This file is indexed.

/usr/share/gap/doc/ref/chap56.html is in gap-doc 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 56: Rings</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap56"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap55.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap57.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap56_mj.html">[MathJax on]</a></p>
<p><a id="X81897F6082CACB59" name="X81897F6082CACB59"></a></p>
<div class="ChapSects"><a href="chap56.html#X81897F6082CACB59">56 <span class="Heading">Rings</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap56.html#X839FC48687C25FCD">56.1 <span class="Heading">Generating Rings</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X80FD843C8221DAC9">56.1-1 IsRing</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X820B172A860A5B1A">56.1-2 <span class="Heading">Ring</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X83AFFCC77DE6ABDA">56.1-3 <span class="Heading">DefaultRing</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7D736E027DFD8961">56.1-4 RingByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X839E609480495E27">56.1-5 DefaultRingByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7D0428D87E63288C">56.1-6 GeneratorsOfRing</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X860E4AC78520D27E">56.1-7 Subring</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X819B0AFE79C78C34">56.1-8 <span class="Heading">ClosureRing</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X8350500B8576F833">56.1-9 Quotient</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap56.html#X782EC7877DA864C9">56.2 <span class="Heading">Ideals in Rings</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7C486A7C821D79F0">56.2-1 TwoSidedIdeal</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7C8E196478C7431A">56.2-2 TwoSidedIdealNC</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7DF623847B338850">56.2-3 IsTwoSidedIdeal</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X86C998178690DAE0">56.2-4 TwoSidedIdealByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X82D8B07281EB0AC7">56.2-5 LeftIdealByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X858EAEAF87751428">56.2-6 RightIdealByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X86AAF5F9800E97EE">56.2-7 GeneratorsOfTwoSidedIdeal</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7B20BD2B7FAFBD64">56.2-8 GeneratorsOfLeftIdeal</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X80F2239F8653FF74">56.2-9 GeneratorsOfRightIdeal</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X81D81D027C2F8D06">56.2-10 LeftActingRingOfIdeal</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X83D9D7408706B69A">56.2-11 AsLeftIdeal</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap56.html#X790DD00586F9B8B8">56.3 <span class="Heading">Rings With One</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7E601FBD8020A0F3">56.3-1 IsRingWithOne</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X80942A318417366E">56.3-2 <span class="Heading">RingWithOne</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X851115EC79B8C393">56.3-3 RingWithOneByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7F9F122C831BCDD1">56.3-4 GeneratorsOfRingWithOne</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7D0BADF178D4DDF8">56.3-5 SubringWithOne</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap56.html#X797F5869874BDBFB">56.4 <span class="Heading">Properties of Rings</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X87A7D5B584713B52">56.4-1 IsIntegralRing</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X789A917085DB7527">56.4-2 IsUniqueFactorizationRing</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7D4BB44187C55BF2">56.4-3 IsLDistributive</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X79A5AEE786AED315">56.4-4 IsRDistributive</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X86716D4F7B968604">56.4-5 IsDistributive</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X82DECD237D49D937">56.4-6 IsAnticommutative</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7EC0FEC88535E8CC">56.4-7 IsZeroSquaredRing</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X799BEF8581971A13">56.4-8 IsJacobianRing</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap56.html#X8130085978A9B3C4">56.5 <span class="Heading">Units and Factorizations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X85CBFBAE78DE72E8">56.5-1 IsUnit</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X853C045B7BA6A580">56.5-2 Units</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7B307F217DDC7E20">56.5-3 IsAssociated</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7A69C9097E17D161">56.5-4 Associates</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7B1A9A4C7C59FB36">56.5-5 StandardAssociate</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7EB6803C789E027D">56.5-6 StandardAssociateUnit</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7CD7C64A7D961A18">56.5-7 IsIrreducibleRingElement</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7AA107AE7F79C6D8">56.5-8 IsPrime</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X82D6EDC685D12AE2">56.5-9 Factors</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X8559CC7B80C479F1">56.5-10 PadicValuation</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap56.html#X7F12BB99865EB7BF">56.6 <span class="Heading">Euclidean Rings</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X808B8E8E80D48E4A">56.6-1 IsEuclideanRing</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X784234088350D4E4">56.6-2 EuclideanDegree</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7A93FA788318B147">56.6-3 EuclideanQuotient</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7B5E9639865E91BA">56.6-4 EuclideanRemainder</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X876B7532801A1B35">56.6-5 QuotientRemainder</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap56.html#X7E9CF2C07C4A6CEE">56.7 <span class="Heading">Gcd and Lcm</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7DE207718456F98F">56.7-1 <span class="Heading">Gcd</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7836D50F8341D6E1">56.7-2 GcdOp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7ABB91EF838075EF">56.7-3 <span class="Heading">GcdRepresentation</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X81392E7F84956341">56.7-4 GcdRepresentationOp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X836DB8B47A0219FB">56.7-5 ShowGcd</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7ABA92057DD6C7AF">56.7-6 <span class="Heading">Lcm</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7FB6C5A67AC1E8C1">56.7-7 LcmOp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X8555913A83D716A4">56.7-8 QuotientMod</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X805A35D684B7A952">56.7-9 PowerMod</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X87711E6F8024A358">56.7-10 InterpolatedPolynomial</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap56.html#X7B13484581169439">56.8 <span class="Heading">Homomorphisms of Rings</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7DE9CC5B877C91DA">56.8-1 RingGeneralMappingByImages</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X78C1016284F08026">56.8-2 RingHomomorphismByImages</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X7D01646A7CCBEDBB">56.8-3 RingHomomorphismByImagesNC</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap56.html#X83D53D98809EC461">56.8-4 NaturalHomomorphismByIdeal</a></span>
</div></div>
</div>

<h3>56 <span class="Heading">Rings</span></h3>

<p>This chapter deals with domains that are additive groups (see <code class="func">IsAdditiveGroup</code> (<a href="chap55.html#X7B8FBD9082CE271B"><span class="RefLink">55.1-6</span></a>) closed under multiplication <code class="code">*</code>. Such a domain, if <code class="code">*</code> and <code class="code">+</code> are distributive, is called a <em>ring</em> in <strong class="pkg">GAP</strong>. Each division ring, field (see <a href="chap58.html#X80A8E676814A19FD"><span class="RefLink">58</span></a>), or algebra (see <a href="chap62.html#X7DDBF6F47A2E021C"><span class="RefLink">62</span></a>) is a ring. Important examples of rings are the integers (see <a href="chap14.html#X853DF11B80068ED5"><span class="RefLink">14</span></a>) and matrix rings.</p>

<p>In the case of a <em>ring-with-one</em>, additional multiplicative structure is present, see <code class="func">IsRingWithOne</code> (<a href="chap56.html#X7E601FBD8020A0F3"><span class="RefLink">56.3-1</span></a>). There is a little support in <strong class="pkg">GAP</strong> for rings that have no additional structure: it is possible to perform some computations for small finite rings; infinite rings are handled by <strong class="pkg">GAP</strong> in an acceptable way in the case that they are algebras.</p>

<p>Also, the <strong class="pkg">SONATA</strong> package provides support for near-rings, and a related functionality for multiplicative semigroups of near-rings is available in the <strong class="pkg">Smallsemi</strong> package.</p>

<p>Several functions for ring elements, such as <code class="func">IsPrime</code> (<a href="chap56.html#X7AA107AE7F79C6D8"><span class="RefLink">56.5-8</span></a>) and <code class="func">Factors</code> (<a href="chap56.html#X82D6EDC685D12AE2"><span class="RefLink">56.5-9</span></a>), are defined only relative to a ring <var class="Arg">R</var>, which can be entered as an optional argument; if <var class="Arg">R</var> is omitted then a <em>default ring</em> is formed from the ring elements given as arguments, see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>).</p>

<p><a id="X839FC48687C25FCD" name="X839FC48687C25FCD"></a></p>

<h4>56.1 <span class="Heading">Generating Rings</span></h4>

<p><a id="X80FD843C8221DAC9" name="X80FD843C8221DAC9"></a></p>

<h5>56.1-1 IsRing</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsRing</code>( <var class="Arg">R</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A <em>ring</em> in <strong class="pkg">GAP</strong> is an additive group (see <code class="func">IsAdditiveGroup</code> (<a href="chap55.html#X7B8FBD9082CE271B"><span class="RefLink">55.1-6</span></a>)) that is also a magma (see <code class="func">IsMagma</code> (<a href="chap35.html#X87D3F38B7EAB13FA"><span class="RefLink">35.1-1</span></a>)), such that addition <code class="code">+</code> and multiplication <code class="code">*</code> are distributive, see <code class="func">IsDistributive</code> (<a href="chap56.html#X86716D4F7B968604"><span class="RefLink">56.4-5</span></a>).</p>

<p>The multiplication need <em>not</em> be associative (see <code class="func">IsAssociative</code> (<a href="chap35.html#X7C83B5A47FD18FB7"><span class="RefLink">35.4-7</span></a>)). For example, a Lie algebra (see <a href="chap64.html#X78559D4C800AF58A"><span class="RefLink">64</span></a>) is regarded as a ring in <strong class="pkg">GAP</strong>.</p>

