This file is indexed.

/usr/share/gap/lib/groebner.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
#############################################################################
##
#W  groebner.gd                   GAP Library               Alexander Hulpke   
##
##
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for monomial orderings and Groebner
##  bases.

#############################################################################
##
#P  IsPolynomialRingIdeal(<I>)
##
##  <ManSection>
##  <Prop Name="IsPolynomialRingIdeal" Arg='I'/>
##
##  <Description>
##  A polynomial ring ideal is a (two sided) ideal in a (commutative)
##  polynomial ring.
##  </Description>
##  </ManSection>
##
DeclareSynonym("IsPolynomialRingIdeal",
  IsRing and IsRationalFunctionCollection and HasLeftActingRingOfIdeal
  and HasRightActingRingOfIdeal);

#############################################################################
##
#V  InfoGroebner
##
##  <#GAPDoc Label="InfoGroebner">
##  <ManSection>
##  <InfoClass Name="InfoGroebner"/>
##
##  <Description>
##  This info class gives information about Groebner basis calculations.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass("InfoGroebner");

#############################################################################
##
#C  IsMonomialOrdering(<obj>)
##
##  <#GAPDoc Label="IsMonomialOrdering">
##  <ManSection>
##  <Filt Name="IsMonomialOrdering" Arg='obj' Type='Category'/>
##
##  <Description>
##  A monomial ordering is an object representing a monomial ordering.
##  Its  attributes <Ref Func="MonomialComparisonFunction"/> and
##  <Ref Func="MonomialExtrepComparisonFun"/> are actual comparison functions.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory("IsMonomialOrdering",IsObject);

#############################################################################
##
#R  IsMonomialOrderingDefaultRep
##
##  <ManSection>
##  <Filt Name="IsMonomialOrderingDefaultRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareRepresentation("IsMonomialOrderingDefaultRep",
  IsAttributeStoringRep and IsPositionalObjectRep and IsMonomialOrdering,[]);

BindGlobal("MonomialOrderingsFamily",
  NewFamily("MonomialOrderingsFamily",IsMonomialOrdering,IsMonomialOrdering));

#############################################################################
##
#A  MonomialComparisonFunction(<O>)
##
##  <#GAPDoc Label="MonomialComparisonFunction">
##  <ManSection>
##  <Attr Name="MonomialComparisonFunction" Arg='O'/>
##
##  <Description>
##  If <A>O</A> is an object representing a monomial ordering, this attribute
##  returns a <E>function</E> that can be used to compare or sort monomials (and
##  polynomials which will be compared by their monomials in decreasing
##  order) in this order.
##  <Example><![CDATA[
##  gap> MonomialComparisonFunction(lexord);
##  function( a, b ) ... end
##  gap> l:=[f,Derivative(f,x),Derivative(f,y),Derivative(f,z)];;
##  gap> Sort(l,MonomialComparisonFunction(lexord));l;
##  [ -12*z+4, 21*y^2+3, 10*x+2, 7*y^3+5*x^2-6*z^2+2*x+3*y+4*z ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("MonomialComparisonFunction",IsMonomialOrdering);


#############################################################################
##
#A  MonomialExtrepComparisonFun(<O>)
##
##  <#GAPDoc Label="MonomialExtrepComparisonFun">
##  <ManSection>
##  <Attr Name="MonomialExtrepComparisonFun" Arg='O'/>
##
##  <Description>
##  If <A>O</A> is an object representing a monomial ordering, this attribute
##  returns a <E>function</E> that can be used to compare or sort monomials <E>in
##  their external representation</E> (as lists). This comparison variant is
##  used inside algorithms that manipulate the external representation.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("MonomialExtrepComparisonFun",IsObject);

#############################################################################
##
#A  OccuringVariableIndices(<O>)
#A  OccuringVariableIndices(<P>)
##
##  <ManSection>
##  <Attr Name="OccuringVariableIndices" Arg='O'/>
##  <Attr Name="OccuringVariableIndices" Arg='P'/>
##
##  <Description>
##  If <A>O</A> is an object representing a monomial ordering, this attribute
##  returns either a list of variable indices for which this ordering is
##  defined, or <K>true</K> in case it is defined for all variables.
##  <P/>
##  If <A>P</A> is a polynomial, it returns the indices of all variables occuring
##  in it.
##  </Description>
##  </ManSection>
##
DeclareAttribute("OccuringVariableIndices",IsMonomialOrdering);

