSplittingMatrix
71.17-6 DxIncludeIrreducibles
71.17-7 SplitCharacters
71.17-8 IsDxLargeGroup
71.18 [33X[0;0YComponents of a Dixon Record[133X
71.19 [33X[0;0YAn Example of Advanced Dixon-Schneider Calculations[133X
71.20 [33X[0;0YConstructing Character Tables from Others[133X
71.20-1 CharacterTableDirectProduct
71.20-2 FactorsOfDirectProduct
71.20-3 CharacterTableFactorGroup
71.20-4 CharacterTableIsoclinic
71.20-5 CharacterTableWreathSymmetric
71.21 [33X[0;0YSorted Character Tables[133X
71.21-1 CharacterTableWithSortedCharacters
71.21-2 SortedCharacters
71.21-3 CharacterTableWithSortedClasses
71.21-4 SortedCharacterTable
71.21-5 ClassPermutation
71.22 [33X[0;0YAutomorphisms and Equivalence of Character Tables[133X
71.22-1 MatrixAutomorphisms
71.22-2 TableAutomorphisms
71.22-3 TransformingPermutations
71.22-4 TransformingPermutationsCharacterTables
71.22-5 FamiliesOfRows
71.23 [33X[0;0YStoring Normal Subgroup Information[133X
71.23-1 NormalSubgroupClassesInfo
71.23-2 ClassPositionsOfNormalSubgroup
71.23-3 NormalSubgroupClasses
71.23-4 FactorGroupNormalSubgroupClasses
72 [33X[0;0YClass Functions[133X
72.1 [33X[0;0YWhy Class Functions?[133X
72.1-1 IsClassFunction
72.2 [33X[0;0YBasic Operations for Class Functions[133X
72.2-1 UnderlyingCharacterTable
72.2-2 ValuesOfClassFunction
72.3 [33X[0;0YComparison of Class Functions[133X
72.4 [33X[0;0YArithmetic Operations for Class Functions[133X
72.4-1 Characteristic
72.4-2 ComplexConjugate
72.4-3 Order
72.5 [33X[0;0YPrinting Class Functions[133X
72.5-1 ViewObj
72.5-2 PrintObj
72.5-3 Display
72.6 [33X[0;0YCreating Class Functions from Values Lists[133X
72.6-1 ClassFunction
72.6-2 VirtualCharacter
72.6-3 Character
72.6-4 ClassFunctionSameType
72.7 [33X[0;0YCreating Class Functions using Groups[133X
72.7-1 [33X[0;0YTrivialCharacter[133X
72.7-2 NaturalCharacter
72.7-3 [33X[0;0YPermutationCharacter[133X
72.8 [33X[0;0YOperations for Class Functions[133X
72.8-1 IsCharacter
72.8-2 IsVirtualCharacter
72.8-3 IsIrreducibleCharacter
72.8-4 DegreeOfCharacter
72.8-5 ScalarProduct
72.8-6 MatScalarProducts
72.8-7 Norm
72.8-8 ConstituentsOfCharacter
72.8-9 KernelOfCharacter
72.8-10 ClassPositionsOfKernel
72.8-11 CentreOfCharacter
72.8-12 ClassPositionsOfCentre
72.8-13 InertiaSubgroup
72.8-14 CycleStructureClass
72.8-15 IsTransitive
72.8-16 Transitivity
72.8-17 CentralCharacter
72.8-18 DeterminantOfCharacter
72.8-19 EigenvaluesChar
72.8-20 Tensored
72.9 [33X[0;0YRestricted and Induced Class Functions[133X
72.9-1 RestrictedClassFunction
72.9-2 RestrictedClassFunctions
72.9-3 [33X[0;0YInducedClassFunction[133X
72.9-4 InducedClassFunctions
72.9-5 InducedClassFunctionsByFusionMap
72.9-6 InducedCyclic
72.10 [33X[0;0YReducing Virtual Characters[133X
72.10-1 ReducedClassFunctions
72.10-2 ReducedCharacters
72.10-3 IrreducibleDifferences
72.10-4 LLL
72.10-5 Extract
72.10-6 OrthogonalEmbeddingsSpecialDimension
72.10-7 Decreased
72.10-8 DnLattice
72.10-9 DnLatticeIterative
72.11 [33X[0;0YSymmetrizations of Class Functions[133X
72.11-1 Symmetrizations
72.11-2 SymmetricParts
72.11-3 AntiSymmetricParts
72.11-4 OrthogonalComponents
72.11-5 SymplecticComponents