<p><a id="X820B172A860A5B1A" name="X820B172A860A5B1A"></a></p>

<h5>56.1-2 <span class="Heading">Ring</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Ring</code>( <var class="Arg">r</var>, <var class="Arg">s</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Ring</code>( <var class="Arg">coll</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In the first form <code class="func">Ring</code> returns the smallest ring that contains all the elements <var class="Arg">r</var>, <var class="Arg">s</var>, <span class="SimpleMath">...</span> In the second form <code class="func">Ring</code> returns the smallest ring that contains all the elements in the collection <var class="Arg">coll</var>. If any element is not an element of a ring or if the elements lie in no common ring an error is raised.</p>

<p><code class="func">Ring</code> differs from <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>) in that it returns the smallest ring in which the elements lie, while <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>) may return a larger ring if that makes sense.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Ring( 2, E(4) );</span>
&lt;ring with 2 generators&gt;
</pre></div>

<p><a id="X83AFFCC77DE6ABDA" name="X83AFFCC77DE6ABDA"></a></p>

<h5>56.1-3 <span class="Heading">DefaultRing</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DefaultRing</code>( <var class="Arg">r</var>, <var class="Arg">s</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DefaultRing</code>( <var class="Arg">coll</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In the first form <code class="func">DefaultRing</code> returns a ring that contains all the elements <var class="Arg">r</var>, <var class="Arg">s</var>, <span class="SimpleMath">...</span> etc. In the second form <code class="func">DefaultRing</code> returns a ring that contains all the elements in the collection <var class="Arg">coll</var>. If any element is not an element of a ring or if the elements lie in no common ring an error is raised.</p>

<p>The ring returned by <code class="func">DefaultRing</code> need not be the smallest ring in which the elements lie. For example for elements from cyclotomic fields, <code class="func">DefaultRing</code> may return the ring of integers of the smallest cyclotomic field in which the elements lie, which need not be the smallest ring overall, because the elements may in fact lie in a smaller number field which is itself not a cyclotomic field.</p>

<p>(For the exact definition of the default ring of a certain type of elements, look at the corresponding method installation.)</p>

<p><code class="func">DefaultRing</code> is used by ring functions such as <code class="func">Quotient</code> (<a href="chap56.html#X8350500B8576F833"><span class="RefLink">56.1-9</span></a>), <code class="func">IsPrime</code> (<a href="chap56.html#X7AA107AE7F79C6D8"><span class="RefLink">56.5-8</span></a>), <code class="func">Factors</code> (<a href="chap56.html#X82D6EDC685D12AE2"><span class="RefLink">56.5-9</span></a>), or <code class="func">Gcd</code> (<a href="chap56.html#X7DE207718456F98F"><span class="RefLink">56.7-1</span></a>) if no explicit ring is given.</p>

<p><code class="func">Ring</code> (<a href="chap56.html#X820B172A860A5B1A"><span class="RefLink">56.1-2</span></a>) differs from <code class="func">DefaultRing</code> in that it returns the smallest ring in which the elements lie, while <code class="func">DefaultRing</code> may return a larger ring if that makes sense.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DefaultRing( 2, E(4) );</span>
GaussianIntegers
</pre></div>

<p><a id="X7D736E027DFD8961" name="X7D736E027DFD8961"></a></p>

<h5>56.1-4 RingByGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RingByGenerators</code>( <var class="Arg">C</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">RingByGenerators</code> returns the ring generated by the elements in the collection <var class="Arg">C</var>, i. e., the closure of <var class="Arg">C</var> under addition, multiplication, and taking additive inverses.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RingByGenerators([ 2, E(4) ]);</span>
&lt;ring with 2 generators&gt;
</pre></div>

<p><a id="X839E609480495E27" name="X839E609480495E27"></a></p>

<h5>56.1-5 DefaultRingByGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DefaultRingByGenerators</code>( <var class="Arg">coll</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>For a collection <var class="Arg">coll</var>, returns a default ring in which <var class="Arg">coll</var> is contained.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DefaultRingByGenerators([ 2, E(4) ]);</span>
GaussianIntegers
</pre></div>

<p><a id="X7D0428D87E63288C" name="X7D0428D87E63288C"></a></p>

<h5>56.1-6 GeneratorsOfRing</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneratorsOfRing</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p><code class="func">GeneratorsOfRing</code> returns a list of elements such that the ring <var class="Arg">R</var> is the closure of these elements under addition, multiplication, and taking additive inverses.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=Ring( 2, 1/2 );</span>
&lt;ring with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsOfRing( R );</span>
[ 2, 1/2 ]
</pre></div>

<p><a id="X860E4AC78520D27E" name="X860E4AC78520D27E"></a></p>

<h5>56.1-7 Subring</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Subring</code>( <var class="Arg">R</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SubringNC</code>( <var class="Arg">R</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the ring with parent <var class="Arg">R</var> generated by the elements in <var class="Arg">gens</var>. When the second form, <code class="func">SubringNC</code> is used, it is <em>not</em> checked whether all elements in <var class="Arg">gens</var> lie in <var class="Arg">R</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:= Integers;</span>
Integers
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:= Subring( R, [ 4, 6 ] );</span>
&lt;ring with 1 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Parent( S );</span>
Integers
</pre></div>

<p><a id="X819B0AFE79C78C34" name="X819B0AFE79C78C34"></a></p>

<h5>56.1-8 <span class="Heading">ClosureRing</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ClosureRing</code>( <var class="Arg">R</var>, <var class="Arg">r</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ClosureRing</code>( <var class="Arg">R</var>, <var class="Arg">S</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>For a ring <var class="Arg">R</var> and either an element <var class="Arg">r</var> of its elements family or a ring <var class="Arg">S</var>, <code class="func">ClosureRing</code> returns the ring generated by both arguments.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClosureRing( Integers, E(4) );</span>
&lt;ring-with-one, with 2 generators&gt;
</pre></div>

<p><a id="X8350500B8576F833" name="X8350500B8576F833"></a></p>

<h5>56.1-9 Quotient</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Quotient</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var>, <var class="Arg">s</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">Quotient</code> returns the quotient of the two ring elements <var class="Arg">r</var> and <var class="Arg">s</var> in the ring <var class="Arg">R</var>, if given, and otherwise in their default ring (see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)). It returns <code class="keyw">fail</code> if the quotient does not exist in the respective ring.</p>

<p>(To perform the division in the quotient field of a ring, use the quotient operator <code class="code">/</code>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Quotient( 2, 3 );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Quotient( 6, 3 );</span>
2
</pre></div>

<p><a id="X782EC7877DA864C9" name="X782EC7877DA864C9"></a></p>

<h4>56.2 <span class="Heading">Ideals in Rings</span></h4>

<p>A <em>left ideal</em> in a ring <span class="SimpleMath">R</span> is a subring of <span class="SimpleMath">R</span> that is closed under multiplication with elements of <span class="SimpleMath">R</span> from the left.</p>

<p>A <em>right ideal</em> in a ring <span class="SimpleMath">R</span> is a subring of <span class="SimpleMath">R</span> that is closed under multiplication with elements of <span class="SimpleMath">R</span> from the right.</p>

<p>A <em>two-sided ideal</em> or simply <em>ideal</em> in a ring <span class="SimpleMath">R</span> is both a left ideal and a right ideal in <span class="SimpleMath">R</span>.</p>

<p>So being a (left/right/two-sided) ideal is not a property of a domain but refers to the acting ring(s). Hence we must ask, e. g., <code class="code">IsIdeal( </code><span class="SimpleMath">R, I</span><code class="code"> )</code> if we want to know whether the ring <span class="SimpleMath">I</span> is an ideal in the ring <span class="SimpleMath">R</span>. The property <code class="func">IsTwoSidedIdealInParent</code> (<a href="chap56.html#X7DF623847B338850"><span class="RefLink">56.2-3</span></a>) can be used to store whether a ring is an ideal in its parent.</p>

<p>(Whenever the term <code class="code">"Ideal"</code> occurs in an identifier without a specifying prefix <code class="code">"Left"</code> or <code class="code">"Right"</code>, this means the same as <code class="code">"TwoSidedIdeal"</code>. Conversely, any occurrence of <code class="code">"TwoSidedIdeal"</code> can be substituted by <code class="code">"Ideal"</code>.)</p>

<p>For any of the above kinds of ideals, there is a notion of generators, namely <code class="func">GeneratorsOfLeftIdeal</code> (<a href="chap56.html#X7B20BD2B7FAFBD64"><span class="RefLink">56.2-8</span></a>), <code class="func">GeneratorsOfRightIdeal</code> (<a href="chap56.html#X80F2239F8653FF74"><span class="RefLink">56.2-9</span></a>), and <code class="func">GeneratorsOfTwoSidedIdeal</code> (<a href="chap56.html#X86AAF5F9800E97EE"><span class="RefLink">56.2-7</span></a>). The acting rings can be accessed as <code class="func">LeftActingRingOfIdeal</code> (<a href="chap56.html#X81D81D027C2F8D06"><span class="RefLink">56.2-10</span></a>) and <code class="func">RightActingRingOfIdeal</code> (<a href="chap56.html#X81D81D027C2F8D06"><span class="RefLink">56.2-10</span></a>), respectively. Note that ideals are detected from known values of these attributes, especially it is assumed that whenever a domain has both a left and a right acting ring then these two are equal.</p>

