This file is indexed.

/usr/share/gap/lib/vspcmat.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
#############################################################################
##
#W  vspcmat.gi                  GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains methods for matrix spaces.
##  A matrix space is a vector space whose elements are matrices.
##
##  The coefficients field need *not* contain all entries of the matrices.
##  If it does then the space is a *Gaussian matrix space*,
##  with better methods to deal with bases.
##  If it does not then the bases use the mechanism of associated bases.
##
##  For all matrix spaces, the value of the attribute `DimensionOfVectors' is
##  a list of length 2,
##  the first entry being the number of rows and the second being the number
##  of columns.
##
##  Note that we must distinguish spaces of Lie matrices and spaces of
##  ordinary matrices because of the different family relations.
##
##  (See the file `vspcrow.gi' for methods for row spaces.)
##
##  2. Methods for bases of non-Gaussian matrix spaces
##  3. Methods for semi-echelonized bases of Gaussian matrix spaces
##  4. Methods for matrix spaces
##  5. Methods for full matrix spaces
##  7. Methods for mutable bases of Gaussian matrix spaces
##


#############################################################################
##
##  2. Methods for bases of non-Gaussian matrix spaces
##

#############################################################################
##
#M  NiceFreeLeftModuleInfo( <matspace> )
#M  NiceVector( <V>, <mat> )
#M  UglyVector( <V>, <row> )  . . . . . . . . for matrix space and row vector
##
##  The purpose of the check is twofold.
##
##  First, we check whether <V> is a non-Gaussian matrix space.
##  If yes then it gets the filter `IsNonGaussianMatrixSpace' that indicates
##  that it is handled via the mechanism of nice bases;
##  this holds also if the matrices are Lie matrices, since thus one
##  indirection (``unpacking'' the Lie matrix) is avoided.
##
##  Second, we set the filter `IsMatrixModule' if <V> consists of matrices.
##  If additionally <V> turns out to be Gaussian then we set also the filter
##  `IsGaussianSpace';
##  also this holds for both ordinary and Lie matrices.
##
InstallHandlingByNiceBasis( "IsNonGaussianMatrixSpace", rec(
    detect := function( F, mats, V, zero )
      local dims;

      # Check that all entries in `mats' are matrices of the same shape.
      if IsEmpty( mats ) then
        if IsMatrix( zero ) then
          SetFilterObj( V, IsMatrixModule );
          SetFilterObj( V, IsGaussianSpace );
          return fail;
        fi;
        return false;
      elif not IsMatrix( mats[1] ) then
        return false;
      fi;
      dims:= DimensionsMat( mats[1] );
      if not ForAll( mats, mat ->     IsMatrix( mat )
                                  and DimensionsMat( mat ) = dims ) then
        return false;
      fi;
      SetFilterObj( V, IsMatrixModule );
      SetDimensionOfVectors( V, dims );
      if ForAll( mats, mat -> ForAll( mat, row -> IsSubset( F, row ) ) ) then

        # If <V> is an ideal in a matrix algebra, and <mats> is a list of
        # ideal generators then we have to look also at algebra generators
        # of the acting ring(s).
        if     HasLeftActingRingOfIdeal( V )
           and not ForAll( GeneratorsOfFLMLOR( LeftActingRingOfIdeal( V ) ),
                       mat -> ForAll( mat, row -> IsSubset( F, row ) ) ) then
          return true;
        fi;
        if     HasRightActingRingOfIdeal( V )
           and not ForAll( GeneratorsOfFLMLOR( RightActingRingOfIdeal( V ) ),
                       mat -> ForAll( mat, row -> IsSubset( F, row ) ) ) then
          return true;
        fi;
 
        if IsDivisionRing( F ) then
          SetFilterObj( V, IsGaussianMatrixSpace );
          return fail;
        fi;
        return false;
      fi;
      return true;
      end,

    NiceFreeLeftModuleInfo := ReturnFalse,

    NiceVector := function( V, mat )
      if DimensionsMat( mat ) <> DimensionOfVectors( V )then
        return fail;
      else
        return Concatenation( mat );
      fi;
      end,

    UglyVector := function( V, row )
      local mat,   # the matrix, result
            dim,   # dimensions of the matrix
            i;     # loop over the rows

      dim:= DimensionOfVectors( V );
      if Length( row ) <> dim[1] * dim[2] then
        return fail;
      fi;
      mat:= [];
      for i in [ 1 .. dim[1] ] do
        mat[i]:= row{ [ (i-1) * dim[2] + 1 .. i * dim[2] ] };
      od;

      if IsLieObjectCollection( V ) then
        mat:= LieObject( mat );
      fi;

      return mat;
      end ) );