72.12 [33X[0;0YMolien Series[133X
72.12-1 MolienSeries
72.12-2 MolienSeriesInfo
72.12-3 ValueMolienSeries
72.12-4 MolienSeriesWithGivenDenominator
72.13 [33X[0;0YPossible Permutation Characters[133X
72.13-1 PermCharInfo
72.13-2 PermCharInfoRelative
72.14 [33X[0;0YComputing Possible Permutation Characters[133X
72.14-1 PermChars
72.14-2 [33X[0;0YTestPerm1, ..., TestPerm5[133X
72.14-3 PermBounds
72.14-4 PermComb
72.14-5 Inequalities
72.15 [33X[0;0YOperations for Brauer Characters[133X
72.15-1 FrobeniusCharacterValue
72.15-2 BrauerCharacterValue
72.15-3 SizeOfFieldOfDefinition
72.15-4 RealizableBrauerCharacters
72.16 [33X[0;0YDomains Generated by Class Functions[133X
73 [33X[0;0YMaps Concerning Character Tables[133X
73.1 [33X[0;0YPower Maps[133X
73.1-1 PowerMap
73.1-2 PossiblePowerMaps
73.1-3 ElementOrdersPowerMap
73.1-4 PowerMapByComposition
73.2 [33X[0;0YOrbits on Sets of Possible Power Maps[133X
73.2-1 OrbitPowerMaps
73.2-2 RepresentativesPowerMaps
73.3 [33X[0;0YClass Fusions between Character Tables[133X
73.3-1 [33X[0;0YFusionConjugacyClasses[133X
73.3-2 ComputedClassFusions
73.3-3 GetFusionMap
73.3-4 StoreFusion
73.3-5 NamesOfFusionSources
73.3-6 PossibleClassFusions
73.3-7 ConsiderStructureConstants
73.4 [33X[0;0YOrbits on Sets of Possible Class Fusions[133X
73.4-1 OrbitFusions
73.4-2 RepresentativesFusions
73.5 [33X[0;0YParametrized Maps[133X
73.5-1 CompositionMaps
73.5-2 InverseMap
73.5-3 ProjectionMap
73.5-4 Indirected
73.5-5 Parametrized
73.5-6 ContainedMaps
73.5-7 UpdateMap
73.5-8 MeetMaps
73.5-9 CommutativeDiagram
73.5-10 CheckFixedPoints
73.5-11 TransferDiagram
73.5-12 TestConsistencyMaps
73.5-13 Indeterminateness
73.5-14 PrintAmbiguity
73.5-15 ContainedSpecialVectors
73.5-16 CollapsedMat
73.5-17 ContainedDecomposables
73.6 [33X[0;0YSubroutines for the Construction of Power Maps[133X
73.6-1 InitPowerMap
73.6-2 Congruences
73.6-3 ConsiderKernels
73.6-4 ConsiderSmallerPowerMaps
73.6-5 MinusCharacter
73.6-6 PowerMapsAllowedBySymmetrizations
73.7 [33X[0;0YSubroutines for the Construction of Class Fusions[133X
73.7-1 InitFusion
73.7-2 CheckPermChar
73.7-3 ConsiderTableAutomorphisms
73.7-4 FusionsAllowedByRestrictions
74 [33X[0;0YUnknowns[133X
74.1 [33X[0;0YMore about Unknowns[133X
74.1-1 Unknown
74.1-2 LargestUnknown
74.1-3 IsUnknown
74.1-4 [33X[0;0YComparison of Unknowns[133X
74.1-5 [33X[0;0YArithmetical Operations for Unknowns[133X
75 [33X[0;0YMonomiality Questions[133X
75.1 [33X[0;0YInfoMonomial (Info Class)[133X
75.1-1 InfoMonomial
75.2 [33X[0;0YCharacter Degrees and Derived Length[133X
75.2-1 Alpha
75.2-2 Delta
75.2-3 [33X[0;0YIsBergerCondition[133X
75.3 [33X[0;0YPrimitivity of Characters[133X
75.3-1 TestHomogeneous
75.3-2 IsPrimitiveCharacter
75.3-3 TestQuasiPrimitive
75.3-4 TestInducedFromNormalSubgroup
75.4 [33X[0;0YTesting Monomiality[133X
75.4-1 [33X[0;0YTestMonomial[133X
75.4-2 TestMonomialUseLattice
75.4-3 IsMonomialNumber
75.4-4 [33X[0;0YTestMonomialQuick[133X
75.4-5 [33X[0;0YTestSubnormallyMonomial[133X
75.4-6 [33X[0;0YTestRelativelySM[133X
75.5 [33X[0;0YMinimal Nonmonomial Groups[133X
75.5-1 IsMinimalNonmonomial
75.5-2 MinimalNonmonomialGroup
76 [33X[0;0YGAP Packages[133X
