This file is indexed.

/usr/share/gap/doc/ref/chap21.html is in gap-doc 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 21: Lists</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap21"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap20.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap22.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap21_mj.html">[MathJax on]</a></p>
<p><a id="X7B256AE5780F140A" name="X7B256AE5780F140A"></a></p>
<div class="ChapSects"><a href="chap21.html#X7B256AE5780F140A">21 <span class="Heading">Lists</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X86B28F5B781FFD31">21.1 <span class="Heading">List Categories</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7C4CC4EA8299701E">21.1-1 IsList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X870AA9D8798C93DD">21.1-2 IsDenseList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7C71596C82B6EF35">21.1-3 IsHomogeneousList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X80872FAF80EB5DF9">21.1-4 IsTable</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X79581E0387F7F7A9">21.1-5 IsRectangularTable</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7C84E16A85C99C8C">21.1-6 IsConstantTimeAccessList</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X7B202D147A5C2884">21.2 <span class="Heading">Basic Operations for Lists</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X8297BBCD79642BE6">21.2-1 \[\]</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X7921047F83F5FA28">21.3 <span class="Heading">List Elements</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X78791B8B838A8BA0">21.3-1 \{\}</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X8611EF768210625B">21.4 <span class="Heading">List Assignment</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X813FF1637F8D2B7F">21.4-1 \{\}\:\=</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X795EC9D67E34DAB0">21.4-2 Add</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7E98B11B79BA9167">21.4-3 Remove</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X79D7E96F80A2D7C0">21.4-4 CopyListEntries</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X79E31DB27C82D6E1">21.4-5 Append</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X7963C8E17EFF86DB">21.5 <span class="Heading">IsBound and Unbind for Lists</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X876EAD64820B2405">21.5-1 IsBound</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X78B72FDF7BD63C0B">21.5-2 Unbind</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X7DD65BEA7EDB0CD7">21.6 <span class="Heading">Identical Lists</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X7ED7C0738495556F">21.7 <span class="Heading">Duplication of Lists</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X808A207182B2F84F">21.8 <span class="Heading">Membership Test for Lists</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7B914A287F88ED0A">21.8-1 \in</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X84D6FC7E7E39ED33">21.9 <span class="Heading">Enlarging Internally Represented Lists</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X78BF67A5802E93AD">21.9-1 EmptyPlist</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X8016D50F85147A77">21.10 <span class="Heading">Comparisons of Lists</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X845EEAF083D43CCE">21.11 <span class="Heading">Arithmetic for Lists</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X84D642967B8546B7">21.12 <span class="Heading">Filters Controlling the Arithmetic Behaviour of Lists</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X87ABCEE9809585A0">21.12-1 IsGeneralizedRowVector</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7FBCA5B58308C158">21.12-2 IsMultiplicativeGeneralizedRowVector</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7BAD12E67BFC90DE">21.12-3 IsListDefault</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X8428E77B86722D52">21.12-4 NestingDepthA</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X84B383B97FD986CD">21.12-5 NestingDepthM</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X7E6A1F66781BE923">21.13 <span class="Heading">Additive Arithmetic for Lists</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X86A85ADC85C451DC">21.13-1 <span class="Heading">Zero for lists</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7B91CE4D814C2D08">21.13-2 <span class="Heading">AdditiveInverse for lists</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X842D123E7EE5E3DB">21.13-3 <span class="Heading">Addition of lists</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7C3DC8BE78DEECDE">21.13-4 <span class="Heading">Subtraction of lists</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X782ED7F27D8C7FC1">21.14 <span class="Heading">Multiplicative Arithmetic for Lists</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X79A8A5627FD42FA5">21.14-1 <span class="Heading">One for lists</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X78C6C1E2849D303A">21.14-2 <span class="Heading">Inverse for lists</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X84FDB95179BFE4CD">21.14-3 <span class="Heading">Multiplication of lists</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X82EA2A5B786181C7">21.14-4 <span class="Heading">Division of lists</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7A0FD70C80B95C00">21.14-5 <span class="Heading">mod for lists</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X84BB2DFB8432A1A4">21.14-6 <span class="Heading">Left quotients of lists</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X8676EFE67972FD06">21.15 <span class="Heading">Mutability Status and List Arithmetic</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X80FDB1457FF582E7">21.15-1 ListWithIdenticalEntries</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X8196FD4779BCCA0C">21.16 <span class="Heading">Finding Positions in Lists</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X79975EC6783B4293">21.16-1 Position</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7FA9648883AE1B88">21.16-2 Positions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7B4B10AE81602D4E">21.16-3 PositionCanonical</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7D2B25B484591506">21.16-4 PositionNthOccurrence</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7A122E848464E534">21.16-5 PositionSorted</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X78BFE9D78347C0DA">21.16-6 PositionSet</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7E6C763A82C6153B">21.16-7 PositionProperty</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7DA94D278304EC3D">21.16-8 PositionsProperty</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X86C9E5C3863B3C03">21.16-9 PositionBound</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X865EF45D87ED1384">21.16-10 PositionNot</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7F42E5AD87EC9D5A">21.16-11 PositionNonZero</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X87A8C62A867D6DA4">21.16-12 PositionSublist</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X8132A2F5823F0CC0">21.16-13 PositionFirstComponent</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X7865747A7CCF5812">21.17 <span class="Heading">Properties and Attributes for Lists</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X83F8EC7C7BF27EFC">21.17-1 IsMatchingSublist</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7FA892828252BB3B">21.17-2 IsDuplicateFree</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7BAA9B0E81D4A884">21.17-3 IsSortedList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X80CDAF45782E8DCB">21.17-4 IsSSortedList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X780769238600AFD1">21.17-5 Length</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7B55FB967CDEF468">21.17-6 ConstantTimeAccessList</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X83E558E37D1B44D4">21.18 <span class="Heading">Sorting Lists</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7FE4975F8166884D">21.18-1 Sort</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X791F2B2C7E9B9A46">21.18-2 SortParallel</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X87287FCA81E2B06A">21.18-3 Sortex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X800209E881E7CECB">21.18-4 SortingPerm</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X80ABC25582343910">21.19 <span class="Heading">Sorted Lists and Sets</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7B16AD597CB12305">21.19-1 \in</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7B4C0FEE7CDF6F2A">21.19-2 IsEqualSet</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X79B940567A849216">21.19-3 IsSubsetSet</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X832C23CC7FCD8892">21.19-4 AddSet</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7FCA282E789A4F4B">21.19-5 RemoveSet</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7B3469CD7EFC1A87">21.19-6 UniteSet</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X8473AA657FEC3D4D">21.19-7 IntersectSet</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X80B427537EB07D09">21.19-8 SubtractSet</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X7DF510F7848CBBFD">21.20 <span class="Heading">Operations for Lists</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X840C55A77D1BB2E1">21.20-1 Concatenation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7CB0A6AF87C7FAF7">21.20-2 Compacted</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7ECE9056792F28BA">21.20-3 Collected</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X8727F2928467C2F9">21.20-4 DuplicateFreeList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7F5D4DD87E4378AC">21.20-5 AsDuplicateFreeList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7FA272D984EF82ED">21.20-6 Flat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7C4FDB007C3F54A1">21.20-7 Reversed</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X8057372F83374193">21.20-8 Shuffle</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7BA5EF2181DD78D7">21.20-9 IsLexicographicallyLess</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X8075FBDE7B81B4C8">21.20-10 Apply</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7EF6E2BC81DBF6FB">21.20-11 Perform</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X8763882A7D65F979">21.20-12 PermListList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X82CE0DE8828E4303">21.20-13 <span class="Heading">Maximum</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X82F133EC7F89665F">21.20-14 <span class="Heading">Minimum</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X842851EB7E0969F7">21.20-15 <span class="Heading">MaximumList and MinimumList</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7E1593B979BDF2CD">21.20-16 <span class="Heading">Cartesian</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7E76F5A782184823">21.20-17 <span class="Heading">IteratorOfCartesianProduct</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7B5A19098406347A">21.20-18 Permuted</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X86CB7DCE8510F977">21.20-19 List</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7C86D7F7795125F0">21.20-20 Filtered</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X8179B13D80E935FC">21.20-21 Number</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X82801DFA84E11272">21.20-22 First</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7F06961278166671">21.20-23 ForAll</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7AF82E747A8BDA75">21.20-24 ForAny</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7E5C72F27B657948">21.20-25 Product</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7A04B71C84CFCC2D">21.20-26 Sum</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X834E4DF57F3A20F0">21.20-27 Iterated</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7D150C2881881139">21.20-28 ListN</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X805CA0B68029B47A">21.21 <span class="Heading">Advanced List Manipulations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X8258477D7F72171B">21.21-1 ListX</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7AC321B87A2DCAF5">21.21-2 SetX</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X82B1411E7FBE925F">21.21-3 SumX</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7FB318B47D8783DA">21.21-4 ProductX</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X79596BDE7CAF8491">21.22 <span class="Heading">Ranges</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X86DDC2FF7A50FBEE">21.22-1 IsRange</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7D22B2298167A58F">21.22-2 ConvertToRangeRep</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap21.html#X7EA3ACE27E43D174">21.23 <span class="Heading">Enumerators</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap21.html#X7BB462C17962647F">21.23-1 IsQuickPositionList</a></span>
</div></div>
</div>