#############################################################################
##
#F  LeadingMonomialOfPolynomial(<pol>,<ord>)
##
##  <#GAPDoc Label="LeadingMonomialOfPolynomial">
##  <ManSection>
##  <Func Name="LeadingMonomialOfPolynomial" Arg='pol,ord'/>
##
##  <Description>
##  returns the leading monomial (with respect to the ordering <A>ord</A>)
##  of the polynomial <A>pol</A>.
##  <Example><![CDATA[
##  gap> x:=Indeterminate(Rationals,"x");;
##  gap> y:=Indeterminate(Rationals,"y");;
##  gap> z:=Indeterminate(Rationals,"z");;
##  gap> lexord:=MonomialLexOrdering();grlexord:=MonomialGrlexOrdering();
##  MonomialLexOrdering()
##  MonomialGrlexOrdering()
##  gap> f:=2*x+3*y+4*z+5*x^2-6*z^2+7*y^3;          
##  7*y^3+5*x^2-6*z^2+2*x+3*y+4*z
##  gap> LeadingMonomialOfPolynomial(f,lexord);
##  x^2
##  gap> LeadingMonomialOfPolynomial(f,grlexord);
##  y^3
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("LeadingMonomialOfPolynomial",
  [IsPolynomialFunction,IsMonomialOrdering]);

#############################################################################
##
#O  LeadingCoefficientOfPolynomial( <pol>,<ord> )
##
##  <#GAPDoc Label="LeadingCoefficientOfPolynomial">
##  <ManSection>
##  <Oper Name="LeadingCoefficientOfPolynomial" Arg='pol,ord'/>
##
##  <Description>
##  returns the leading coefficient (that is the coefficient of the leading
##  monomial, see&nbsp;<Ref Func="LeadingMonomialOfPolynomial"/>) of the polynomial <A>pol</A>.
##  <Example><![CDATA[
##  gap> LeadingTermOfPolynomial(f,lexord);
##  5*x^2
##  gap> LeadingTermOfPolynomial(f,grlexord);
##  7*y^3
##  gap> LeadingCoefficientOfPolynomial(f,lexord);
##  5
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("LeadingCoefficientOfPolynomial",
  [IsPolynomialFunction,IsMonomialOrdering]);

#############################################################################
##
#F  LeadingTermOfPolynomial(<pol>,<ord>)
##
##  <#GAPDoc Label="LeadingTermOfPolynomial">
##  <ManSection>
##  <Func Name="LeadingTermOfPolynomial" Arg='pol,ord'/>
##
##  <Description>
##  returns the leading term (with respect to the ordering <A>ord</A>)
##  of the polynomial <A>pol</A>, i.e. the product of leading coefficient and
##  leading monomial.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("LeadingTermOfPolynomial",
  [IsPolynomialFunction,IsMonomialOrdering]);


#############################################################################
##
#F  MonomialLexOrdering( [<vari>] )
##
##  <#GAPDoc Label="MonomialLexOrdering">
##  <ManSection>
##  <Func Name="MonomialLexOrdering" Arg='[vari]'/>
##
##  <Description>
##  This function creates a lexicographic ordering for monomials.
##  Monomials are compared first by the exponents of the largest variable,
##  then the exponents of the second largest variable and so on.
##  <P/>
##  The variables are ordered according to their (internal) index, i.e.,
##  <M>x_1</M> is larger than <M>x_2</M> and so on.
##  If <A>vari</A> is given, and is a list of variables or variable indices,
##  instead this arrangement of variables (in descending order; i.e. the
##  first variable is larger than the second) is 
##  used as the underlying order of variables.
##  <Example><![CDATA[
##  gap> l:=List(Tuples([1..3],3),i->x^(i[1]-1)*y^(i[2]-1)*z^(i[3]-1));
##  [ 1, z, z^2, y, y*z, y*z^2, y^2, y^2*z, y^2*z^2, x, x*z, x*z^2, x*y, 
##    x*y*z, x*y*z^2, x*y^2, x*y^2*z, x*y^2*z^2, x^2, x^2*z, x^2*z^2, 
##    x^2*y, x^2*y*z, x^2*y*z^2, x^2*y^2, x^2*y^2*z, x^2*y^2*z^2 ]
##  gap> Sort(l,MonomialComparisonFunction(MonomialLexOrdering()));l;
##  [ 1, z, z^2, y, y*z, y*z^2, y^2, y^2*z, y^2*z^2, x, x*z, x*z^2, x*y, 
##    x*y*z, x*y*z^2, x*y^2, x*y^2*z, x*y^2*z^2, x^2, x^2*z, x^2*z^2, 
##    x^2*y, x^2*y*z, x^2*y*z^2, x^2*y^2, x^2*y^2*z, x^2*y^2*z^2 ]
##  gap> Sort(l,MonomialComparisonFunction(MonomialLexOrdering([y,z,x])));l;
##  [ 1, x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, y, x*y, x^2*y, y*z, 
##    x*y*z, x^2*y*z, y*z^2, x*y*z^2, x^2*y*z^2, y^2, x*y^2, x^2*y^2, 
##    y^2*z, x*y^2*z, x^2*y^2*z, y^2*z^2, x*y^2*z^2, x^2*y^2*z^2 ]
##  gap> Sort(l,MonomialComparisonFunction(MonomialLexOrdering([z,x,y])));l;
##  [ 1, y, y^2, x, x*y, x*y^2, x^2, x^2*y, x^2*y^2, z, y*z, y^2*z, x*z, 
##    x*y*z, x*y^2*z, x^2*z, x^2*y*z, x^2*y^2*z, z^2, y*z^2, y^2*z^2, 
##    x*z^2, x*y*z^2, x*y^2*z^2, x^2*z^2, x^2*y*z^2, x^2*y^2*z^2 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("MonomialLexOrdering");