#############################################################################
##
##  3. Methods for semi-echelonized bases of Gaussian matrix spaces
##

#############################################################################
##
#R  IsSemiEchelonBasisOfGaussianMatrixSpaceRep( <B> )
##
##  A basis of a Gaussian matrix space is either semi-echelonized or it is a
##  relative basis.
##  (So there is no need for `IsBasisGaussianMatrixSpace').
##
##  If basis vectors are known and if the space is nontrivial
##  then the component `heads' is bound.
##
DeclareRepresentation( "IsSemiEchelonBasisOfGaussianMatrixSpaceRep",
    IsAttributeStoringRep,
    [ "heads" ] );

InstallTrueMethod( IsSmallList,
    IsList and IsSemiEchelonBasisOfGaussianMatrixSpaceRep );


#############################################################################
##
#M  Coefficients( <B>, <v> )  .  method for semi-ech. basis of Gaussian space
##
InstallMethod( Coefficients,
    "for semi-ech. basis of a Gaussian matrix space, and a matrix",
    IsCollsElms,
    [ IsBasis and IsSemiEchelonBasisOfGaussianMatrixSpaceRep, IsMatrix ],
    function( B, v )
    local vectors, # basis vectors of `B'
          heads,   # heads info of `B'
          coeff,   # coefficients list, result
          zero,    # zero of the field
          m,       # number of rows
          n,       # number of columns
          i, j,    # loop over rows and columns
          val,     # one coefficient
          bvec,    # one basis vector
          k;       # loop over rows

    # Check whether the matrix has the right dimensions.
    # (The heads info is not available before the basis vectors are known.)
    vectors := BasisVectors( B );
    heads:= B!.heads;
    if DimensionsMat( v ) <> DimensionsMat( heads ) then
      return fail;
    fi;

    # Preset the coefficients list with zeroes.
    zero    := Zero( v[1][1] );
    coeff   := [];
    for i in [ 1 .. Length( vectors ) ] do
      coeff[i]:= zero;
    od;

    # Compute the coefficients of the basis vectors.
    m:= Length( v );
    n:= Length( v[1] );
    v:= List( v, ShallowCopy );
    for i in [ 1 .. Length( heads ) ] do
      j:= PositionNonZero( v[i] );
      while j <= n do

        val:= v[i][j];
        if heads[i][j] = 0 or val = zero then
          return fail;
        else

          coeff[ heads[i][j] ]:= val;

          # Subtract `v[i][j]' times the `heads[i][j]'-th basis vector.
          bvec:= vectors[ heads[i][j] ];
          for k in [ 1 .. m ] do
            AddRowVector( v[k], bvec[k], -val );
          od;

        fi;
        j:= PositionNonZero( v[i] );

      od;
    od;

    # Check whether the coefficients lie in the left acting domain.
    if not IsSubset( LeftActingDomain( UnderlyingLeftModule( B ) ), coeff ) then
      return fail;
    fi;

    # Return the coefficients.
    return coeff;
    end );


#############################################################################
##
#F  SiftedVectorForGaussianMatrixSpace( <F>, <vectors>, <heads>, <v> )
##
##  is the remainder of the matrix <v> after sifting through the (mutable)
##  <F>-basis with basis vectors <vectors> and heads information <heads>.
##
BindGlobal( "SiftedVectorForGaussianMatrixSpace",
    function( F, vectors, heads, v )
    local zero,     # zero of `F'
          m,        # number of rows
          i, j, k,  # loop over rows and columns
          scalar,   # one field element
          bvec;     # one basis vector

    if    DimensionsMat( v ) <> DimensionsMat( heads )
       or not ForAll( v, row -> IsSubset( F, row ) ) then
      return fail;
    fi;

    v:= List( v, ShallowCopy );
    zero:= Zero( v[1][1] );
    m:= Length( heads );

    # Compute the coefficients of the basis vectors.
    for i in [ 1 .. m ] do
      for j in [ 1 .. Length( heads[i] ) ] do
        if heads[i][j] <> 0 and v[i][j] <> zero then

          # Subtract `v[i][j]' times the `heads[i][j]'-th basis vector.
          scalar:= -v[i][j];
          bvec:= vectors[ heads[i][j] ];
          for k in [ 1 .. m ] do
            AddRowVector( v[k], bvec[k], scalar );
          od;

        fi;
      od;
    od;

    if IsLieObjectCollection( vectors ) then
      v:= LieObject( v );
    fi;