<h3>21 <span class="Heading">Lists</span></h3>

<p>Lists are the most important way to treat objects together. A <em>list</em> arranges objects in a definite order. So each list implies a partial mapping from the integers to the elements of the list. I.e., there is a first element of a list, a second, a third, and so on. Lists can occur in mutable or immutable form, see <a href="chap12.html#X7F0C119682196D65"><span class="RefLink">12.6</span></a> for the concept of mutability, and <a href="chap21.html#X7ED7C0738495556F"><span class="RefLink">21.7</span></a> for the case of lists.</p>

<p>This chapter deals mainly with the aspect of lists in <strong class="pkg">GAP</strong> as <em>data structures</em>. Chapter <a href="chap30.html#X8050A8037984E5B6"><span class="RefLink">30</span></a> tells more about the <em>collection</em> aspect of certain lists, and more about lists as <em>arithmetic objects</em> can be found in the chapters <a href="chap23.html#X82C7E6CF7BA03391"><span class="RefLink">23</span></a> and <a href="chap24.html#X812CCAB278643A59"><span class="RefLink">24</span></a>.</p>

<p>Lists are used to implement ranges (see <a href="chap21.html#X79596BDE7CAF8491"><span class="RefLink">21.22</span></a>), sets (see <a href="chap21.html#X80ABC25582343910"><span class="RefLink">21.19</span></a>), strings (see <a href="chap27.html#X7D28329B7EDB8F47"><span class="RefLink">27</span></a>), row vectors (see <a href="chap23.html#X82C7E6CF7BA03391"><span class="RefLink">23</span></a>), and matrices (see <a href="chap24.html#X812CCAB278643A59"><span class="RefLink">24</span></a>); Boolean lists (see <a href="chap22.html#X7AC531DD79B6938E"><span class="RefLink">22</span></a>) are a further special kind of lists.</p>