<p>Note that we cannot use <code class="func">LeftActingDomain</code> (<a href="chap57.html#X86F070E0807DC34E"><span class="RefLink">57.1-11</span></a>) and <code class="code">RightActingDomain</code> here, since ideals in algebras are themselves vector spaces, and such a space can of course also be a module for an action from the right. In order to make the usual vector space functionality automatically available for ideals, we have to distinguish the left and right module structure from the additional closure properties of the ideal.</p>

<p>Further note that the attributes denoting ideal generators and acting ring are used to create ideals if this is explicitly wanted, but the ideal relation in the sense of <code class="func">IsTwoSidedIdeal</code> (<a href="chap56.html#X7DF623847B338850"><span class="RefLink">56.2-3</span></a>) is of course independent of the presence of the attribute values.</p>

<p>Ideals are constructed with <code class="func">LeftIdeal</code> (<a href="chap56.html#X7C486A7C821D79F0"><span class="RefLink">56.2-1</span></a>), <code class="func">RightIdeal</code> (<a href="chap56.html#X7C486A7C821D79F0"><span class="RefLink">56.2-1</span></a>), <code class="func">TwoSidedIdeal</code> (<a href="chap56.html#X7C486A7C821D79F0"><span class="RefLink">56.2-1</span></a>). Principal ideals of the form <span class="SimpleMath">x * R</span>, <span class="SimpleMath">R * x</span>, <span class="SimpleMath">R * x * R</span> can also be constructed with a simple multiplication.</p>

<p>Currently many methods for dealing with ideals need linear algebra to work, so they are mainly applicable to ideals in algebras.</p>

<p><a id="X7C486A7C821D79F0" name="X7C486A7C821D79F0"></a></p>

<h5>56.2-1 TwoSidedIdeal</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TwoSidedIdeal</code>( <var class="Arg">R</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Ideal</code>( <var class="Arg">R</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeftIdeal</code>( <var class="Arg">R</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RightIdeal</code>( <var class="Arg">R</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">R</var> be a ring, and <var class="Arg">gens</var> a list of collection of elements in <var class="Arg">R</var>. <code class="func">TwoSidedIdeal</code>, <code class="func">LeftIdeal</code>, and <code class="func">RightIdeal</code> return the two-sided, left, or right ideal, respectively, <span class="SimpleMath">I</span> in <var class="Arg">R</var> that is generated by <var class="Arg">gens</var>. The ring <var class="Arg">R</var> can be accessed as <code class="func">LeftActingRingOfIdeal</code> (<a href="chap56.html#X81D81D027C2F8D06"><span class="RefLink">56.2-10</span></a>) or <code class="func">RightActingRingOfIdeal</code> (<a href="chap56.html#X81D81D027C2F8D06"><span class="RefLink">56.2-10</span></a>) (or both) of <span class="SimpleMath">I</span>.</p>

<p>If <var class="Arg">R</var> is a left <span class="SimpleMath">F</span>-module then also <span class="SimpleMath">I</span> is a left <span class="SimpleMath">F</span>-module, in particular the <code class="func">LeftActingDomain</code> (<a href="chap57.html#X86F070E0807DC34E"><span class="RefLink">57.1-11</span></a>) values of <var class="Arg">R</var> and <span class="SimpleMath">I</span> are equal.</p>

<p>If the optional argument <code class="code">"basis"</code> is given then <var class="Arg">gens</var> are assumed to be a list of basis vectors of <span class="SimpleMath">I</span> viewed as a free <span class="SimpleMath">F</span>-module. (This is mainly applicable to ideals in algebras.) In this case, it is <em>not</em> checked whether <var class="Arg">gens</var> really is linearly independent and whether <var class="Arg">gens</var> is a subset of <var class="Arg">R</var>.</p>

<p><code class="func">Ideal</code> is simply a synonym of <code class="func">TwoSidedIdeal</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:= Integers;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:= Ideal( R, [ 2 ] );</span>
&lt;two-sided ideal in Integers, (1 generators)&gt;
</pre></div>

<p><a id="X7C8E196478C7431A" name="X7C8E196478C7431A"></a></p>

<h5>56.2-2 TwoSidedIdealNC</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TwoSidedIdealNC</code>( <var class="Arg">R</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IdealNC</code>( <var class="Arg">R</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeftIdealNC</code>( <var class="Arg">R</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RightIdealNC</code>( <var class="Arg">R</var>, <var class="Arg">gens</var>[, <var class="Arg">"basis"</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>The effects of <code class="func">TwoSidedIdealNC</code>, <code class="func">LeftIdealNC</code>, and <code class="func">RightIdealNC</code> are the same as <code class="func">TwoSidedIdeal</code> (<a href="chap56.html#X7C486A7C821D79F0"><span class="RefLink">56.2-1</span></a>), <code class="func">LeftIdeal</code> (<a href="chap56.html#X7C486A7C821D79F0"><span class="RefLink">56.2-1</span></a>), and <code class="func">RightIdeal</code> (<a href="chap56.html#X7C486A7C821D79F0"><span class="RefLink">56.2-1</span></a>), respectively, but they do not check whether all entries of <var class="Arg">gens</var> lie in <var class="Arg">R</var>.</p>

<p><a id="X7DF623847B338850" name="X7DF623847B338850"></a></p>

<h5>56.2-3 IsTwoSidedIdeal</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTwoSidedIdeal</code>( <var class="Arg">R</var>, <var class="Arg">I</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsLeftIdeal</code>( <var class="Arg">R</var>, <var class="Arg">I</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsRightIdeal</code>( <var class="Arg">R</var>, <var class="Arg">I</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTwoSidedIdealInParent</code>( <var class="Arg">I</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsLeftIdealInParent</code>( <var class="Arg">I</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsRightIdealInParent</code>( <var class="Arg">I</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>The properties <code class="func">IsTwoSidedIdealInParent</code> etc., are attributes of the ideal, and once known they are stored in the ideal.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:= FullMatrixAlgebra( Rationals, 3 );</span>
( Rationals^[ 3, 3 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:= Ideal( A, [ Random( A ) ] );</span>
&lt;two-sided ideal in ( Rationals^[ 3, 3 ] ), (1 generators)&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsTwoSidedIdeal( A, I );</span>
true
</pre></div>

<p><a id="X86C998178690DAE0" name="X86C998178690DAE0"></a></p>

<h5>56.2-4 TwoSidedIdealByGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TwoSidedIdealByGenerators</code>( <var class="Arg">R</var>, <var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IdealByGenerators</code>( <var class="Arg">R</var>, <var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">TwoSidedIdealByGenerators</code> returns the ring that is generated by the elements of the collection <var class="Arg">gens</var> under addition, multiplication, and multiplication with elements of the ring <var class="Arg">R</var> from the left and from the right.</p>

<p><var class="Arg">R</var> can be accessed by <code class="func">LeftActingRingOfIdeal</code> (<a href="chap56.html#X81D81D027C2F8D06"><span class="RefLink">56.2-10</span></a>) or <code class="func">RightActingRingOfIdeal</code> (<a href="chap56.html#X81D81D027C2F8D06"><span class="RefLink">56.2-10</span></a>), <var class="Arg">gens</var> can be accessed by <code class="func">GeneratorsOfTwoSidedIdeal</code> (<a href="chap56.html#X86AAF5F9800E97EE"><span class="RefLink">56.2-7</span></a>).</p>

<p><a id="X82D8B07281EB0AC7" name="X82D8B07281EB0AC7"></a></p>

<h5>56.2-5 LeftIdealByGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeftIdealByGenerators</code>( <var class="Arg">R</var>, <var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">LeftIdealByGenerators</code> returns the ring that is generated by the elements of the collection <var class="Arg">gens</var> under addition, multiplication, and multiplication with elements of the ring <var class="Arg">R</var> from the left.</p>

<p><var class="Arg">R</var> can be accessed by <code class="func">LeftActingRingOfIdeal</code> (<a href="chap56.html#X81D81D027C2F8D06"><span class="RefLink">56.2-10</span></a>), <var class="Arg">gens</var> can be accessed by <code class="func">GeneratorsOfLeftIdeal</code> (<a href="chap56.html#X7B20BD2B7FAFBD64"><span class="RefLink">56.2-8</span></a>).</p>

<p><a id="X858EAEAF87751428" name="X858EAEAF87751428"></a></p>

<h5>56.2-6 RightIdealByGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RightIdealByGenerators</code>( <var class="Arg">R</var>, <var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">RightIdealByGenerators</code> returns the ring that is generated by the elements of the collection <var class="Arg">gens</var> under addition, multiplication, and multiplication with elements of the ring <var class="Arg">R</var> from the right.</p>

<p><var class="Arg">R</var> can be accessed by <code class="func">RightActingRingOfIdeal</code> (<a href="chap56.html#X81D81D027C2F8D06"><span class="RefLink">56.2-10</span></a>), <var class="Arg">gens</var> can be accessed by <code class="func">GeneratorsOfRightIdeal</code> (<a href="chap56.html#X80F2239F8653FF74"><span class="RefLink">56.2-9</span></a>).</p>