    # Return the remainder.
    return v;
end );


#############################################################################
##
#M  SiftedVector( <B>, <v> )
##
##  If `<B>!.heads[<i>][<j>]' is nonzero this means that the entry in the
##  <i>-th row and <j>-th column is leading entry of the
##  `<B>!.heads[<i>][<j>]'-th vector in the basis.
##
InstallMethod( SiftedVector,
    "for semi-ech. basis of Gaussian matrix space, and matrix",
    IsCollsElms,
    [ IsBasis and IsSemiEchelonBasisOfGaussianMatrixSpaceRep, IsMatrix ],
    function( B, v )
    return SiftedVectorForGaussianMatrixSpace(
               LeftActingDomain( UnderlyingLeftModule( B ) ),
               BasisVectors( B ), B!.heads, v );
    end );


#############################################################################
##
#F  HeadsInfoOfSemiEchelonizedMats( <mats>, <dims> )
##
##  is the `heads' information of the list of matrices <mats> of dimensions
##  <dims> if <mats> can be viewed as a semi-echelonized basis
##  of a Gaussian matrix space, and `fail' otherwise.
#T move to `matrix.gi'?
##
BindGlobal( "HeadsInfoOfSemiEchelonizedMats", function( mats, dims )
    local zero,     # zero of the field
          one,      # one of the field
          nmats,    # number of basis vectors
          dimrow,   # no. of rows in the matrices
          dimcol,   # no. of columns in the matrices
          heads,    # list of pivot rows
          i,        # loop over rows
          j,        # pivot column
          k,        # loop over lower rows
          row;      #

    nmats  := Length( mats );
    dimrow := dims[1];
    dimcol := dims[2];

    heads:= ListWithIdenticalEntries( dimcol, 0 );
    heads:= List( [ 1 .. dimrow ], x -> ShallowCopy( heads ) );

    if 0 < nmats then

      zero := Zero( mats[1][1][1] );
      one  := One( zero );

      # Loop over the columns.
      for i in [ 1 .. nmats ] do

        # Get the pivot.
        row:= 1;
        j:= PositionNot( mats[i][row], zero );
        while dimcol < j and row < dimrow do
          row:= row + 1;
          j:= PositionNot( mats[i][row], zero );
        od;

        if dimrow < row or mats[i][ row ][j] <> one then

          # No nonzero entry in the whole matrix, or pivot is not `one'.
          return fail;
        fi;

        for k in [ i+1 .. nmats ] do
          if mats[k][ row ][j] <> zero then
            return fail;
          fi;
        od;
        heads[ row ][j]  := i;

      od;

    fi;

    return heads;
end );


#############################################################################
##
#M  IsSemiEchelonized( <B> )
##
##  A basis of a Gaussian matrix space is in semi-echelon form
##  if the concatenations of the basis vectors form a semi-echelonized
##  row space basis.
##
InstallMethod( IsSemiEchelonized,
    "for basis (of a Gaussian matrix space)",
    [ IsBasis ],
    function( B )
    local V;
    V:= UnderlyingLeftModule( B );
    if not ( IsMatrixModule( V ) and IsGaussianMatrixSpace( V ) ) then
#T The basis does not know whether it is a basis of a matrix space at all.
      TryNextMethod();
    else
      return HeadsInfoOfSemiEchelonizedMats( BasisVectors( B ),
                                         DimensionOfVectors( V ) ) <> fail;
      
#T change the basis from relative to seb ?
    fi;
    end );


#############################################################################
##
##  4. Methods for matrix spaces
##


#############################################################################
##
#M  Basis( <V> )  . . . . . . . . . . . . . . . . . for Gaussian matrix space
#M  Basis( <V>, <vectors> ) . . . . . . . . . . . . for Gaussian matrix space
#M  BasisNC( <V>, <vectors> ) . . . . . . . . . . . for Gaussian matrix space
##
##  Distinguish the cases whether the space <V> is a *Gaussian* matrix vector
##  space or not.
##
##  If the coefficients field is big enough then either a semi-echelonized or
##  a relative basis is constructed.
##
##  Otherwise the mechanism of associated nice bases is used.
##  In this case the default methods have been installed by
##  `InstallHandlingByNiceBasis'.
##
InstallMethod( Basis,
    "for Gaussian matrix space (construct a semi-echelonized basis)",
    [ IsGaussianMatrixSpace ],
    SemiEchelonBasis );

InstallMethod( Basis,
    "for Gaussian matrix space and list of matrices (try semi-ech.)",
    IsIdenticalObj,
    [ IsGaussianMatrixSpace, IsHomogeneousList ],
    function( V, gens )
    local dims,
          heads,
          B,
          v;