#############################################################################
##
#F  MonomialGrlexOrdering( [<vari>] )
##
##  <#GAPDoc Label="MonomialGrlexOrdering">
##  <ManSection>
##  <Func Name="MonomialGrlexOrdering" Arg='[vari]'/>
##
##  <Description>
##  This function creates a degree/lexicographic ordering.
##  In this ordering monomials are compared first by their total degree,
##  then lexicographically (see <Ref Func="MonomialLexOrdering"/>).
##  <P/>
##  The variables are ordered according to their (internal) index, i.e.,
##  <M>x_1</M> is larger than <M>x_2</M> and so on.
##  If <A>vari</A> is given, and is a list of variables or variable indices,
##  instead this arrangement of variables (in descending order; i.e. the
##  first variable is larger than the second) is 
##  used as the underlying order of variables.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("MonomialGrlexOrdering");

#############################################################################
##
#F  MonomialGrevlexOrdering( [<vari>] )
##
##  <#GAPDoc Label="MonomialGrevlexOrdering">
##  <ManSection>
##  <Func Name="MonomialGrevlexOrdering" Arg='[vari]'/>
##
##  <Description>
##  This function creates a <Q>grevlex</Q> ordering.
##  In this ordering monomials are compared first by total degree and then
##  backwards lexicographically.
##  (This is different than <Q>grlex</Q> ordering with variables reversed.) 
##  <P/>
##  The variables are ordered according to their (internal) index, i.e.,
##  <M>x_1</M> is larger than <M>x_2</M> and so on.
##  If <A>vari</A> is given, and is a list of variables or variable indices,
##  instead this arrangement of variables (in descending order; i.e. the
##  first variable is larger than the second) is 
##  used as the underlying order of variables.
##  <Example><![CDATA[
##  gap> Sort(l,MonomialComparisonFunction(MonomialGrlexOrdering()));l;
##  [ 1, z, y, x, z^2, y*z, y^2, x*z, x*y, x^2, y*z^2, y^2*z, x*z^2, 
##    x*y*z, x*y^2, x^2*z, x^2*y, y^2*z^2, x*y*z^2, x*y^2*z, x^2*z^2, 
##    x^2*y*z, x^2*y^2, x*y^2*z^2, x^2*y*z^2, x^2*y^2*z, x^2*y^2*z^2 ]
##  gap> Sort(l,MonomialComparisonFunction(MonomialGrevlexOrdering()));l;
##  [ 1, z, y, x, z^2, y*z, x*z, y^2, x*y, x^2, y*z^2, x*z^2, y^2*z, 
##    x*y*z, x^2*z, x*y^2, x^2*y, y^2*z^2, x*y*z^2, x^2*z^2, x*y^2*z, 
##    x^2*y*z, x^2*y^2, x*y^2*z^2, x^2*y*z^2, x^2*y^2*z, x^2*y^2*z^2 ]
##  gap> Sort(l,MonomialComparisonFunction(MonomialGrlexOrdering([z,y,x])));l;
##  [ 1, x, y, z, x^2, x*y, y^2, x*z, y*z, z^2, x^2*y, x*y^2, x^2*z, 
##    x*y*z, y^2*z, x*z^2, y*z^2, x^2*y^2, x^2*y*z, x*y^2*z, x^2*z^2, 
##    x*y*z^2, y^2*z^2, x^2*y^2*z, x^2*y*z^2, x*y^2*z^2, x^2*y^2*z^2 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("MonomialGrevlexOrdering");