<p><a id="X86AAF5F9800E97EE" name="X86AAF5F9800E97EE"></a></p>

<h5>56.2-7 GeneratorsOfTwoSidedIdeal</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneratorsOfTwoSidedIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneratorsOfIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is a list of generators for the ideal <var class="Arg">I</var>, with respect to the action of the rings that are stored as the values of <code class="func">LeftActingRingOfIdeal</code> (<a href="chap56.html#X81D81D027C2F8D06"><span class="RefLink">56.2-10</span></a>) and <code class="func">RightActingRingOfIdeal</code> (<a href="chap56.html#X81D81D027C2F8D06"><span class="RefLink">56.2-10</span></a>), from the left and from the right, respectively.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:= FullMatrixAlgebra( Rationals, 3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:= Ideal( A, [ One( A ) ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsOfIdeal( I );</span>
[ [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] ]
</pre></div>

<p><a id="X7B20BD2B7FAFBD64" name="X7B20BD2B7FAFBD64"></a></p>

<h5>56.2-8 GeneratorsOfLeftIdeal</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneratorsOfLeftIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is a list of generators for the left ideal <var class="Arg">I</var>, with respect to the action from the left of the ring that is stored as the value of <code class="func">LeftActingRingOfIdeal</code> (<a href="chap56.html#X81D81D027C2F8D06"><span class="RefLink">56.2-10</span></a>).</p>

<p><a id="X80F2239F8653FF74" name="X80F2239F8653FF74"></a></p>

<h5>56.2-9 GeneratorsOfRightIdeal</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneratorsOfRightIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is a list of generators for the right ideal <var class="Arg">I</var>, with respect to the action from the right of the ring that is stored as the value of <code class="func">RightActingRingOfIdeal</code> (<a href="chap56.html#X81D81D027C2F8D06"><span class="RefLink">56.2-10</span></a>).</p>

<p><a id="X81D81D027C2F8D06" name="X81D81D027C2F8D06"></a></p>

<h5>56.2-10 LeftActingRingOfIdeal</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeftActingRingOfIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RightActingRingOfIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the left (resp. right) acting ring of an ideal <var class="Arg">I</var>.</p>

<p><a id="X83D9D7408706B69A" name="X83D9D7408706B69A"></a></p>

<h5>56.2-11 AsLeftIdeal</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsLeftIdeal</code>( <var class="Arg">R</var>, <var class="Arg">S</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsRightIdeal</code>( <var class="Arg">R</var>, <var class="Arg">S</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsTwoSidedIdeal</code>( <var class="Arg">R</var>, <var class="Arg">S</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Let <var class="Arg">S</var> be a subring of the ring <var class="Arg">R</var>.</p>

<p>If <var class="Arg">S</var> is a left ideal in <var class="Arg">R</var> then <code class="func">AsLeftIdeal</code> returns this left ideal, otherwise <code class="keyw">fail</code> is returned.</p>

<p>If <var class="Arg">S</var> is a right ideal in <var class="Arg">R</var> then <code class="func">AsRightIdeal</code> returns this right ideal, otherwise <code class="keyw">fail</code> is returned.</p>

<p>If <var class="Arg">S</var> is a two-sided ideal in <var class="Arg">R</var> then <code class="func">AsTwoSidedIdeal</code> returns this two-sided ideal, otherwise <code class="keyw">fail</code> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:= FullMatrixAlgebra( Rationals, 3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">B:= DirectSumOfAlgebras( A, A );</span>
&lt;algebra over Rationals, with 6 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:= Subalgebra( B, Basis( B ){[1..9]} );</span>
&lt;algebra over Rationals, with 9 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:= AsTwoSidedIdeal( B, C );</span>
&lt;two-sided ideal in &lt;algebra of dimension 18 over Rationals&gt;, 
  (9 generators)&gt;
</pre></div>

<p><a id="X790DD00586F9B8B8" name="X790DD00586F9B8B8"></a></p>

<h4>56.3 <span class="Heading">Rings With One</span></h4>

<p><a id="X7E601FBD8020A0F3" name="X7E601FBD8020A0F3"></a></p>

<h5>56.3-1 IsRingWithOne</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsRingWithOne</code>( <var class="Arg">R</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A <em>ring-with-one</em> in <strong class="pkg">GAP</strong> is a ring (see <code class="func">IsRing</code> (<a href="chap56.html#X80FD843C8221DAC9"><span class="RefLink">56.1-1</span></a>)) that is also a magma-with-one (see <code class="func">IsMagmaWithOne</code> (<a href="chap35.html#X86071DE7835F1C7C"><span class="RefLink">35.1-2</span></a>)).</p>

<p>Note that the identity and the zero of a ring-with-one need <em>not</em> be distinct. This means that a ring that consists only of its zero element can be regarded as a ring-with-one.</p>

<p>This is especially useful in the case of finitely presented rings, in the sense that each factor of a ring-with-one is again a ring-with-one.</p>

<p><a id="X80942A318417366E" name="X80942A318417366E"></a></p>

<h5>56.3-2 <span class="Heading">RingWithOne</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RingWithOne</code>( <var class="Arg">r</var>, <var class="Arg">s</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RingWithOne</code>( <var class="Arg">coll</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In the first form <code class="func">RingWithOne</code> returns the smallest ring with one that contains all the elements <var class="Arg">r</var>, <var class="Arg">s</var>, <span class="SimpleMath">...</span> In the second form <code class="func">RingWithOne</code> returns the smallest ring with one that contains all the elements in the collection <var class="Arg">C</var>. If any element is not an element of a ring or if the elements lie in no common ring an error is raised.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RingWithOne( [ 4, 6 ] );</span>
Integers
</pre></div>

<p><a id="X851115EC79B8C393" name="X851115EC79B8C393"></a></p>

<h5>56.3-3 RingWithOneByGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RingWithOneByGenerators</code>( <var class="Arg">coll</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">RingWithOneByGenerators</code> returns the ring-with-one generated by the elements in the collection <var class="Arg">coll</var>, i. e., the closure of <var class="Arg">coll</var> under addition, multiplication, taking additive inverses, and taking the identity of an element.</p>

<p><a id="X7F9F122C831BCDD1" name="X7F9F122C831BCDD1"></a></p>

<h5>56.3-4 GeneratorsOfRingWithOne</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneratorsOfRingWithOne</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p><code class="func">GeneratorsOfRingWithOne</code> returns a list of elements such that the ring <var class="Arg">R</var> is the closure of these elements under addition, multiplication, taking additive inverses, and taking the identity element <code class="code">One( <var class="Arg">R</var> )</code>.</p>

<p><var class="Arg">R</var> itself need <em>not</em> be known to be a ring-with-one.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:= RingWithOne( [ 4, 6 ] );</span>
Integers
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsOfRingWithOne( R );</span>
[ 1 ]
</pre></div>

<p><a id="X7D0BADF178D4DDF8" name="X7D0BADF178D4DDF8"></a></p>

<h5>56.3-5 SubringWithOne</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SubringWithOne</code>( <var class="Arg">R</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SubringWithOneNC</code>( <var class="Arg">R</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the ring with one with parent <var class="Arg">R</var> generated by the elements in <var class="Arg">gens</var>. When the second form, <code class="func">SubringWithOneNC</code> is used, it is <em>not</em> checked whether all elements in <var class="Arg">gens</var> lie in <var class="Arg">R</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:= SubringWithOne( Integers, [ 4, 6 ] );</span>
Integers
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Parent( R );</span>
Integers
</pre></div>

<p><a id="X797F5869874BDBFB" name="X797F5869874BDBFB"></a></p>

<h4>56.4 <span class="Heading">Properties of Rings</span></h4>

<p><a id="X87A7D5B584713B52" name="X87A7D5B584713B52"></a></p>

<h5>56.4-1 IsIntegralRing</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsIntegralRing</code>( <var class="Arg">R</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A ring-with-one <var class="Arg">R</var> is integral if it is commutative, contains no nontrivial zero divisors, and if its identity is distinct from its zero.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIntegralRing( Integers );</span>
true
</pre></div>

<p><a id="X789A917085DB7527" name="X789A917085DB7527"></a></p>

<h5>56.4-2 IsUniqueFactorizationRing</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsUniqueFactorizationRing</code>( <var class="Arg">R</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A ring <var class="Arg">R</var> is called a <em>unique factorization ring</em> if it is an integral ring (see <code class="func">IsIntegralRing</code> (<a href="chap56.html#X87A7D5B584713B52"><span class="RefLink">56.4-1</span></a>)), and every nonzero element has a unique factorization into irreducible elements, i.e., a unique representation as product of irreducibles (see <code class="func">IsIrreducibleRingElement</code> (<a href="chap56.html#X7CD7C64A7D961A18"><span class="RefLink">56.5-7</span></a>)). Unique in this context means unique up to permutations of the factors and up to multiplication of the factors by units (see <code class="func">Units</code> (<a href="chap56.html#X853C045B7BA6A580"><span class="RefLink">56.5-2</span></a>)).</p>