    # Check whether the entries of `gens' are matrices of the right shape.
    dims:= DimensionOfVectors( V );
    if not ForAll( gens, entry ->     IsMatrix( entry )
                                  and DimensionsMat( entry ) = dims ) then
      return fail;
    fi;

    # Test whether the vectors form a semi-echelonized basis.
    # (If not then give up.)
    heads:= HeadsInfoOfSemiEchelonizedMats( gens, dims );
    if heads = fail then
      TryNextMethod();
    fi;

    # Construct a semi-echelonized basis.
    B:= Objectify( NewType( FamilyObj( gens ),
                                IsFiniteBasisDefault
                            and IsSemiEchelonized
                            and IsSemiEchelonBasisOfGaussianMatrixSpaceRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    SetBasisVectors( B, gens );
    SetIsEmpty( B, IsEmpty( gens ) );

    B!.heads:= heads;

    # The basis vectors are linearly independent since they form
    # a semi-echelonized matrix.
    # Hence it is sufficient to check whether they generate the space.
    for v in GeneratorsOfLeftModule( V ) do
      if Coefficients( B, v ) = fail then
        return fail;
      fi;
    od;

    # Return the basis.
    return B;
    end );

InstallMethod( BasisNC,
    "for Gaussian matrix space and list of matrices (try semi-ech.)",
    IsIdenticalObj,
    [ IsGaussianMatrixSpace, IsHomogeneousList ],
    function( V, gens )

    local B, heads;

    # Test whether the vectors form a semi-echelonized basis.
    # (If not then give up.)
    heads:= HeadsInfoOfSemiEchelonizedMats( gens, DimensionOfVectors( V ) );
    if heads = fail then
      TryNextMethod();
    fi;

    # Construct a semi-echelonized basis.
    B:= Objectify( NewType( FamilyObj( gens ),
                                IsFiniteBasisDefault
                            and IsSemiEchelonized
                            and IsSemiEchelonBasisOfGaussianMatrixSpaceRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    SetBasisVectors( B, gens );
    SetIsEmpty( B, IsEmpty( gens ) );

    B!.heads:= heads;

    # Return the basis.
    return B;
    end );


#############################################################################
##
#M  SemiEchelonBasis( <V> )
#M  SemiEchelonBasis( <V>, <vectors> )
#M  SemiEchelonBasisNC( <V>, <vectors> )
##
InstallImmediateMethod( SemiEchelonBasis,
    IsGaussianMatrixSpace and HasCanonicalBasis
                    and IsAttributeStoringRep, 20,
    CanonicalBasis );

InstallMethod( SemiEchelonBasis,
    "for Gaussian matrix space",
    [ IsGaussianMatrixSpace ],
    function( V )
    local B;
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsSemiEchelonized
                            and IsSemiEchelonBasisOfGaussianMatrixSpaceRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    return B;
    end );

InstallMethod( SemiEchelonBasis,
    "for Gaussian matrix space and list of matrices",
    IsIdenticalObj,
    [ IsGaussianMatrixSpace, IsHomogeneousList ],
    function( V, gens )

    local heads,   # heads info for the basis
          B,       # the basis, result
          v;       # loop over vector space generators

    # Check that the vectors form a semi-echelonized basis.
    heads:= HeadsInfoOfSemiEchelonizedMats( gens, DimensionOfVectors( V ) );
    if heads = fail then
      return fail;
    fi;

    # Construct the basis.
    B:= Objectify( NewType( FamilyObj( gens ),
                                IsFiniteBasisDefault
                            and IsSemiEchelonized
                            and IsSemiEchelonBasisOfGaussianMatrixSpaceRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    SetBasisVectors( B, gens );
    SetIsEmpty( B, IsEmpty( gens ) );

    B!.heads:= heads;

    # The basis vectors are linearly independent since they form
    # a semi-echelonized list of matrices.
    # Hence it is sufficient to check whether they generate the space.
    for v in GeneratorsOfLeftModule( V ) do
      if Coefficients( B, v ) = fail then
        return fail;
      fi;
    od;

    return B;
    end );

InstallMethod( SemiEchelonBasisNC,
    "for Gaussian matrix space and list of matrices",
    IsIdenticalObj,
    [ IsGaussianMatrixSpace, IsHomogeneousList ],
    function( V, gens )

    local B;  # the basis, result

    B:= Objectify( NewType( FamilyObj( gens ),
                                IsFiniteBasisDefault
                            and IsSemiEchelonized
                            and IsSemiEchelonBasisOfGaussianMatrixSpaceRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    SetBasisVectors( B, gens );
    SetIsEmpty( B, IsEmpty( gens ) );