#############################################################################
##
#F  EliminationOrdering( <elim>[, <rest>] )
##
##  <#GAPDoc Label="EliminationOrdering">
##  <ManSection>
##  <Func Name="EliminationOrdering" Arg='elim[, rest]'/>
##
##  <Description>
##  This function creates an elimination ordering for eliminating the
##  variables in <A>elim</A>.
##  Two monomials are compared first by the exponent vectors for the
##  variables listed in <A>elim</A> (a lexicographic comparison with respect
##  to the ordering indicated in <A>elim</A>).
##  If these submonomial are equal, the submonomials given by the other
##  variables are compared by a graded lexicographic ordering
##  (with respect to the variable order given in <A>rest</A>,
##  if called with two parameters).
##  <P/>
##  Both <A>elim</A> and <A>rest</A> may be a list of variables or a list of
##  variable indices.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("EliminationOrdering");

#############################################################################
##
#F  PolynomialDivisionAlgorithm(<poly>,<gens>,<order>)
##
##  <#GAPDoc Label="PolynomialDivisionAlgorithm">
##  <ManSection>
##  <Func Name="PolynomialDivisionAlgorithm" Arg='poly,gens,order'/>
##
##  <Description>
##  This function implements the division algorithm for multivariate
##  polynomials as given in
##  <Cite Key="coxlittleoshea" Where="Theorem 3 in Chapter 2"/>.
##  (It might be slower than <Ref Func="PolynomialReduction"/> but the
##  remainders are guaranteed to agree with the textbook.)
##  <P/>
##  The operation returns a list of length two, the first entry is the
##  remainder after the reduction. The second entry is a list of quotients
##  corresponding to <A>gens</A>.
##  <Example><![CDATA[
##  gap> bas:=[x^3*y*z,x*y^2*z,z*y*z^3+x];;
##  gap> pol:=x^7*z*bas[1]+y^5*bas[3]+x*z;;
##  gap> PolynomialReduction(pol,bas,MonomialLexOrdering()); 
##  [ -y*z^5, [ x^7*z, 0, y^5+z ] ]
##  gap> PolynomialReducedRemainder(pol,bas,MonomialLexOrdering());
##  -y*z^5
##  gap> PolynomialDivisionAlgorithm(pol,bas,MonomialLexOrdering());
##  [ -y*z^5, [ x^7*z, 0, y^5+z ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("PolynomialDivisionAlgorithm");

#############################################################################
##
#F  PolynomialReduction(<poly>,<gens>,<order>)
##
##  <#GAPDoc Label="PolynomialReduction">
##  <ManSection>
##  <Func Name="PolynomialReduction" Arg='poly,gens,order'/>
##
##  <Description>
##  reduces the polynomial <A>poly</A> by the ideal generated by the polynomials
##  in <A>gens</A>, using the order <A>order</A> of monomials.  Unless <A>gens</A> is a
##  Gröbner basis the result is not guaranteed to be unique.
##  <P/>
##  The operation returns a list of length two, the first entry is the
##  remainder after the reduction. The second entry is a list of quotients
##  corresponding to <A>gens</A>.
##  <P/>
##  Note that the strategy used by <Ref Func="PolynomialReduction"/> differs from the 
##  standard textbook reduction algorithm, which is provided by
##  <Ref Func="PolynomialDivisionAlgorithm"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("PolynomialReduction");

#############################################################################
##
#F  PolynomialReducedRemainder(<poly>,<gens>,<order>)
##
##  <#GAPDoc Label="PolynomialReducedRemainder">
##  <ManSection>
##  <Func Name="PolynomialReducedRemainder" Arg='poly,gens,order'/>
##
##  <Description>
##  this operation does the same way as
##  <Ref Func="PolynomialReduction"/> but does not keep track of the actual quotients
##  and returns only the remainder (it is therefore slightly faster).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("PolynomialReducedRemainder");