<p>Mathematically, a field should therefore also be a unique factorization ring, since every nonzero element is a unit. In <strong class="pkg">GAP</strong>, however, at least at present fields do not lie in the filter <code class="func">IsUniqueFactorizationRing</code>, since operations such as <code class="func">Factors</code> (<a href="chap56.html#X82D6EDC685D12AE2"><span class="RefLink">56.5-9</span></a>), <code class="func">Gcd</code> (<a href="chap56.html#X7DE207718456F98F"><span class="RefLink">56.7-1</span></a>), <code class="func">StandardAssociate</code> (<a href="chap56.html#X7B1A9A4C7C59FB36"><span class="RefLink">56.5-5</span></a>) and so on do not apply to fields (the results would be trivial, and not especially useful) and methods which require their arguments to lie in <code class="func">IsUniqueFactorizationRing</code> expect these operations to work.</p>

<p>(Note that we cannot install a subset maintained method for this filter since the factorization of an element needs not exist in a subring. As an example, consider the subring <span class="SimpleMath">4 ℕ + 1</span> of the ring <span class="SimpleMath">4 ℤ + 1</span>; in the subring, the element <span class="SimpleMath">3 ⋅ 3 ⋅ 11 ⋅ 7</span> has the two factorizations <span class="SimpleMath">33 ⋅ 21 = 9 ⋅ 77</span>, but in the large ring there is the unique factorization <span class="SimpleMath">(-3) ⋅ (-3) ⋅ (-11) ⋅ (-7)</span>, and it is easy to see that every element in <span class="SimpleMath">4 ℤ + 1</span> has a unique factorization.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsUniqueFactorizationRing( PolynomialRing( Rationals, 1 ) );</span>
true
</pre></div>

<p><a id="X7D4BB44187C55BF2" name="X7D4BB44187C55BF2"></a></p>

<h5>56.4-3 IsLDistributive</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsLDistributive</code>( <var class="Arg">C</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if the relation <span class="SimpleMath">a * ( b + c ) = ( a * b ) + ( a * c )</span> holds for all elements <span class="SimpleMath">a</span>, <span class="SimpleMath">b</span>, <span class="SimpleMath">c</span> in the collection <var class="Arg">C</var>, and <code class="keyw">false</code> otherwise.</p>

<p><a id="X79A5AEE786AED315" name="X79A5AEE786AED315"></a></p>

<h5>56.4-4 IsRDistributive</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsRDistributive</code>( <var class="Arg">C</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if the relation <span class="SimpleMath">( a + b ) * c = ( a * c ) + ( b * c )</span> holds for all elements <span class="SimpleMath">a</span>, <span class="SimpleMath">b</span>, <span class="SimpleMath">c</span> in the collection <var class="Arg">C</var>, and <code class="keyw">false</code> otherwise.</p>

<p><a id="X86716D4F7B968604" name="X86716D4F7B968604"></a></p>

<h5>56.4-5 IsDistributive</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsDistributive</code>( <var class="Arg">C</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if the collection <var class="Arg">C</var> is both left and right distributive (see <code class="func">IsLDistributive</code> (<a href="chap56.html#X7D4BB44187C55BF2"><span class="RefLink">56.4-3</span></a>), <code class="func">IsRDistributive</code> (<a href="chap56.html#X79A5AEE786AED315"><span class="RefLink">56.4-4</span></a>)), and <code class="keyw">false</code> otherwise.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsDistributive( Integers );</span>
true
</pre></div>

<p><a id="X82DECD237D49D937" name="X82DECD237D49D937"></a></p>

<h5>56.4-6 IsAnticommutative</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsAnticommutative</code>( <var class="Arg">R</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if the relation <span class="SimpleMath">a * b = - b * a</span> holds for all elements <span class="SimpleMath">a</span>, <span class="SimpleMath">b</span> in the ring <var class="Arg">R</var>, and <code class="keyw">false</code> otherwise.</p>

<p><a id="X7EC0FEC88535E8CC" name="X7EC0FEC88535E8CC"></a></p>

<h5>56.4-7 IsZeroSquaredRing</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsZeroSquaredRing</code>( <var class="Arg">R</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if <span class="SimpleMath">a * a</span> is the zero element of the ring <var class="Arg">R</var> for all <span class="SimpleMath">a</span> in <var class="Arg">R</var>, and <code class="keyw">false</code> otherwise.</p>

<p><a id="X799BEF8581971A13" name="X799BEF8581971A13"></a></p>

<h5>56.4-8 IsJacobianRing</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsJacobianRing</code>( <var class="Arg">R</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if the Jacobi identity holds in the ring <var class="Arg">R</var>, and <code class="keyw">false</code> otherwise. The Jacobi identity means that <span class="SimpleMath">x * (y * z) + z * (x * y) + y * (z * x)</span> is the zero element of <var class="Arg">R</var>, for all elements <span class="SimpleMath">x</span>, <span class="SimpleMath">y</span>, <span class="SimpleMath">z</span> in <var class="Arg">R</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:= FullMatrixLieAlgebra( GF( 5 ), 7 );</span>
&lt;Lie algebra over GF(5), with 13 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsJacobianRing( L );</span>
true
</pre></div>

<p><a id="X8130085978A9B3C4" name="X8130085978A9B3C4"></a></p>

<h4>56.5 <span class="Heading">Units and Factorizations</span></h4>

<p><a id="X85CBFBAE78DE72E8" name="X85CBFBAE78DE72E8"></a></p>

<h5>56.5-1 IsUnit</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsUnit</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">IsUnit</code> returns <code class="keyw">true</code> if <var class="Arg">r</var> is a unit in the ring <var class="Arg">R</var>, if given, and otherwise in its default ring (see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)). If <var class="Arg">r</var> is not a unit then <code class="keyw">false</code> is returned.</p>

<p>An element <var class="Arg">r</var> is called a <em>unit</em> in a ring <var class="Arg">R</var>, if <var class="Arg">r</var> has an inverse in <var class="Arg">R</var>.</p>

<p><code class="func">IsUnit</code> may call <code class="func">Quotient</code> (<a href="chap56.html#X8350500B8576F833"><span class="RefLink">56.1-9</span></a>).</p>

<p><a id="X853C045B7BA6A580" name="X853C045B7BA6A580"></a></p>

<h5>56.5-2 Units</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Units</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p><code class="func">Units</code> returns the group of units of the ring <var class="Arg">R</var>. This may either be returned as a list or as a group.</p>

<p>An element <span class="SimpleMath">r</span> is called a <em>unit</em> of a ring <span class="SimpleMath">R</span> if <span class="SimpleMath">r</span> has an inverse in <span class="SimpleMath">R</span>. It is easy to see that the set of units forms a multiplicative group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Units( GaussianIntegers );</span>
[ -1, 1, -E(4), E(4) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Units( GF( 16 ) );</span>
&lt;group with 1 generators&gt;
</pre></div>

<p><a id="X7B307F217DDC7E20" name="X7B307F217DDC7E20"></a></p>

<h5>56.5-3 IsAssociated</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsAssociated</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var>, <var class="Arg">s</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">IsAssociated</code> returns <code class="keyw">true</code> if the two ring elements <var class="Arg">r</var> and <var class="Arg">s</var> are associated in the ring <var class="Arg">R</var>, if given, and otherwise in their default ring (see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)). If the two elements are not associated then <code class="keyw">false</code> is returned.</p>

<p>Two elements <var class="Arg">r</var> and <var class="Arg">s</var> of a ring <var class="Arg">R</var> are called <em>associated</em> if there is a unit <span class="SimpleMath">u</span> of <var class="Arg">R</var> such that <var class="Arg">r</var> <span class="SimpleMath">u =</span><var class="Arg">s</var>.</p>

<p><a id="X7A69C9097E17D161" name="X7A69C9097E17D161"></a></p>

<h5>56.5-4 Associates</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Associates</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">Associates</code> returns the set of associates of <var class="Arg">r</var> in the ring <var class="Arg">R</var>, if given, and otherwise in its default ring (see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)).</p>

<p>Two elements <var class="Arg">r</var> and <span class="SimpleMath">s</span> of a ring <span class="SimpleMath">R</span> are called <em>associated</em> if there is a unit <span class="SimpleMath">u</span> of <span class="SimpleMath">R</span> such that <span class="SimpleMath"><var class="Arg">r</var> u = s</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Associates( Integers, 2 );</span>
[ -2, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Associates( GaussianIntegers, 2 );</span>
[ -2, 2, -2*E(4), 2*E(4) ]
</pre></div>

<p><a id="X7B1A9A4C7C59FB36" name="X7B1A9A4C7C59FB36"></a></p>

<h5>56.5-5 StandardAssociate</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; StandardAssociate</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">StandardAssociate</code> returns the standard associate of the ring element <var class="Arg">r</var> in the ring <var class="Arg">R</var>, if given, and otherwise in its default ring (see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)).</p>

<p>The <em>standard associate</em> of a ring element <var class="Arg">r</var> of <var class="Arg">R</var> is an associated element of <var class="Arg">r</var> which is, in a ring dependent way, distinguished among the set of associates of <var class="Arg">r</var>. For example, in the ring of integers the standard associate is the absolute value.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= Indeterminate( Rationals, "x" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StandardAssociate( -x^2-x+1 );</span>
x^2+x-1
</pre></div>