    # Provide the `heads' information.
    B!.heads:= HeadsInfoOfSemiEchelonizedMats( gens, DimensionOfVectors(V) );

    # Return the basis.
    return B;
    end );


#############################################################################
##
#M  BasisVectors( <B> ) . . . .  for semi-ech. basis of Gaussian matrix space
##
InstallMethod( BasisVectors,
    "for semi-ech. basis of a Gaussian matrix space",
    [ IsBasis and IsSemiEchelonBasisOfGaussianMatrixSpaceRep ],
    function( B )
    local V, gens, zero, vectors;

    V:= UnderlyingLeftModule( B );

    # Note that we must not ask for the dimension here \ldots
    gens:= GeneratorsOfLeftModule( V );

    if IsEmpty( gens ) then

      SetIsEmpty( B, true );
      zero:= Zero( [ 1 ..  DimensionOfVectors( V )[2] ] );
      B!.heads:= ListWithIdenticalEntries( DimensionOfVectors(V)[1], zero );
      vectors:= [];

    else

      gens:= SemiEchelonMats( gens );
      B!.heads:= gens.heads;
      vectors:= gens.vectors;

      if IsLieObjectCollection( B ) then
        vectors:= List( vectors, LieObject );
      fi;

    fi;
    return vectors;
    end );


#############################################################################
##
#M  Zero( <V> ) . . . . . . . . . . . . . . . . . . . . . .  for matrix space
##
InstallOtherMethod( Zero,
    "for a matrix space",
    [ IsMatrixSpace ],
    function( V )
    local zero;
    zero:= DimensionOfVectors( V );
    zero:= NullMat( zero[1], zero[2], LeftActingDomain( V ) );
    if IsLieObjectCollection( V ) then
      zero:= LieObject( zero );
    fi;
    return zero;
    end );


#############################################################################
##
#M  CanonicalBasis( <V> ) . . . . . . . . . . . . . for Gaussian matrix space
##
##  The canonical basis of a Gaussian matrix space is defined by applying
##  a full Gauss algorithm to the generators of the space.
##
InstallMethod( CanonicalBasis,
    "for Gaussian matrix space",
    [ IsGaussianMatrixSpace ],
    function( V )
    local B,        # semi-echelonized basis
          vectors,  # basis vectors of `B'
          base,     # vectors of the canonical basis
          newheads, # `heads' component of the canonical basis
          m, n,     # dimensions of the matrices
          i, j,     # loop over rows and columns
          k, l,     # loop over rows and columns
          v;        # one basis vector

    # Compute a semi-echelonized basis.
    B:= SemiEchelonBasis( V );
    vectors:= BasisVectors( B );

    # Sort the vectors such that the sequence of pivot positions
    # is increasing.
    base:= [];
    newheads:= List( B!.heads, ShallowCopy );

    if not IsEmpty( vectors ) then

      # Get the matrix dimensions.
      m:= DimensionOfVectors( V )[1];
      n:= DimensionOfVectors( V )[2];

      for i in [ 1 .. m ] do
        for j in [ 1 .. n ] do

          if B!.heads[i][j] <> 0 then

            # Reduce each vector with all those that
            # have bigger pivot positions and are stored later.
            v:= vectors[ newheads[i][j] ];
            for l in [ j+1 .. n ] do
              if B!.heads[i][l] <> 0 and newheads[i][j] < newheads[i][l] then
#T use AddRowVector (make copy!)
                v:= v - v[i][l] * vectors[ B!.heads[i][l] ];
              fi;
            od;
            for k in [ i+1 .. m ] do
              for l in [ 1 .. n ] do
                if B!.heads[k][l] <> 0 and newheads[i][j] < newheads[k][l] then
                  v:= v - v[k][l] * vectors[ B!.heads[k][l] ];
#T use AddRowVector (make copy!)
                fi;
              od;
            od;

            Add( base, v );
            newheads[i][j]:= Length( base );

          fi;

        od;
      od;

    fi;

    # Make the basis.
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsSemiEchelonized
                            and IsSemiEchelonBasisOfGaussianMatrixSpaceRep
                            and IsCanonicalBasis ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    SetBasisVectors( B, base );
    SetIsEmpty( B, IsEmpty( base ) );

    B!.heads:= newheads;

    # Return the basis.
    return B;
    end );


#############################################################################
##
##  5. Methods for full matrix spaces
##

#############################################################################
##
#M  IsFullMatrixModule( V )
##
InstallMethod( IsFullMatrixModule,
    "for Gaussian matrix space",
    [ IsGaussianMatrixSpace ],
    V -> Dimension( V ) = Product( DimensionOfVectors( V ) ) );