<p>Several operations for lists, such as <code class="func">Intersection</code> (<a href="chap30.html#X851069107CACF98E"><span class="RefLink">30.5-2</span></a>) and <code class="func">Random</code> (<a href="chap30.html#X7FF906E57D6936F8"><span class="RefLink">30.7-1</span></a>), will be described in Chapter <a href="chap30.html#X8050A8037984E5B6"><span class="RefLink">30</span></a>, in particular see <a href="chap30.html#X7C3722DF8736FFDB"><span class="RefLink">30.3</span></a>.</p>

<p><a id="X86B28F5B781FFD31" name="X86B28F5B781FFD31"></a></p>

<h4>21.1 <span class="Heading">List Categories</span></h4>

<p>A list can be written by writing down the elements in order between square brackets <code class="code">[</code>, <code class="code">]</code>, and separating them with commas <code class="code">,</code>. An <em>empty list</em>, i.e., a list with no elements, is written as <code class="code">[]</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ 1, 2, 3 ];              # a list with three elements</span>
[ 1, 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ [], [ 1 ], [ 1, 2 ] ];  # a list may contain other lists</span>
[ [  ], [ 1 ], [ 1, 2 ] ]
</pre></div>

<p>Each list constructed this way is mutable (see <a href="chap12.html#X7F0C119682196D65"><span class="RefLink">12.6</span></a>).</p>

<p><a id="X7C4CC4EA8299701E" name="X7C4CC4EA8299701E"></a></p>

<h5>21.1-1 IsList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsList</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>tests whether <var class="Arg">obj</var> is a list.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsList( [ 1, 3, 5, 7 ] );  IsList( 1 );</span>
true
false
</pre></div>

<p><a id="X870AA9D8798C93DD" name="X870AA9D8798C93DD"></a></p>

<h5>21.1-2 IsDenseList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsDenseList</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A list is <em>dense</em> if it has no holes, i.e., contains an element at every position up to the length. It is absolutely legal to have lists with holes. They are created by leaving the entry between the commas empty. Holes at the end of a list are ignored. Lists with holes are sometimes convenient when the list represents a mapping from a finite, but not consecutive, subset of the positive integers.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsDenseList( [ 1, 2, 3 ] );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l := [ , 4, 9,, 25,, 49,,,, 121 ];;  IsDenseList( l );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l[3];</span>
9
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l[4];</span>
List Element: &lt;list&gt;[4] must have an assigned value
not in any function
Entering break read-eval-print loop ...
you can 'quit;' to quit to outer loop, or
you can 'return;' after assigning a value to continue
<span class="GAPbrkprompt">brk&gt;</span> <span class="GAPinput">l[4] := 16;;  # assigning a value</span>
<span class="GAPbrkprompt">brk&gt;</span> <span class="GAPinput">return;       # to escape the break-loop</span>
16
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"></span>
</pre></div>

<p>Observe that requesting the value of <code class="code">l[4]</code>, which was not assigned, caused the entry of a <code class="keyw">break</code>-loop (see Section <a href="chap6.html#X8593B49F8705B486"><span class="RefLink">6.4</span></a>). After assigning a value and typing <code class="code">return;</code>, <strong class="pkg">GAP</strong> is finally able to comply with our request (by responding with <code class="code">16</code>).</p>

<p><a id="X7C71596C82B6EF35" name="X7C71596C82B6EF35"></a></p>

<h5>21.1-3 IsHomogeneousList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsHomogeneousList</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if <var class="Arg">obj</var> is a list and it is homogeneous, and <code class="keyw">false</code> otherwise.</p>

<p>A <em>homogeneous</em> list is a dense list whose elements lie in the same family (see <a href="chap13.html#X846063757EC05986"><span class="RefLink">13.1</span></a>). The empty list is homogeneous but not a collection (see <a href="chap30.html#X8050A8037984E5B6"><span class="RefLink">30</span></a>), a nonempty homogeneous list is also a collection.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsHomogeneousList( [ 1, 2, 3 ] );  IsHomogeneousList( [] );</span>
true
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsHomogeneousList( [ 1, false, () ] );</span>
false
</pre></div>

<p><a id="X80872FAF80EB5DF9" name="X80872FAF80EB5DF9"></a></p>

<h5>21.1-4 IsTable</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTable</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A <em>table</em> is a nonempty list of homogeneous lists which lie in the same family. Typical examples of tables are matrices (see <a href="chap24.html#X812CCAB278643A59"><span class="RefLink">24</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsTable( [ [ 1, 2 ], [ 3, 4 ] ] );    # in fact a matrix</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsTable( [ [ 1 ], [ 2, 3 ] ] );       # not rectangular but a table</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsTable( [ [ 1, 2 ], [ () , (1,2) ] ] );  # not homogeneous</span>
false
</pre></div>

<p><a id="X79581E0387F7F7A9" name="X79581E0387F7F7A9"></a></p>

<h5>21.1-5 IsRectangularTable</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsRectangularTable</code>( <var class="Arg">list</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A list lies in <code class="code">IsRectangularTable</code> when it is nonempty and its elements are all homogeneous lists of the same family and the same length.</p>