76.1 [33X[0;0YInstalling a GAP Package[133X
76.2 [33X[0;0YLoading a GAP Package[133X
76.2-1 LoadPackage
76.2-2 SetPackagePath
76.2-3 ExtendRootDirectories
76.2-4 DisplayPackageLoadingLog
76.3 [33X[0;0YFunctions for GAP Packages[133X
76.3-1 ReadPackage
76.3-2 TestPackageAvailability
76.3-3 InstalledPackageVersion
76.3-4 DirectoriesPackageLibrary
76.3-5 DirectoriesPackagePrograms
76.3-6 CompareVersionNumbers
76.3-7 IsPackageMarkedForLoading
76.3-8 DeclareAutoreadableVariables
76.3-9 [33X[0;0YKernel modules in [5XGAP[105X packages[133X
76.3-10 LoadDynamicModule
76.3-11 [33X[0;0YThe PackageInfo.g File[133X
76.3-12 ValidatePackageInfo
76.3-13 ShowPackageVariables
76.3-14 BibEntry
77 [33X[0;0YReplaced and Removed Command Names[133X
77.1 [33X[0;0YGroup Actions – Name Changes[133X
77.2 [33X[0;0YPackage Interface – Obsolete Functions and Name Changes[133X
77.3 [33X[0;0YNormal Forms of Integer Matrices – Name Changes[133X
77.4 [33X[0;0YMiscellaneous Name Changes or Removed Names[133X
77.5 [33X[0;0YThe former .gaprc file[133X
78 [33X[0;0YMethod Selection[133X
78.1 [33X[0;0YOperations and Methods[133X
78.2 [33X[0;0YMethod Installation[133X
78.2-1 InstallMethod
78.2-2 InstallOtherMethod
78.3 [33X[0;0YApplicable Methods and Method Selection[133X
78.4 [33X[0;0YPartial Methods[133X
78.4-1 TryNextMethod
78.5 [33X[0;0YRedispatching[133X
78.5-1 RedispatchOnCondition
78.6 [33X[0;0YImmediate Methods[133X
78.6-1 InstallImmediateMethod
78.7 [33X[0;0YLogical Implications[133X
78.7-1 InstallTrueMethod
78.8 [33X[0;0YOperations and Mathematical Terms[133X
79 [33X[0;0YCreating New Objects[133X
79.1 [33X[0;0YCreating Categories[133X
79.1-1 NewCategory
79.1-2 CategoryFamily
79.2 [33X[0;0YCreating Representations[133X
79.2-1 NewRepresentation
79.3 [33X[0;0YCreating Attributes and Properties[133X
79.3-1 NewAttribute
79.3-2 NewProperty
79.4 [33X[0;0YCreating Other Filters[133X
79.4-1 NewFilter
79.4-2 SetFilterObj
79.4-3 ResetFilterObj
79.5 [33X[0;0YCreating Operations[133X
79.5-1 NewOperation
79.6 [33X[0;0YCreating Families[133X
79.6-1 NewFamily
79.7 [33X[0;0YCreating Types[133X
79.7-1 NewType
79.8 [33X[0;0YCreating Objects[133X
79.8-1 Objectify
79.8-2 ObjectifyWithAttributes
79.9 [33X[0;0YComponent Objects[133X
79.9-1 NamesOfComponents
79.10 [33X[0;0YPositional Objects[133X
79.11 [33X[0;0YImplementing New List Objects[133X
79.12 [33X[0;0YExample – Constructing Enumerators[133X
79.13 [33X[0;0YExample – Constructing Iterators[133X
79.14 [33X[0;0YArithmetic Issues in the Implementation of New Kinds of Lists[133X
79.15 [33X[0;0YExternal Representation[133X
79.15-1 ExtRepOfObj
79.16 [33X[0;0YMutability and Copying[133X
79.17 [33X[0;0YGlobal Variables in the Library[133X
79.17-1 DeclareCategory
79.17-2 DeclareRepresentation
79.17-3 DeclareAttribute
79.17-4 DeclareProperty
79.17-5 DeclareFilter
79.17-6 DeclareOperation
79.17-7 DeclareGlobalFunction
79.17-8 DeclareGlobalVariable
79.17-9 InstallValue
79.17-10 DeclareSynonym
79.17-11 FlushCaches
79.18 [33X[0;0YDeclaration and Implementation Part[133X
80 [33X[0;0YExamples of Extending the System[133X
80.1 [33X[0;0YAddition of a Method[133X