#############################################################################
##
#O  GroebnerBasis(<L>,<O>)
#O  GroebnerBasis(<I>,<O>)
#O  GroebnerBasisNC(<L>,<O>)
##
##  <#GAPDoc Label="GroebnerBasis">
##  <ManSection>
##  <Heading>GroebnerBasis</Heading>
##  <Oper Name="GroebnerBasis" Arg='L, O'
##   Label="for a list and a monomial ordering"/>
##  <Oper Name="GroebnerBasis" Arg='I, O'
##   Label="for an ideal and a monomial ordering"/>
##  <Oper Name="GroebnerBasisNC" Arg='L, O'/>
##
##  <Description>
##  Let <A>O</A> be a monomial ordering and <A>L</A> be a list of polynomials
##  that generate an ideal <A>I</A>.
##  This operation returns a Groebner basis of <A>I</A> with respect to the
##  ordering <A>O</A>.
##  <P/>
##  <Ref Oper="GroebnerBasisNC"/> works like
##  <Ref Oper="GroebnerBasis" Label="for a list and a monomial ordering"/>
##  with the only distinction that the first argument has to be a list of
##  polynomials and that no test is performed to check whether the ordering
##  is defined for all occuring variables.
##  <P/>
##  Note that &GAP; at the moment only includes
##  a naïve implementation of Buchberger's algorithm (which is mainly
##  intended as a teaching tool).
##  It might not be sufficient for serious problems.
##  <Example><![CDATA[
##  gap> l:=[x^2+y^2+z^2-1,x^2+z^2-y,x-y];;
##  gap> GroebnerBasis(l,MonomialLexOrdering());
##  [ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1, 
##    1/2*z^4+2*z^2-1/2 ]
##  gap> GroebnerBasis(l,MonomialLexOrdering([z,x,y]));
##  [ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1 ]
##  gap> GroebnerBasis(l,MonomialGrlexOrdering());
##  [ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("GroebnerBasis",
  [IsHomogeneousList and IsRationalFunctionCollection,IsMonomialOrdering]);
DeclareOperation("GroebnerBasis",[IsPolynomialRingIdeal,IsMonomialOrdering]);
DeclareGlobalFunction("GroebnerBasisNC");

#############################################################################
##
#O  ReducedGroebnerBasis( <L>, <O> )
#O  ReducedGroebnerBasis( <I>, <O> )
##
##  <#GAPDoc Label="ReducedGroebnerBasis">
##  <ManSection>
##  <Heading>ReducedGroebnerBasis</Heading>
##  <Oper Name="ReducedGroebnerBasis" Arg='L, O'
##   Label="for a list and a monomial ordering"/>
##  <Oper Name="ReducedGroebnerBasis" Arg='I, O'
##   Label="for an ideal and a monomial ordering"/>
##
##  <Description>
##  a Groebner basis <M>B</M>
##  (see&nbsp;<Ref Func="GroebnerBasis" Label="for a list and a monomial ordering"/>)
##  is <E>reduced</E> if no monomial in a polynomial in <A>B</A> is divisible
##  by the leading monomial of another polynomial in <M>B</M>.
##  This operation computes a Groebner basis with respect
##  to the monomial ordering <A>O</A> and then reduces it.
##  <P/>
##  <Example><![CDATA[
##  gap> ReducedGroebnerBasis(l,MonomialGrlexOrdering());
##  [ x-y, z^2-2*y+1, y^2+y-1 ]
##  gap> ReducedGroebnerBasis(l,MonomialLexOrdering());    
##  [ z^4+4*z^2-1, -1/2*z^2+y-1/2, -1/2*z^2+x-1/2 ]
##  gap> ReducedGroebnerBasis(l,MonomialLexOrdering([y,z,x]));
##  [ x^2+x-1, z^2-2*x+1, -x+y ]
##  ]]></Example>
##  <P/>
##  For performance reasons it can be advantageous to define
##  monomial orderings once and then to reuse them:
##  <P/>
##  <Example><![CDATA[
##  gap> ord:=MonomialGrlexOrdering();;
##  gap> GroebnerBasis(l,ord);
##  [ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1 ]
##  gap> ReducedGroebnerBasis(l,ord);
##  [ x-y, z^2-2*y+1, y^2+y-1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("ReducedGroebnerBasis",
  [IsHomogeneousList and IsRationalFunctionCollection,IsMonomialOrdering]);
DeclareOperation("ReducedGroebnerBasis",
  [IsPolynomialRingIdeal,IsMonomialOrdering]);

#############################################################################
##
#A  StoredGroebnerBasis(<I>)
##
##  <#GAPDoc Label="StoredGroebnerBasis">
##  <ManSection>
##  <Attr Name="StoredGroebnerBasis" Arg='I'/>
##
##  <Description>
##  For an ideal <A>I</A> in a polynomial ring, this attribute holds a list
##  <M>[ B, O ]</M> where <M>B</M> is a Groebner basis for the monomial
##  ordering <M>O</M>.
##  this can be used to test membership or canonical coset representatives.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("StoredGroebnerBasis",IsPolynomialRingIdeal);


#############################################################################
##
#E