<p><a id="X7C84E16A85C99C8C" name="X7C84E16A85C99C8C"></a></p>

<h5>21.1-6 IsConstantTimeAccessList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsConstantTimeAccessList</code>( <var class="Arg">list</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>This category indicates whether the access to each element of the list <var class="Arg">list</var> will take roughly the same time. This is implied for example by <code class="code">IsList and IsInternalRep</code>, so all strings, Boolean lists, ranges, and internally represented plain lists are in this category.</p>

<p>But also other enumerators (see <a href="chap21.html#X7EA3ACE27E43D174"><span class="RefLink">21.23</span></a>) can lie in this category if they guarantee constant time access to their elements.</p>

<p><a id="X7B202D147A5C2884" name="X7B202D147A5C2884"></a></p>

<h4>21.2 <span class="Heading">Basic Operations for Lists</span></h4>

<p>The basic operations for lists are element access (see <a href="chap21.html#X7921047F83F5FA28"><span class="RefLink">21.3</span></a>), assignment of elements to a list (see <a href="chap21.html#X8611EF768210625B"><span class="RefLink">21.4</span></a>), fetching the length of a list (see <code class="func">Length</code> (<a href="chap21.html#X780769238600AFD1"><span class="RefLink">21.17-5</span></a>)), the test for a hole at a given position, and unbinding an element at a given position (see <a href="chap21.html#X7963C8E17EFF86DB"><span class="RefLink">21.5</span></a>).</p>

<p>The term basic operation means that each other list operation can be formulated in terms of the basic operations. (But note that usually a more efficient method than this one is implemented.)</p>

<p>Any <strong class="pkg">GAP</strong> object <var class="Arg">list</var> in the category <code class="func">IsList</code> (<a href="chap21.html#X7C4CC4EA8299701E"><span class="RefLink">21.1-1</span></a>) is regarded as a list, and if methods for the basic list operations are installed for <var class="Arg">list</var> then <var class="Arg">list</var> can be used also for the other list operations.</p>

<p>For internally represented lists, kernel methods are provided for the basic list operations. For other lists, it is possible to install appropriate methods for these operations. This permits the implementation of lists that do not need to store all list elements (see also <a href="chap21.html#X7EA3ACE27E43D174"><span class="RefLink">21.23</span></a>); for example, the elements might be described by an algorithm, such as the elements list of a group. For this reduction of space requirements, however, a price in access time may have to be paid (see <code class="func">ConstantTimeAccessList</code> (<a href="chap21.html#X7B55FB967CDEF468"><span class="RefLink">21.17-6</span></a>)).</p>

<p><a id="X8297BBCD79642BE6" name="X8297BBCD79642BE6"></a></p>

<h5>21.2-1 \[\]</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \[\]</code>( <var class="Arg">list</var>, <var class="Arg">pos</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsBound\[\]</code>( <var class="Arg">list</var>, <var class="Arg">pos</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \[\]\:\=</code>( <var class="Arg">list</var>, <var class="Arg">pos</var>, <var class="Arg">val</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Unbind\[\]</code>( <var class="Arg">list</var>, <var class="Arg">pos</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>These operations implement element access, test for element boundedness, list element assignment, and removal of the element at position <var class="Arg">pos</var>. In all cases, the index <var class="Arg">pos</var> must be a positive integer.</p>

<p>Note that the special characters <code class="code">[</code>, <code class="code">]</code>, <code class="code">:</code>, and <code class="code">=</code> must be escaped with a backslash <code class="code">\</code> (see <a href="chap4.html#X7E90E6607F4E4943"><span class="RefLink">4.3</span></a>); so <code class="func">\[\]</code> denotes the operation for element access in a list, whereas <code class="code">[]</code> denotes an empty list. (Maybe the variable names involving special characters look strange, but nevertheless they are quite suggestive.)</p>

<p><code class="code">\[\]( <var class="Arg">list</var>, <var class="Arg">pos</var> )</code> is equivalent to <code class="code"><var class="Arg">list</var>[ <var class="Arg">pos</var> ]</code>, which clearly will usually be preferred; the former is useful mainly if one wants to access the operation itself, for example if one wants to install a method for element access in a special kind of lists.</p>

<p>Similarly, <code class="func">IsBound\[\]</code> is used explicitly mainly in method installations. In other situations, one can simply call <code class="func">IsBound</code> (<a href="chap21.html#X876EAD64820B2405"><span class="RefLink">21.5-1</span></a>), which then delegates to <code class="func">IsBound\[\]</code> if the first argument is a list, and to <code class="func">IsBound\.</code> (<a href="chap29.html#X7821AC097821AC09"><span class="RefLink">29.7-3</span></a>) if the first argument is a record.</p>

<p>Analogous statements hold for <code class="func">\[\]\:\=</code> and <code class="func">Unbind\[\]</code>.</p>

<p><a id="X7921047F83F5FA28" name="X7921047F83F5FA28"></a></p>

<h4>21.3 <span class="Heading">List Elements</span></h4>

<p><code class="code"><var class="Arg">list</var>[ <var class="Arg">pos</var> ]</code></p>

<p>The above construct evaluates to the <var class="Arg">pos</var>-th element of the list <var class="Arg">list</var>, where <var class="Arg">pos</var> must be a positive integer. List indexing is done with origin 1, i.e., the first element of the list is the element at position 1.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l := [ 2, 3, 5, 7, 11, 13 ];;  l[1];  l[2];  l[6];</span>
2
3
13
</pre></div>

<p>If <var class="Arg">list</var> is not a list, or <var class="Arg">pos</var> does not evaluate to a positive integer, or <code class="code"><var class="Arg">list</var>[<var class="Arg">pos</var>]</code> is unbound an error is signalled.</p>