80.2 [33X[0;0YExtending the Range of Definition of an Existing Operation[133X
80.3 [33X[0;0YEnforcing Property Tests[133X
80.4 [33X[0;0YAdding a new Operation[133X
80.5 [33X[0;0YAdding a new Attribute[133X
80.6 [33X[0;0YAdding a new Representation[133X
80.7 [33X[0;0YComponents versus Attributes[133X
80.8 [33X[0;0YAdding new Concepts[133X
80.8-1 [33X[0;0YExample: M-groups[133X
80.8-2 [33X[0;0YExample: Groups with a word length[133X
80.8-3 [33X[0;0YExample: Groups with a decomposition as semidirect product[133X
80.9 [33X[0;0YCreating Own Arithmetic Objects[133X
80.9-1 ArithmeticElementCreator
80.9-2 [33X[0;0YExample: ArithmeticElementCreator[133X
81 [33X[0;0YAn Example – Residue Class Rings[133X
81.1 [33X[0;0YA First Attempt to Implement Elements of Residue Class Rings[133X
81.2 [33X[0;0YWhy Proceed in a Different Way?[133X
81.3 [33X[0;0YA Second Attempt to Implement Elements of Residue Class Rings[133X
81.4 [33X[0;0YCompatibility of Residue Class Rings with Prime Fields[133X
81.5 [33X[0;0YFurther Improvements in Implementing Residue Class Rings[133X
82 [33X[0;0YAn Example – Designing Arithmetic Operations[133X
82.1 [33X[0;0YNew Arithmetic Operations vs. New Objects[133X
82.2 [33X[0;0YDesigning new Multiplicative Objects[133X
83 [33X[0;0YLibrary Files[133X
83.1 [33X[0;0YFile Types[133X
83.2 [33X[0;0YFinding Implementations in the Library[133X
83.3 [33X[0;0YUndocumented Variables[133X
84 [33X[0;0YInterface to the GAP Help System[133X
84.1 [33X[0;0YInstalling and Removing a Help Book[133X
84.1-1 HELP_ADD_BOOK
84.1-2 HELP_REMOVE_BOOK
84.2 [33X[0;0YThe manual.six File[133X
84.3 [33X[0;0YThe Help Book Handler[133X
84.4 [33X[0;0YIntroducing new Viewer for the Online Help[133X
84.4-1 HELP_VIEWER_INFO
85 [33X[0;0YFunction-Operation-Attribute Triples[133X
85.1 [33X[0;0YKey Dependent Operations[133X
85.1-1 KeyDependentOperation
85.2 [33X[0;0YIn Parent Attributes[133X
85.2-1 InParentFOA
85.3 [33X[0;0YOperation Functions[133X
85.3-1 OrbitsishOperation
85.3-2 OrbitishFO
85.3-3 [33X[0;0YExample: Orbit and OrbitOp[133X
86 [33X[0;0YWeak Pointers[133X
86.1 [33X[0;0YWeak Pointer Objects[133X
86.1-1 WeakPointerObj
86.2 [33X[0;0YLow Level Access Functions for Weak Pointer Objects[133X
86.2-1 SetElmWPObj
86.3 [33X[0;0YAccessing Weak Pointer Objects as Lists[133X
86.4 [33X[0;0YCopying Weak Pointer Objects[133X
86.5 [33X[0;0YThe GASMAN Interface for Weak Pointer Objects[133X
87 [33X[0;0YMore about Stabilizer Chains[133X
87.1 [33X[0;0YGeneralized Conjugation Technique[133X
87.2 [33X[0;0YThe General Backtrack Algorithm with Ordered Partitions[133X
87.2-1 [33X[0;0YInternal representation of ordered partitions[133X
87.2-2 [33X[0;0YFunctions for setting up an R-base[133X
87.2-3 [33X[0;0YRefinement functions for the backtrack search[133X
87.2-4 [33X[0;0YFunctions for meeting ordered partitions[133X
87.2-5 [33X[0;0YAvoiding multiplication of permutations[133X
87.3 [33X[0;0YStabilizer Chains for Automorphisms Acting on Enumerators[133X
87.3-1 [33X[0;0YAn operation domain for automorphisms[133X
87.3-2 [33X[0;0YEnumerators for cosets of characteristic factors[133X
87.3-3 [33X[0;0YMaking automorphisms act on such enumerators[133X
[32X
|