InstallMethod( IsFullMatrixModule,
    "for non-Gaussian matrix space",
    [ IsVectorSpace and IsNonGaussianMatrixSpace ],
    ReturnFalse );

InstallOtherMethod( IsFullMatrixModule,
    "for arbitrary free left module",
    [ IsLeftModule ],
    function( V )
    local gens, R;

    # A full matrix module is a free left module.
    if not IsFreeLeftModule( V ) then
      return false;
    fi;

    # The elements of a full matrix module are matrices over the
    # left acting domain,
    # and the dimension equals the number of entries of the matrices.
    gens:= GeneratorsOfLeftModule( V );
    if IsEmpty( gens ) then
      gens:= [ Zero( V ) ];
    fi;
    R:= LeftActingDomain( V );
    return     ForAll( gens,
                       mat ->     IsMatrix( mat )
                              and ForAll( mat, row -> IsSubset( R, row ) ) )
           and Dimension( V ) = Product( DimensionsMat( gens[1] ) );
    end );


#############################################################################
##
#M  CanonicalBasis( <V> )
##
InstallMethod( CanonicalBasis,
    "for full matrix space",
    [ IsFullMatrixModule ],
    function( V )
    local B, dims, m, n;
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsCanonicalBasis
                            and IsSemiEchelonized
                            and IsSemiEchelonBasisOfGaussianMatrixSpaceRep
                            and IsCanonicalBasisFullMatrixModule ),
                   rec() );
    SetUnderlyingLeftModule( B, V );

    dims:= DimensionOfVectors( V );
    m:= dims[1];
    n:= dims[2];
    B!.heads:= List( [ 0 .. m-1 ], i -> i * n + [ 1 .. n ] );

    return B;
    end );


#############################################################################
##
##  7. Methods for mutable bases of Gaussian matrix spaces
##

#############################################################################
##
#R  IsMutableBasisOfGaussianMatrixSpaceRep( <B> )
##
##  The default mutable bases of Gaussian matrix spaces are semi-echelonized.
##  Note that we switch to a mutable basis of representation
##  `IsMutableBasisByImmutableBasisRep' if the mutable basis is closed by a
##  vector that makes the space non-Gaussian.
#T better switch to mutable basis by nice mutable basis !
##
##  Note that the `basisVectors' component consists of ordinary matrices
##  also if the defining matrices are Lie matrices.
##
DeclareRepresentation( "IsMutableBasisOfGaussianMatrixSpaceRep",
    IsComponentObjectRep,
    [ "heads", "basisVectors", "leftActingDomain", "zero" ] );


#############################################################################
##
#M  MutableBasis( <R>, <mats> ) . . . . . . . . . . . . for matrices over <R>
##
InstallMethod( MutableBasis,
    "to construct mutable bases of Gaussian matrix spaces",
    IsElmsCollColls,
    [ IsRing, IsCollection ],
    function( R, mats )
    local newmats, B;

    if ForAny( mats, mat -> ForAny( mat, v -> not IsSubset( R, v ) ) ) then

      # If Gaussian elimination is not allowed,
      # we construct a mutable basis that uses a nice mutable basis.
      B:= MutableBasisViaNiceMutableBasisMethod2( R, mats );

    else

      # Note that `mats' is not empty.
      newmats:= SemiEchelonMats( mats );

      B:= Objectify( NewType( FamilyObj( mats ),
                                  IsMutableBasis
                              and IsMutable
                              and IsMutableBasisOfGaussianMatrixSpaceRep ),
                     rec(
                          basisVectors     := ShallowCopy( newmats.vectors ),
                          heads            := ShallowCopy( newmats.heads ),
                          zero             := Zero( mats[1] ),
                          leftActingDomain := R
                          ) );

    fi;

    return B;
    end );


#############################################################################
##
#M  MutableBasis( <R>, <mats> ) . . . . . . . . . . . . . .  for Lie matrices
##
InstallMethod( MutableBasis,
    "to construct a mutable basis of a Lie matrix space",
    IsElmsCollLieColls,
    [ IsDivisionRing, IsLieObjectCollection ],
    function( R, mats )
    local B, newmats;

    if ForAny( mats, mat -> ForAny( mat, v -> not IsSubset( R, v ) ) ) then

      # If Gaussian elimination is not allowed,
      # we construct a mutable basis that uses a nice mutable basis.
      B:= MutableBasisViaNiceMutableBasisMethod2( R, mats );

    else

      # Note that `mats' is not empty.
      newmats:= SemiEchelonMats( mats );

      B:= Objectify( NewType( FamilyObj( mats ),
                                  IsMutableBasis
                              and IsMutable
                              and IsMutableBasisOfGaussianMatrixSpaceRep ),
                     rec(
                          basisVectors     := ShallowCopy( newmats.vectors ),
                          heads            := newmats.heads,
                          zero             := Zero( mats[1] ),
                          leftActingDomain := R
                        ) );

    fi;

    return B;
    end );