<p><code class="code"><var class="Arg">list</var>{ <var class="Arg">poss</var> }</code></p>

<p>The above construct evaluates to a new list <var class="Arg">new</var> whose first element is <code class="code"><var class="Arg">list</var>[<var class="Arg">poss</var>[1]]</code>, whose second element is <code class="code"><var class="Arg">list</var>[<var class="Arg">poss</var>[2]]</code>, and so on. <var class="Arg">poss</var> must be a dense list of positive integers. However, it does not need to be sorted and may contain duplicate elements. If for any <span class="SimpleMath">i</span>, <code class="code"><var class="Arg">list</var>[ <var class="Arg">poss</var>[</code><span class="SimpleMath">i</span><code class="code">] ]</code> is unbound, an error is signalled.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l := [ 2, 3, 5, 7, 11, 13, 17, 19 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l{[4..6]};  l{[1,7,1,8]};</span>
[ 7, 11, 13 ]
[ 2, 17, 2, 19 ]
</pre></div>

<p>The result is a <em>new</em> list, that is not identical to any other list. The elements of that list, however, are identical to the corresponding elements of the left operand (see <a href="chap21.html#X7DD65BEA7EDB0CD7"><span class="RefLink">21.6</span></a>).</p>

<p>It is possible to nest such <em>sublist extractions</em>, as can be seen in the example below.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m := [ [1,2,3], [4,5,6], [7,8,9], [10,11,12] ];;  m{[1,2,3]}{[3,2]};</span>
[ [ 3, 2 ], [ 6, 5 ], [ 9, 8 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l := m{[1,2,3]};; l{[3,2]};</span>
[ [ 7, 8, 9 ], [ 4, 5, 6 ] ]
</pre></div>

<p>Note the difference between the two examples. The latter extracts elements 1, 2, and 3 from <var class="Arg">m</var> and then extracts the elements 3 and 2 from <em>this list</em>. The former extracts elements 1, 2, and 3 from <var class="Arg">m</var> and then extracts the elements 3 and 2 from <em>each of those element lists</em>.</p>

<p>To be precise: With each selector <code class="code">[<var class="Arg">pos</var>]</code> or <code class="code">{<var class="Arg">poss</var>}</code> we associate a <em>level</em> that is defined as the number of selectors of the form <code class="code">{<var class="Arg">poss</var>}</code> to its left in the same expression. For example</p>


<div class="example"><pre>
    l[pos1]{poss2}{poss3}[pos4]{poss5}[pos6]
level   0      0      1     2      2     3
</pre></div>

<p>Then a selector <code class="code"><var class="Arg">list</var>[<var class="Arg">pos</var>]</code> of level <var class="Arg">level</var> is computed as <code class="code">ListElement(<var class="Arg">list</var>,<var class="Arg">pos</var>,<var class="Arg">level</var>)</code>, where <code class="code">ListElement</code> is defined as follows. (Note that <code class="code">ListElement</code> is <em>not</em> a <strong class="pkg">GAP</strong> function.)</p>


<div class="example"><pre>
ListElement := function ( list, pos, level )
 if level = 0 then
  return list[pos];
 else
  return List( list, elm -&gt; ListElement(elm,pos,level-1) );
 fi;
end;
</pre></div>

<p>and a selector <code class="code"><var class="Arg">list</var>{<var class="Arg">poss</var>}</code> of level <var class="Arg">level</var> is computed as <code class="code">ListElements(<var class="Arg">list</var>,<var class="Arg">poss</var>,<var class="Arg">level</var>)</code>, where <code class="code">ListElements</code> is defined as follows. (Note that <code class="code">ListElements</code> is <em>not</em> a <strong class="pkg">GAP</strong> function.)</p>


<div class="example"><pre>
ListElements := function ( list, poss, level )
 if level = 0 then
  return list{poss};
  else
   return List( list, elm -&gt; ListElements(elm,poss,level-1) );
  fi;
end;
</pre></div>

<p><a id="X78791B8B838A8BA0" name="X78791B8B838A8BA0"></a></p>

<h5>21.3-1 \{\}</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \{\}</code>( <var class="Arg">list</var>, <var class="Arg">poss</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>This operation implements <em>sublist access</em>. For any list, the default method is to loop over the entries in the list <var class="Arg">poss</var>, and to delegate to the element access operation. (For the somewhat strange variable name, cf. <a href="chap21.html#X7B202D147A5C2884"><span class="RefLink">21.2</span></a>.)</p>

<p><a id="X8611EF768210625B" name="X8611EF768210625B"></a></p>

<h4>21.4 <span class="Heading">List Assignment</span></h4>

<p><code class="code"><var class="Arg">list</var>[ <var class="Arg">pos</var> ] := <var class="Arg">object</var>;</code></p>

<p>The list element assignment assigns the object <var class="Arg">object</var>, which can be of any type, to the list entry at the position <var class="Arg">pos</var>, which must be a positive integer, in the mutable (see <a href="chap12.html#X7F0C119682196D65"><span class="RefLink">12.6</span></a>) list <var class="Arg">list</var>. That means that accessing the <var class="Arg">pos</var>-th element of the list <var class="Arg">list</var> will return <var class="Arg">object</var> after this assignment.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l := [ 1, 2, 3 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l[1] := 3;; l;             # assign a new object</span>
[ 3, 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l[2] := [ 4, 5, 6 ];; l;   # &lt;object&gt; may be of any type</span>
[ 3, [ 4, 5, 6 ], 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l[ l[1] ] := 10;; l;       # &lt;index&gt; may be an expression</span>
[ 3, [ 4, 5, 6 ], 10 ]
</pre></div>