<p><a id="X7EB6803C789E027D" name="X7EB6803C789E027D"></a></p>

<h5>56.5-6 StandardAssociateUnit</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; StandardAssociateUnit</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">StandardAssociateUnit</code> returns a unit in the ring <var class="Arg">R</var> such that the ring element <var class="Arg">r</var> times this unit equals the standard associate of <var class="Arg">r</var> in <var class="Arg">R</var>.</p>

<p>If <var class="Arg">R</var> is not given, the default ring of <var class="Arg">r</var> is used instead. (see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">y:= Indeterminate( Rationals, "y" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">r:= -y^2-y+1;</span>
-y^2-y+1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StandardAssociateUnit( r );</span>
-1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StandardAssociateUnit( r ) * r = StandardAssociate( r );</span>
true
</pre></div>

<p><a id="X7CD7C64A7D961A18" name="X7CD7C64A7D961A18"></a></p>

<h5>56.5-7 IsIrreducibleRingElement</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsIrreducibleRingElement</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">IsIrreducibleRingElement</code> returns <code class="keyw">true</code> if the ring element <var class="Arg">r</var> is irreducible in the ring <var class="Arg">R</var>, if given, and otherwise in its default ring (see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)). If <var class="Arg">r</var> is not irreducible then <code class="keyw">false</code> is returned.</p>

<p>An element <var class="Arg">r</var> of a ring <var class="Arg">R</var> is called <em>irreducible</em> if <var class="Arg">r</var> is not a unit in <var class="Arg">R</var> and if there is no nontrivial factorization of <var class="Arg">r</var> in <var class="Arg">R</var>, i.e., if there is no representation of <var class="Arg">r</var> as product <span class="SimpleMath">s t</span> such that neither <span class="SimpleMath">s</span> nor <span class="SimpleMath">t</span> is a unit (see <code class="func">IsUnit</code> (<a href="chap56.html#X85CBFBAE78DE72E8"><span class="RefLink">56.5-1</span></a>)). Each prime element (see <code class="func">IsPrime</code> (<a href="chap56.html#X7AA107AE7F79C6D8"><span class="RefLink">56.5-8</span></a>)) is irreducible.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIrreducibleRingElement( Integers, 2 );</span>
true
</pre></div>

<p><a id="X7AA107AE7F79C6D8" name="X7AA107AE7F79C6D8"></a></p>

<h5>56.5-8 IsPrime</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPrime</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">IsPrime</code> returns <code class="keyw">true</code> if the ring element <var class="Arg">r</var> is a prime in the ring <var class="Arg">R</var>, if given, and otherwise in its default ring (see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)). If <var class="Arg">r</var> is not a prime then <code class="keyw">false</code> is returned.</p>

<p>An element <var class="Arg">r</var> of a ring <var class="Arg">R</var> is called <em>prime</em> if for each pair <span class="SimpleMath">s</span> and <span class="SimpleMath">t</span> such that <var class="Arg">r</var> divides <span class="SimpleMath">s t</span> the element <var class="Arg">r</var> divides either <span class="SimpleMath">s</span> or <span class="SimpleMath">t</span>. Note that there are rings where not every irreducible element (see <code class="func">IsIrreducibleRingElement</code> (<a href="chap56.html#X7CD7C64A7D961A18"><span class="RefLink">56.5-7</span></a>)) is a prime.</p>

<p><a id="X82D6EDC685D12AE2" name="X82D6EDC685D12AE2"></a></p>

<h5>56.5-9 Factors</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Factors</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">Factors</code> returns the factorization of the ring element <var class="Arg">r</var> in the ring <var class="Arg">R</var>, if given, and otherwise in in its default ring (see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)). The factorization is returned as a list of primes (see <code class="func">IsPrime</code> (<a href="chap56.html#X7AA107AE7F79C6D8"><span class="RefLink">56.5-8</span></a>)). Each element in the list is a standard associate (see <code class="func">StandardAssociate</code> (<a href="chap56.html#X7B1A9A4C7C59FB36"><span class="RefLink">56.5-5</span></a>)) except the first one, which is multiplied by a unit as necessary to have <code class="code">Product( Factors( <var class="Arg">R</var>, <var class="Arg">r</var> ) ) = <var class="Arg">r</var></code>. This list is usually also sorted, thus smallest prime factors come first. If <var class="Arg">r</var> is a unit or zero, <code class="code">Factors( <var class="Arg">R</var>, <var class="Arg">r</var> ) = [ <var class="Arg">r</var> ]</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= Indeterminate( GF(2), "x" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pol:= x^2+x+1;</span>
x^2+x+Z(2)^0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Factors( pol );</span>
[ x^2+x+Z(2)^0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Factors( PolynomialRing( GF(4) ), pol );</span>
[ x+Z(2^2), x+Z(2^2)^2 ]
</pre></div>

<p><a id="X8559CC7B80C479F1" name="X8559CC7B80C479F1"></a></p>

<h5>56.5-10 PadicValuation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PadicValuation</code>( <var class="Arg">r</var>, <var class="Arg">p</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">PadicValuation</code> is the operation to compute the <var class="Arg">p</var>-adic valuation of a ring element <var class="Arg">r</var>.</p>

<p><a id="X7F12BB99865EB7BF" name="X7F12BB99865EB7BF"></a></p>

<h4>56.6 <span class="Heading">Euclidean Rings</span></h4>

<p><a id="X808B8E8E80D48E4A" name="X808B8E8E80D48E4A"></a></p>

<h5>56.6-1 IsEuclideanRing</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsEuclideanRing</code>( <var class="Arg">R</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A ring <span class="SimpleMath">R</span> is called a Euclidean ring if it is an integral ring and there exists a function <span class="SimpleMath">δ</span>, called the Euclidean degree, from <span class="SimpleMath">R-{0_R}</span> to the nonnegative integers, such that for every pair <span class="SimpleMath">r ∈ R</span> and <span class="SimpleMath">s ∈ R-{0_R}</span> there exists an element <span class="SimpleMath">q</span> such that either <span class="SimpleMath">r - q s = 0_R</span> or <span class="SimpleMath">δ(r - q s) &lt; δ( s )</span>. In <strong class="pkg">GAP</strong> the Euclidean degree <span class="SimpleMath">δ</span> is implicitly built into a ring and cannot be changed. The existence of this division with remainder implies that the Euclidean algorithm can be applied to compute a greatest common divisor of two elements, which in turn implies that <span class="SimpleMath">R</span> is a unique factorization ring.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsEuclideanRing( GaussianIntegers );</span>
true
</pre></div>

<p><a id="X784234088350D4E4" name="X784234088350D4E4"></a></p>

<h5>56.6-2 EuclideanDegree</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EuclideanDegree</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">EuclideanDegree</code> returns the Euclidean degree of the ring element <var class="Arg">r</var> in the ring <var class="Arg">R</var>, if given, and otherwise in its default ring (see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)).</p>

<p>The ring <var class="Arg">R</var> must be a Euclidean ring (see <code class="func">IsEuclideanRing</code> (<a href="chap56.html#X808B8E8E80D48E4A"><span class="RefLink">56.6-1</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">EuclideanDegree( GaussianIntegers, 3 );</span>
9
</pre></div>

<p><a id="X7A93FA788318B147" name="X7A93FA788318B147"></a></p>

<h5>56.6-3 EuclideanQuotient</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EuclideanQuotient</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var>, <var class="Arg">m</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">EuclideanQuotient</code> returns the Euclidean quotient of the ring elements <var class="Arg">r</var> and <var class="Arg">m</var> in the ring <var class="Arg">R</var>, if given, and otherwise in their default ring (see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)).</p>

<p>The ring <var class="Arg">R</var> must be a Euclidean ring (see <code class="func">IsEuclideanRing</code> (<a href="chap56.html#X808B8E8E80D48E4A"><span class="RefLink">56.6-1</span></a>)), otherwise an error is signalled.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">EuclideanQuotient( 8, 3 );</span>
2
</pre></div>

<p><a id="X7B5E9639865E91BA" name="X7B5E9639865E91BA"></a></p>

<h5>56.6-4 EuclideanRemainder</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EuclideanRemainder</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var>, <var class="Arg">m</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">EuclideanRemainder</code> returns the Euclidean remainder of the ring element <var class="Arg">r</var> modulo the ring element <var class="Arg">m</var> in the ring <var class="Arg">R</var>, if given, and otherwise in their default ring (see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)).</p>

<p>The ring <var class="Arg">R</var> must be a Euclidean ring (see <code class="func">IsEuclideanRing</code> (<a href="chap56.html#X808B8E8E80D48E4A"><span class="RefLink">56.6-1</span></a>)), otherwise an error is signalled.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">EuclideanRemainder( 8, 3 );</span>
2
</pre></div>

<p><a id="X876B7532801A1B35" name="X876B7532801A1B35"></a></p>

<h5>56.6-5 QuotientRemainder</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; QuotientRemainder</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var>, <var class="Arg">m</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">QuotientRemainder</code> returns the Euclidean quotient and the Euclidean remainder of the ring elements <var class="Arg">r</var> and <var class="Arg">m</var> in the ring <var class="Arg">R</var>, if given, and otherwise in their default ring (see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)). The result is a pair of ring elements.</p>