#############################################################################
##
#M  MutableBasis( <R>, <mats>, <zero> ) . . . . . . . . for matrices over <R>
##
InstallOtherMethod( MutableBasis,
    "to construct mutable bases of matrix spaces",
    function( FamR, Fammats, Famzero )
        return    IsElmsColls( FamR, Famzero )
               or IsElmsLieColls( FamR, Famzero );
    end,
    [ IsRing, IsHomogeneousList, IsMatrix ],
    function( R, mats, zero )
    local B, z;

    if ForAny( mats, mat -> ForAny( mat, v -> not IsSubset( R, v ) ) ) then

      # If Gaussian elimination is not allowed,
      # we construct a mutable basis that uses a nice mutable basis.
      B:= MutableBasisViaNiceMutableBasisMethod3( R, mats, zero );

    else

      B:= Objectify( NewType( CollectionsFamily( FamilyObj( zero ) ),
                                  IsMutableBasis
                              and IsMutable
                              and IsMutableBasisOfGaussianMatrixSpaceRep ),
                     rec(
                          zero:= zero,
                          leftActingDomain := R
                          ) );

      if IsEmpty( mats ) then

        B!.basisVectors:= [];
        z:= ListWithIdenticalEntries( Length( zero[1] ), 0 );
        B!.heads:= List( zero, i -> ShallowCopy( z ) );
#T problem for `NullAlgebra' !!

      else

        mats:= SemiEchelonMats( mats );
        B!.basisVectors:= ShallowCopy( mats.vectors );
        B!.heads:= mats.heads;

      fi;

    fi;

    return B;
    end );


#############################################################################
##
#M  ViewObj( <MB> ) . . . . . . view mutable basis of a Gaussian matrix space
##
InstallMethod( ViewObj,
    "for a mutable basis of a Gaussian matrix space",
    [ IsMutableBasis and IsMutableBasisOfGaussianMatrixSpaceRep ],
    function( MB )
    Print( "<mutable basis over ", MB!.leftActingDomain, ", ",
           Length( MB!.basisVectors ), " vectors>" );
    end );


#############################################################################
##
#M  PrintObj( <MB> )  . . . .  print mutable basis of a Gaussian matrix space
##
InstallMethod( PrintObj,
    "for a mutable basis of a Gaussian matrix space",
    [ IsMutableBasis and IsMutableBasisOfGaussianMatrixSpaceRep ],
    function( MB )
    Print( "MutableBasis( ", MB!.leftActingDomain, ", " );
    if NrBasisVectors( MB ) = 0 then
      Print( "[], ", Zero( MB!.leftActingDomain ), " )" );
    else
      Print( MB!.basisVectors, " )" );
    fi;
    end );


#############################################################################
##
#M  BasisVectors( <MB> )  . . .  for mutable basis of a Gaussian matrix space
##
InstallOtherMethod( BasisVectors,
    "for a mutable basis of a Gaussian matrix space",
    [ IsMutableBasis and IsMutableBasisOfGaussianMatrixSpaceRep ],
    function( MB )
    if IsLieObjectCollection( MB ) then
      return Immutable( List( MB!.basisVectors, LieObject ) );
    else
      return Immutable( MB!.basisVectors );
    fi;
    end );


#############################################################################
##
#M  CloseMutableBasis( <MB>, <v> )  . for mut. basis of Gaussian matrix space
##
InstallMethod( CloseMutableBasis,
    "for a mut. basis of a Gaussian matrix space, and a matrix",
    IsCollsElms,
    [ IsMutableBasis and IsMutable
                     and IsMutableBasisOfGaussianMatrixSpaceRep,
      IsMatrix ],
    function( MB, v )
    local V,              # corresponding free left module
          m,              # number of rows
          n,              # number of columns
          heads,          # heads info of the basis
          zero,           # zero coefficient
          basisvectors,   # list of basis vectors of `MB'
          i, j, k,        # loop variables
          scalar,         # one coefficient
          bv;             # one basis vector

    # Check whether the mutable basis belongs to a Gaussian matrix space
    # after the closure.
    v:= List( v, ShallowCopy );

    if not ForAll( v, row -> IsSubset( MB!.leftActingDomain, row ) ) then

      # Change the representation to a mutable basis by immutable basis.
#T better mechanism!
#T change to m.b. via nice m.b. !!
      basisvectors:= Concatenation( MB!.basisVectors, [ v ] );

      if IsLieObjectCollection( MB ) then
        basisvectors:= List( basisvectors, LieObject );
      fi;