<p>If the index <var class="Arg">pos</var> is larger than the length of the list <var class="Arg">list</var> (see <code class="func">Length</code> (<a href="chap21.html#X780769238600AFD1"><span class="RefLink">21.17-5</span></a>)), the list is automatically enlarged to make room for the new element. Note that it is possible to generate lists with holes that way.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l[4] := "another entry";; l;  # &lt;list&gt; is enlarged</span>
[ 3, [ 4, 5, 6 ], 10, "another entry" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l[ 10 ] := 1;; l;             # now &lt;list&gt; has a hole</span>
[ 3, [ 4, 5, 6 ], 10, "another entry",,,,,, 1 ]
</pre></div>

<p>The function <code class="func">Add</code> (<a href="chap21.html#X795EC9D67E34DAB0"><span class="RefLink">21.4-2</span></a>) should be used if you want to add an element to the end of the list.</p>

<p>Note that assigning to a list changes the list, thus this list must be mutable (see <a href="chap12.html#X7F0C119682196D65"><span class="RefLink">12.6</span></a>). See <a href="chap21.html#X7DD65BEA7EDB0CD7"><span class="RefLink">21.6</span></a> for subtleties of changing lists.</p>

<p>If <var class="Arg">list</var> does not evaluate to a list, <var class="Arg">pos</var> does not evaluate to a positive integer or <var class="Arg">object</var> is a call to a function which does not return a value (for example <code class="code">Print</code>) an error is signalled.</p>

<p><code class="code"><var class="Arg">list</var>{ <var class="Arg">poss</var> } := <var class="Arg">objects</var>;</code></p>

<p>The sublist assignment assigns the object <code class="code"><var class="Arg">objects</var>[1]</code>, which can be of any type, to the list <var class="Arg">list</var> at the position <code class="code"><var class="Arg">poss</var>[1]</code>, the object <code class="code"><var class="Arg">objects</var>[2]</code> to <code class="code"><var class="Arg">list</var>[<var class="Arg">poss</var>[2]]</code>, and so on. <var class="Arg">poss</var> must be a dense list of positive integers, it need, however, not be sorted and may contain duplicate elements. <var class="Arg">objects</var> must be a dense list and must have the same length as <var class="Arg">poss</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l := [ 2, 3, 5, 7, 11, 13, 17, 19 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l{[1..4]} := [10..13];; l;</span>
[ 10, 11, 12, 13, 11, 13, 17, 19 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l{[1,7,1,10]} := [ 1, 2, 3, 4 ];; l;</span>
[ 3, 11, 12, 13, 11, 13, 2, 19,, 4 ]
</pre></div>

<p>The next example shows that it is possible to nest such sublist assignments.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m := [ [1,2,3], [4,5,6], [7,8,9], [10,11,12] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m{[1,2,3]}{[3,2]} := [ [11,12], [13,14], [15,16] ];; m;</span>
[ [ 1, 12, 11 ], [ 4, 14, 13 ], [ 7, 16, 15 ], [ 10, 11, 12 ] ]
</pre></div>

<p>The exact behaviour is defined in the same way as for list extractions (see <a href="chap21.html#X7921047F83F5FA28"><span class="RefLink">21.3</span></a>). Namely, with each selector <code class="code">[<var class="Arg">pos</var>]</code> or <code class="code">{<var class="Arg">poss</var>}</code> we associate a <em>level</em> that is defined as the number of selectors of the form <code class="code">{<var class="Arg">poss</var>}</code> to its left in the same expression. For example</p>


<div class="example"><pre>
    l[pos1]{poss2}{poss3}[pos4]{poss5}[pos6]
level   0      0      1     1      1     2
</pre></div>

<p>Then a list assignment <code class="code"><var class="Arg">list</var>[<var class="Arg">pos</var>] := <var class="Arg">vals</var>;</code> of level <var class="Arg">level</var> is computed as <code class="code">ListAssignment( <var class="Arg">list</var>, <var class="Arg">pos</var>, <var class="Arg">vals</var>, <var class="Arg">level</var> )</code>, where <code class="code">ListAssignment</code> is defined as follows. (Note that <code class="code">ListAssignment</code> is <em>not</em> a <strong class="pkg">GAP</strong> function.)</p>


<div class="example"><pre>
ListAssignment := function ( list, pos, vals, level )
 local i;
 if level = 0 then
  list[pos] := vals;
 else
  for i in [1..Length(list)] do
   ListAssignment( list[i], pos, vals[i], level-1 );
  od;
 fi;
end;
</pre></div>

<p>and a list assignment <code class="code"><var class="Arg">list</var>{<var class="Arg">poss</var>} := <var class="Arg">vals</var></code> of level <var class="Arg">level</var> is computed as <code class="code">ListAssignments( <var class="Arg">list</var>, <var class="Arg">poss</var>, <var class="Arg">vals</var>, <var class="Arg">level</var> )</code>, where <code class="code">ListAssignments</code> is defined as follows. (Note that <code class="code">ListAssignments</code> is <em>not</em> a <strong class="pkg">GAP</strong> function.)</p>


<div class="example"><pre>
ListAssignments := function ( list, poss, vals, level )
 local i;
 if level = 0 then
  list{poss} := vals;
 else
  for i in [1..Length(list)] do
   ListAssignments( list[i], poss, vals[i], level-1 );
  od;
 fi;
end;
</pre></div>