<p>The ring <var class="Arg">R</var> must be a Euclidean ring (see <code class="func">IsEuclideanRing</code> (<a href="chap56.html#X808B8E8E80D48E4A"><span class="RefLink">56.6-1</span></a>)), otherwise an error is signalled.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">QuotientRemainder( GaussianIntegers, 8, 3 );</span>
[ 3, -1 ]
</pre></div>

<p><a id="X7E9CF2C07C4A6CEE" name="X7E9CF2C07C4A6CEE"></a></p>

<h4>56.7 <span class="Heading">Gcd and Lcm</span></h4>

<p><a id="X7DE207718456F98F" name="X7DE207718456F98F"></a></p>

<h5>56.7-1 <span class="Heading">Gcd</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Gcd</code>( [<var class="Arg">R</var>, ]<var class="Arg">r1</var>, <var class="Arg">r2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Gcd</code>( [<var class="Arg">R</var>, ]<var class="Arg">list</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">Gcd</code> returns the greatest common divisor of the ring elements <var class="Arg">r1</var>, <var class="Arg">r2</var>, <span class="SimpleMath">...</span> resp. of the ring elements in the list <var class="Arg">list</var> in the ring <var class="Arg">R</var>, if given, and otherwise in their default ring, see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>).</p>

<p><code class="func">Gcd</code> returns the standard associate (see <code class="func">StandardAssociate</code> (<a href="chap56.html#X7B1A9A4C7C59FB36"><span class="RefLink">56.5-5</span></a>)) of the greatest common divisors.</p>

<p>A divisor of an element <span class="SimpleMath">r</span> in the ring <span class="SimpleMath">R</span> is an element <span class="SimpleMath">d∈ R</span> such that <span class="SimpleMath">r</span> is a multiple of <span class="SimpleMath">d</span>. A common divisor of the elements <span class="SimpleMath">r_1, r_2, ...</span> in the ring <span class="SimpleMath">R</span> is an element <span class="SimpleMath">d∈ R</span> which is a divisor of each <span class="SimpleMath">r_1, r_2, ...</span>. A greatest common divisor <span class="SimpleMath">d</span> in addition has the property that every other common divisor of <span class="SimpleMath">r_1, r_2, ...</span> is a divisor of <span class="SimpleMath">d</span>.</p>

<p>Note that this in particular implies the following: For the zero element <span class="SimpleMath">z</span> of <var class="Arg">R</var>, we have <code class="code">Gcd( <var class="Arg">r</var>, </code><span class="SimpleMath">z</span><code class="code"> ) = Gcd( </code><span class="SimpleMath">z</span><code class="code">, <var class="Arg">r</var> ) = StandardAssociate( <var class="Arg">r</var> )</code> and <code class="code">Gcd( </code><span class="SimpleMath">z</span><code class="code">, </code><span class="SimpleMath">z</span><code class="code"> ) = </code><span class="SimpleMath">z</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Gcd( Integers, [ 10, 15 ] );</span>
5
</pre></div>

<p><a id="X7836D50F8341D6E1" name="X7836D50F8341D6E1"></a></p>

<h5>56.7-2 GcdOp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GcdOp</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var>, <var class="Arg">s</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">GcdOp</code> is the operation to compute the greatest common divisor of two ring elements <var class="Arg">r</var>, <var class="Arg">s</var> in the ring <var class="Arg">R</var> or in their default ring.</p>

<p><a id="X7ABB91EF838075EF" name="X7ABB91EF838075EF"></a></p>

<h5>56.7-3 <span class="Heading">GcdRepresentation</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GcdRepresentation</code>( [<var class="Arg">R</var>, ]<var class="Arg">r1</var>, <var class="Arg">r2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GcdRepresentation</code>( [<var class="Arg">R</var>, ]<var class="Arg">list</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">GcdRepresentation</code> returns a representation of the greatest common divisor of the ring elements <var class="Arg">r1</var>, <var class="Arg">r2</var>, <span class="SimpleMath">...</span> resp. of the ring elements in the list <var class="Arg">list</var> in the Euclidean ring <var class="Arg">R</var>, if given, and otherwise in their default ring, see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>).</p>

<p>A representation of the gcd <span class="SimpleMath">g</span> of the elements <span class="SimpleMath">r_1, r_2, ...</span> of a ring <span class="SimpleMath">R</span> is a list of ring elements <span class="SimpleMath">s_1, s_2, ...</span> of <span class="SimpleMath">R</span>, such that <span class="SimpleMath">g = s_1 r_1 + s_2 r_2 + ⋯</span>. Such representations do not exist in all rings, but they do exist in Euclidean rings (see <code class="func">IsEuclideanRing</code> (<a href="chap56.html#X808B8E8E80D48E4A"><span class="RefLink">56.6-1</span></a>)), which can be shown using the Euclidean algorithm, which in fact can compute those coefficients.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a:= Indeterminate( Rationals, "a" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GcdRepresentation( a^2+1, a^3+1 );</span>
[ -1/2*a^2-1/2*a+1/2, 1/2*a+1/2 ]
</pre></div>

<p><code class="func">Gcdex</code> (<a href="chap14.html#X8775930486BD0C5B"><span class="RefLink">14.3-5</span></a>) provides similar functionality over the integers.</p>

<p><a id="X81392E7F84956341" name="X81392E7F84956341"></a></p>

<h5>56.7-4 GcdRepresentationOp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GcdRepresentationOp</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var>, <var class="Arg">s</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">GcdRepresentationOp</code> is the operation to compute the representation of the greatest common divisor of two ring elements <var class="Arg">r</var>, <var class="Arg">s</var> in the Euclidean ring <var class="Arg">R</var> or in their default ring, respectively.</p>

<p><a id="X836DB8B47A0219FB" name="X836DB8B47A0219FB"></a></p>

<h5>56.7-5 ShowGcd</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ShowGcd</code>( <var class="Arg">a</var>, <var class="Arg">b</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function takes two elements <var class="Arg">a</var> and <var class="Arg">b</var> of an Euclidean ring and returns their greatest common divisor. It will print out the steps performed by the Euclidean algorithm, as well as the rearrangement of these steps to express the gcd as a ring combination of <var class="Arg">a</var> and <var class="Arg">b</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ShowGcd(192,42);</span>
192=4*42 + 24
42=1*24 + 18
24=1*18 + 6
18=3*6 + 0
The Gcd is 6
 = 1*24 -1*18
 = -1*42 + 2*24
 = 2*192 -9*42
6
</pre></div>

<p><a id="X7ABA92057DD6C7AF" name="X7ABA92057DD6C7AF"></a></p>

<h5>56.7-6 <span class="Heading">Lcm</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Lcm</code>( [<var class="Arg">R</var>, ]<var class="Arg">r1</var>, <var class="Arg">r2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Lcm</code>( [<var class="Arg">R</var>, ]<var class="Arg">list</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">Lcm</code> returns the least common multiple of the ring elements <var class="Arg">r1</var>, <var class="Arg">r2</var>, <span class="SimpleMath">...</span> resp. of the ring elements in the list <var class="Arg">list</var> in the ring <var class="Arg">R</var>, if given, and otherwise in their default ring, see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>).</p>

<p><code class="func">Lcm</code> returns the standard associate (see <code class="func">StandardAssociate</code> (<a href="chap56.html#X7B1A9A4C7C59FB36"><span class="RefLink">56.5-5</span></a>)) of the least common multiples.</p>

<p>A least common multiple of the elements <span class="SimpleMath">r_1, r_2, ...</span> of the ring <span class="SimpleMath">R</span> is an element <span class="SimpleMath">m</span> that is a multiple of <span class="SimpleMath">r_1, r_2, ...</span>, and every other multiple of these elements is a multiple of <span class="SimpleMath">m</span>.</p>

<p>Note that this in particular implies the following: For the zero element <span class="SimpleMath">z</span> of <var class="Arg">R</var>, we have <code class="code">Lcm( <var class="Arg">r</var>, </code><span class="SimpleMath">z</span><code class="code"> ) = Lcm( </code><span class="SimpleMath">z</span><code class="code">, <var class="Arg">r</var> ) = StandardAssociate( <var class="Arg">r</var> )</code> and <code class="code">Lcm( </code><span class="SimpleMath">z</span><code class="code">, </code><span class="SimpleMath">z</span><code class="code"> ) = </code><span class="SimpleMath">z</span>.</p>

<p><a id="X7FB6C5A67AC1E8C1" name="X7FB6C5A67AC1E8C1"></a></p>

<h5>56.7-7 LcmOp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LcmOp</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var>, <var class="Arg">s</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">LcmOp</code> is the operation to compute the least common multiple of two ring elements <var class="Arg">r</var>, <var class="Arg">s</var> in the ring <var class="Arg">R</var> or in their default ring, respectively.</p>

<p>The default methods for this uses the equality <span class="SimpleMath">lcm( m, n ) = m*n / gcd( m, n )</span> (see <code class="func">GcdOp</code> (<a href="chap56.html#X7836D50F8341D6E1"><span class="RefLink">56.7-2</span></a>)).</p>