      V:= LeftModuleByGenerators( MB!.leftActingDomain, basisvectors );
      UseBasis( V, basisvectors );

      SetFilterObj( MB, IsMutableBasisByImmutableBasisRep );
      ResetFilterObj( MB, IsMutableBasisOfGaussianMatrixSpaceRep );

      MB!.immutableBasis:= Basis( V );

    else

      m:= Length( v    );
      n:= Length( v[1] );
      heads:= MB!.heads;
      zero:= Zero( v[1][1] );
      basisvectors:= MB!.basisVectors;

      # Reduce `v' with the known basis vectors.
      for i in [ 1 .. m ] do
        for j in [ 1 .. n ] do
          if zero <> v[i][j] and heads[i][j] <> 0 then
            scalar:= - v[i][j];
            bv:= basisvectors[ heads[i][j] ];
            for k in [ 1 .. m ] do
              AddRowVector( v[k], bv[k], scalar );
            od;
          fi;
        od;
      od;

      # If necessary add the sifted vector, and update the basis info.
      for i in [ 1 .. m ] do
        j := PositionNot( v[i], zero );
        if j <= n then
          scalar:= Inverse( v[i][j] );
          for k in [ 1 .. m ] do
            MultRowVector( v[k], scalar );
          od;
          Add( basisvectors, v );
          heads[i][j]:= Length( basisvectors );
          break;
        fi;
      od;

    fi;
    end );


#############################################################################
##
#M  IsContainedInSpan( <MB>, <v> )  . for mut. basis of Gaussian matrix space
##
InstallMethod( IsContainedInSpan,
    "for a mut. basis of a Gaussian matrix space, and a matrix",
    IsCollsElms,
    [ IsMutableBasis and IsMutableBasisOfGaussianMatrixSpaceRep,
      IsMatrix ],
    function( MB, v )
    local m,              # number of rows
          n,              # number of columns
          heads,          # heads info of the basis
          zero,           # zero coefficient
          basisvectors,   # list of basis vectors of `MB'
          i, j, k,        # loop variables
          scalar,         # one coefficient
          bv;             # one basis vector

    if not ForAll( v, row -> IsSubset( MB!.leftActingDomain, row ) ) then

      return false;

    else

      v:= List( v, ShallowCopy );
      m:= Length( v    );
      n:= Length( v[1] );
      heads:= MB!.heads;
      zero:= Zero( v[1][1] );
      basisvectors:= MB!.basisVectors;

      # Reduce `v' with the known basis vectors.
      for i in [ 1 .. m ] do
        for j in [ 1 .. n ] do
          if heads[i][j] <> 0 then
            scalar:= - v[i][j];
            bv:= basisvectors[ heads[i][j] ];
            for k in [ 1 .. m ] do
              AddRowVector( v[k], bv[k], scalar );
            od;
          fi;
        od;
      od;

      # Check whether the sifted vector is zero.
      return IsZero( v );

    fi;
    end );


#############################################################################
##
#M  SiftedVector( <MB>, <v> )
##
##  If `<MB>!.heads[<i>][<j>]' is nonzero this means that the entry in the
##  <i>-th row and <j>-th column is leading entry of the
##  `<MB>!.heads[<i>][<j>]'-th vector in the basis.
##
InstallOtherMethod( SiftedVector,
    "for mutable basis of Gaussian matrix space, and matrix",
    IsCollsElms,
    [ IsMutableBasis and IsMutableBasisOfGaussianMatrixSpaceRep,
      IsMatrix ],
    function( MB, v )
    return SiftedVectorForGaussianMatrixSpace( MB!.leftActingDomain,
               MB!.basisVectors, MB!.heads, v );
    end );


#############################################################################
##
#M  ImmutableBasis( <MB> )  . .  for mutable basis of a Gaussian matrix space
##
InstallMethod( ImmutableBasis,
    "for a mutable basis of a Gaussian matrix space",
    [ IsMutableBasis and IsMutableBasisOfGaussianMatrixSpaceRep ],
    function( MB )
    local V;
    V:= FreeLeftModule( MB!.leftActingDomain,
                        BasisVectors( MB ),
                        MB!.zero );
    MB:= SemiEchelonBasisNC( V, BasisVectors( MB ) );
#T use known `heads' info !!
    UseBasis( V, MB );
    return MB;
    end );


#T mutable bases for Gaussian row and matrix spaces are always semi-ech.
#T (note that we construct a mutable basis only if we want to do successive
#T closures)


#############################################################################
##
#E