<p><a id="X813FF1637F8D2B7F" name="X813FF1637F8D2B7F"></a></p>

<h5>21.4-1 \{\}\:\=</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \{\}\:\=</code>( <var class="Arg">list</var>, <var class="Arg">poss</var>, <var class="Arg">val</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>This operation implements sublist assignment. For any list, the default method is to loop over the entries in the list <var class="Arg">poss</var>, and to delegate to the element assignment operation. (For the somewhat strange variable name, cf. <a href="chap21.html#X7B202D147A5C2884"><span class="RefLink">21.2</span></a>.)</p>

<p><a id="X795EC9D67E34DAB0" name="X795EC9D67E34DAB0"></a></p>

<h5>21.4-2 Add</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Add</code>( <var class="Arg">list</var>, <var class="Arg">obj</var>[, <var class="Arg">pos</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>adds the element <var class="Arg">obj</var> to the mutable list <var class="Arg">list</var>. The two argument version adds <var class="Arg">obj</var> at the end of <var class="Arg">list</var>, i.e., it is equivalent to the assignment <code class="code"><var class="Arg">list</var>[ Length(<var class="Arg">list</var>) + 1 ] := <var class="Arg">obj</var></code>, see <a href="chap21.html#X8611EF768210625B"><span class="RefLink">21.4</span></a>.</p>

<p>The three argument version adds <var class="Arg">obj</var> in position <var class="Arg">pos</var>, moving all later elements of the list (if any) up by one position. Any holes at or after position <var class="Arg">pos</var> are also moved up by one position, and new holes are created before <var class="Arg">pos</var> if they are needed.</p>

<p>Nothing is returned by <code class="func">Add</code>, the function is only called for its side effect.</p>

<p><a id="X7E98B11B79BA9167" name="X7E98B11B79BA9167"></a></p>

<h5>21.4-3 Remove</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Remove</code>( <var class="Arg">list</var>[, <var class="Arg">pos</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>removes an element from <var class="Arg">list</var>. The one argument form removes the last element. The two argument form removes the element in position <var class="Arg">pos</var>, moving all subsequent elements down one position. Any holes after position <var class="Arg">pos</var> are also moved down by one position.</p>

<p>The one argument form always returns the removed element. In this case <var class="Arg">list</var> must be non-empty.</p>

<p>The two argument form returns the old value of <var class="Arg">list</var>[<var class="Arg">pos</var>] if it was bound, and nothing if it was not. Note that accessing or assigning the return value of this form of the <code class="func">Remove</code> operation is only safe when you <em>know</em> that there will be a value, otherwise it will cause an error.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l := [ 2, 3, 5 ];; Add( l, 7 ); l;</span>
[ 2, 3, 5, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Add(l,4,2); l;</span>
[ 2, 4, 3, 5, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Remove(l,2); l;</span>
4
[ 2, 3, 5, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Remove(l); l;</span>
7
[ 2, 3, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Remove(l,5); l;</span>
[ 2, 3, 5 ]
</pre></div>

<p><a id="X79D7E96F80A2D7C0" name="X79D7E96F80A2D7C0"></a></p>

<h5>21.4-4 CopyListEntries</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CopyListEntries</code>( <var class="Arg">fromlst</var>, <var class="Arg">fromind</var>, <var class="Arg">fromstep</var>, <var class="Arg">tolst</var>, <var class="Arg">toind</var>, <var class="Arg">tostep</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function copies <var class="Arg">n</var> elements from <var class="Arg">fromlst</var>, starting at position <var class="Arg">fromind</var> and incrementing the position by <var class="Arg">fromstep</var> each time, into <var class="Arg">tolst</var> starting at position <var class="Arg">toind</var> and incrementing the position by <var class="Arg">tostep</var> each time. <var class="Arg">fromlst</var> and <var class="Arg">tolst</var> must be plain lists. <var class="Arg">fromstep</var> and/or <var class="Arg">tostep</var> can be negative. Unbound positions of <var class="Arg">fromlst</var> are simply copied to <var class="Arg">tolst</var>.</p>

<p><code class="func">CopyListEntries</code> is used in methods for the operations <code class="func">Add</code> (<a href="chap21.html#X795EC9D67E34DAB0"><span class="RefLink">21.4-2</span></a>) and <code class="func">Remove</code> (<a href="chap21.html#X7E98B11B79BA9167"><span class="RefLink">21.4-3</span></a>).</p>

<p><a id="X79E31DB27C82D6E1" name="X79E31DB27C82D6E1"></a></p>

<h5>21.4-5 Append</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Append</code>( <var class="Arg">list1</var>, <var class="Arg">list2</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>adds the elements of the list <var class="Arg">list2</var> to the end of the mutable list <var class="Arg">list1</var>, see <a href="chap21.html#X8611EF768210625B"><span class="RefLink">21.4</span></a>. <var class="Arg">list2</var> may contain holes, in which case the corresponding entries in <var class="Arg">list1</var> will be left unbound. <code class="func">Append</code> returns nothing, it is only called for its side effect.</p>

<p>Note that <code class="func">Append</code> changes its first argument, while <code class="func">Concatenation</code> (<a href="chap21.html#X840C55A77D1BB2E1"><span class="RefLink">21.20-1</span></a>) creates a new list and leaves its arguments unchanged.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l := [ 2, 3, 5 ];; Append( l, [ 7, 11, 13 ] ); l;</span>
[ 2, 3, 5, 7, 11, 13 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Append( l, [ 17,, 23 ] ); l;</span>
[ 2, 3, 5, 7, 11, 13, 17,, 23 ]
</pre></div>