<p><a id="X8555913A83D716A4" name="X8555913A83D716A4"></a></p>

<h5>56.7-8 QuotientMod</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; QuotientMod</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var>, <var class="Arg">s</var>, <var class="Arg">m</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">QuotientMod</code> returns the quotient of the ring elements <var class="Arg">r</var> and <var class="Arg">s</var> modulo the ring element <var class="Arg">m</var> in the ring <var class="Arg">R</var>, if given, and otherwise in their default ring, see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>).</p>

<p><var class="Arg">R</var> must be a Euclidean ring (see <code class="func">IsEuclideanRing</code> (<a href="chap56.html#X808B8E8E80D48E4A"><span class="RefLink">56.6-1</span></a>)) so that <code class="func">EuclideanRemainder</code> (<a href="chap56.html#X7B5E9639865E91BA"><span class="RefLink">56.6-4</span></a>) can be applied. If the modular quotient does not exist, <code class="keyw">fail</code> is returned.</p>

<p>The quotient <span class="SimpleMath">q</span> of <var class="Arg">r</var> and <var class="Arg">s</var> modulo <var class="Arg">m</var> is an element of <var class="Arg">R</var> such that <span class="SimpleMath">q <var class="Arg">s</var> = <var class="Arg">r</var></span> modulo <span class="SimpleMath">m</span>, i.e., such that <span class="SimpleMath">q <var class="Arg">s</var> - <var class="Arg">r</var></span> is divisible by <var class="Arg">m</var> in <var class="Arg">R</var> and that <span class="SimpleMath">q</span> is either zero (if <var class="Arg">r</var> is divisible by <var class="Arg">m</var>) or the Euclidean degree of <span class="SimpleMath">q</span> is strictly smaller than the Euclidean degree of <var class="Arg">m</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">QuotientMod( 7, 2, 3 );</span>
2
</pre></div>

<p><a id="X805A35D684B7A952" name="X805A35D684B7A952"></a></p>

<h5>56.7-9 PowerMod</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PowerMod</code>( [<var class="Arg">R</var>, ]<var class="Arg">r</var>, <var class="Arg">e</var>, <var class="Arg">m</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">PowerMod</code> returns the <var class="Arg">e</var>-th power of the ring element <var class="Arg">r</var> modulo the ring element <var class="Arg">m</var> in the ring <var class="Arg">R</var>, if given, and otherwise in their default ring, see <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>). <var class="Arg">e</var> must be an integer.</p>

<p><var class="Arg">R</var> must be a Euclidean ring (see <code class="func">IsEuclideanRing</code> (<a href="chap56.html#X808B8E8E80D48E4A"><span class="RefLink">56.6-1</span></a>)) so that <code class="func">EuclideanRemainder</code> (<a href="chap56.html#X7B5E9639865E91BA"><span class="RefLink">56.6-4</span></a>) can be applied to its elements.</p>

<p>If <var class="Arg">e</var> is positive the result is <var class="Arg">r</var><code class="code">^</code><var class="Arg">e</var> modulo <var class="Arg">m</var>. If <var class="Arg">e</var> is negative then <code class="func">PowerMod</code> first tries to find the inverse of <var class="Arg">r</var> modulo <var class="Arg">m</var>, i.e., <span class="SimpleMath">i</span> such that <span class="SimpleMath">i <var class="Arg">r</var> = 1</span> modulo <var class="Arg">m</var>. If the inverse does not exist an error is signalled. If the inverse does exist <code class="func">PowerMod</code> returns <code class="code">PowerMod( <var class="Arg">R</var>, <var class="Arg">i</var>, -<var class="Arg">e</var>, <var class="Arg">m</var> )</code>.</p>

<p><code class="func">PowerMod</code> reduces the intermediate values modulo <var class="Arg">m</var>, improving performance drastically when <var class="Arg">e</var> is large and <var class="Arg">m</var> small.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PowerMod( 12, 100000, 7 );</span>
2
</pre></div>

<p><a id="X87711E6F8024A358" name="X87711E6F8024A358"></a></p>

<h5>56.7-10 InterpolatedPolynomial</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InterpolatedPolynomial</code>( <var class="Arg">R</var>, <var class="Arg">x</var>, <var class="Arg">y</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">InterpolatedPolynomial</code> returns, for given lists <var class="Arg">x</var>, <var class="Arg">y</var> of elements in a ring <var class="Arg">R</var> of the same length <span class="SimpleMath">n</span>, say, the unique polynomial of degree less than <span class="SimpleMath">n</span> which has value <var class="Arg">y</var>[<span class="SimpleMath">i</span>] at <var class="Arg">x</var><span class="SimpleMath">[i]</span>, for all <span class="SimpleMath">i ∈ { 1, ..., n }</span>. Note that the elements in <var class="Arg">x</var> must be distinct.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">InterpolatedPolynomial( Integers, [ 1, 2, 3 ], [ 5, 7, 0 ] );</span>
-9/2*x^2+31/2*x-6
</pre></div>

<p><a id="X7B13484581169439" name="X7B13484581169439"></a></p>

<h4>56.8 <span class="Heading">Homomorphisms of Rings</span></h4>

<p>A <em>ring homomorphism</em> is a mapping between two rings that respects addition and multiplication.</p>

<p>Currently <strong class="pkg">GAP</strong> supports ring homomorphisms between finite rings (using straightforward methods) and ring homomorphisms with additional structures, where source and range are in fact algebras and where also the linear structure is respected, see <a href="chap62.html#X7E94B857847F95C1"><span class="RefLink">62.10</span></a>.</p>

<p><a id="X7DE9CC5B877C91DA" name="X7DE9CC5B877C91DA"></a></p>

<h5>56.8-1 RingGeneralMappingByImages</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RingGeneralMappingByImages</code>( <var class="Arg">R</var>, <var class="Arg">S</var>, <var class="Arg">gens</var>, <var class="Arg">imgs</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is a general mapping from the ring <var class="Arg">A</var> to the ring <var class="Arg">S</var>. This general mapping is defined by mapping the entries in the list <var class="Arg">gens</var> (elements of <var class="Arg">R</var>) to the entries in the list <var class="Arg">imgs</var> (elements of <var class="Arg">S</var>), and taking the additive and multiplicative closure.</p>

<p><var class="Arg">gens</var> need not generate <var class="Arg">R</var> as a ring, and if the specification does not define an additive and multiplicative mapping then the result will be multivalued. Hence, in general it is not a mapping.</p>

<p><a id="X78C1016284F08026" name="X78C1016284F08026"></a></p>

<h5>56.8-2 RingHomomorphismByImages</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RingHomomorphismByImages</code>( <var class="Arg">R</var>, <var class="Arg">S</var>, <var class="Arg">gens</var>, <var class="Arg">imgs</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">RingHomomorphismByImages</code> returns the ring homomorphism with source <var class="Arg">R</var> and range <var class="Arg">S</var> that is defined by mapping the list <var class="Arg">gens</var> of generators of <var class="Arg">R</var> to the list <var class="Arg">imgs</var> of images in <var class="Arg">S</var>.</p>

<p>If <var class="Arg">gens</var> does not generate <var class="Arg">R</var> or if the homomorphism does not exist (i.e., if mapping the generators describes only a multi-valued mapping) then <code class="keyw">fail</code> is returned.</p>

<p>One can avoid the checks by calling <code class="func">RingHomomorphismByImagesNC</code> (<a href="chap56.html#X7D01646A7CCBEDBB"><span class="RefLink">56.8-3</span></a>), and one can construct multi-valued mappings with <code class="func">RingGeneralMappingByImages</code> (<a href="chap56.html#X7DE9CC5B877C91DA"><span class="RefLink">56.8-1</span></a>).</p>

<p><a id="X7D01646A7CCBEDBB" name="X7D01646A7CCBEDBB"></a></p>

<h5>56.8-3 RingHomomorphismByImagesNC</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RingHomomorphismByImagesNC</code>( <var class="Arg">R</var>, <var class="Arg">S</var>, <var class="Arg">gens</var>, <var class="Arg">imgs</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">RingHomomorphismByImagesNC</code> is the operation that is called by the function <code class="func">RingHomomorphismByImages</code> (<a href="chap56.html#X78C1016284F08026"><span class="RefLink">56.8-2</span></a>). Its methods may assume that <var class="Arg">gens</var> generates <var class="Arg">R</var> as a ring and that the mapping of <var class="Arg">gens</var> to <var class="Arg">imgs</var> defines a ring homomorphism. Results are unpredictable if these conditions do not hold.</p>

<p>For creating a possibly multi-valued mapping from <var class="Arg">R</var> to <var class="Arg">S</var> that respects addition and multiplication, <code class="func">RingGeneralMappingByImages</code> (<a href="chap56.html#X7DE9CC5B877C91DA"><span class="RefLink">56.8-1</span></a>) can be used.</p>

<p><a id="X83D53D98809EC461" name="X83D53D98809EC461"></a></p>

<h5>56.8-4 NaturalHomomorphismByIdeal</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NaturalHomomorphismByIdeal</code>( <var class="Arg">R</var>, <var class="Arg">I</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is the homomorphism of rings provided by the natural projection map of <var class="Arg">R</var> onto the quotient ring <var class="Arg">R</var>/<var class="Arg">I</var>. This map can be used to take pre-images in the original ring from elements in the quotient.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap55.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap57.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>