<p><a id="X7963C8E17EFF86DB" name="X7963C8E17EFF86DB"></a></p>

<h4>21.5 <span class="Heading">IsBound and Unbind for Lists</span></h4>

<p><a id="X876EAD64820B2405" name="X876EAD64820B2405"></a></p>

<h5>21.5-1 IsBound</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsBound</code>( <var class="Arg">list</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">IsBound</code> returns <code class="keyw">true</code> if the list <var class="Arg">list</var> has a element at the position <var class="Arg">n</var>, and <code class="keyw">false</code> otherwise. <var class="Arg">list</var> must evaluate to a list, otherwise an error is signalled.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l := [ , 2, 3, , 5, , 7, , , , 11 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsBound( l[7] );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsBound( l[4] );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsBound( l[101] );</span>
false
</pre></div>

<p><a id="X78B72FDF7BD63C0B" name="X78B72FDF7BD63C0B"></a></p>

<h5>21.5-2 Unbind</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Unbind</code>( <var class="Arg">list</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">Unbind</code> deletes the element at the position <var class="Arg">n</var> in the mutable list <var class="Arg">list</var>. That is, after execution of <code class="func">Unbind</code>, <var class="Arg">list</var> no longer has an assigned value at the position <var class="Arg">n</var>. Thus <code class="func">Unbind</code> can be used to produce holes in a list. Note that it is not an error to unbind a nonexisting list element. <var class="Arg">list</var> must evaluate to a list, otherwise an error is signalled.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l := [ , 2, 3, 5, , 7, , , , 11 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Unbind( l[3] ); l;</span>
[ , 2,, 5,, 7,,,, 11 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Unbind( l[4] ); l;</span>
[ , 2,,,, 7,,,, 11 ]
</pre></div>

<p>Note that <code class="func">IsBound</code> (<a href="chap21.html#X876EAD64820B2405"><span class="RefLink">21.5-1</span></a>) and <code class="func">Unbind</code> are special in that they do not evaluate their argument, otherwise <code class="func">IsBound</code> (<a href="chap21.html#X876EAD64820B2405"><span class="RefLink">21.5-1</span></a>) would always signal an error when it is supposed to return <code class="keyw">false</code> and there would be no way to tell <code class="func">Unbind</code> which component to remove.</p>

<p><a id="X7DD65BEA7EDB0CD7" name="X7DD65BEA7EDB0CD7"></a></p>

<h4>21.6 <span class="Heading">Identical Lists</span></h4>

<p>With the list assignment (see <a href="chap21.html#X8611EF768210625B"><span class="RefLink">21.4</span></a>) it is possible to change a mutable list. This section describes the semantic consequences of this fact. (See also <a href="chap12.html#X84545F3985C60F5B"><span class="RefLink">12.5</span></a>.)</p>

<p>First we define what it means when we say that "an object is changed". You may think that in the following example the second assignment changes the integer.</p>


<div class="example"><pre>
i := 3;
i := i + 1;
</pre></div>

<p>But in this example it is not the <em>integer</em> <code class="code">3</code> which is changed, by adding one to it. Instead the <em>variable</em> <code class="code">i</code> is changed by assigning the value of <code class="code">i+1</code>, which happens to be <code class="code">4</code>, to <code class="code">i</code>. The same thing happens in the example below.</p>


<div class="example"><pre>
l := [ 1, 2 ];
l := [ 1, 2, 3 ];
</pre></div>

<p>The second assignment does not change the first list, instead it assigns a new list to the variable <code class="code">l</code>. On the other hand, in the following example the list <em>is</em> changed by the second assignment.</p>


<div class="example"><pre>
l := [ 1, 2 ];
l[3] := 3;
</pre></div>

<p>To understand the difference, think of a variable as a name for an object. The important point is that a list can have several names at the same time. An assignment <code class="code"><var class="Arg">var</var>:= <var class="Arg">list</var>;</code> means in this interpretation that <var class="Arg">var</var> is a name for the object <var class="Arg">list</var>. At the end of the following example <code class="code">l2</code> still has the value <code class="code">[ 1, 2 ]</code> as this list has not been changed and nothing else has been assigned to it.</p>


<div class="example"><pre>
l1 := [ 1, 2 ];
l2 := l1;
l1 := [ 1, 2, 3 ];
</pre></div>

<p>But after the following example the list for which <code class="code">l2</code> is a name has been changed and thus the value of <code class="code">l2</code> is now <code class="code">[ 1, 2, 3 ]</code>.</p>


<div class="example"><pre>
l1 := [ 1, 2 ];
l2 := l1;
l1[3] := 3;
</pre></div>

<p>We say that two lists are <em>identical</em> if changing one of them by a list assignment also changes the other one. This is slightly incorrect, because if <em>two</em> lists are identical, there are actually only two names for <em>one</em> list. However, the correct usage would be very awkward and would only add to the confusion. Note that two identical lists must be equal, because there is only one list with two different names. Thus identity is an equivalence relation that is a refinement of equality. Identity of objects can be detected using <code class="func">IsIdenticalObj</code> (<a href="chap12.html#X7961183378DFB902"><span class="RefLink">12.5-1</span></a>).</p>

<p>Let us now consider under which circumstances two lists are identical.</p>

<p>If you enter a list literal then the list denoted by this literal is a new list that is not identical to any other list. Thus in the following example <code class="code">l1</code> and <code class="code">l2</code> are not identical, though they are equal of course.</p>


<div class="example"><pre>
l1 := [ 1, 2 ];
l2 := [ 1, 2 ];
</pre></div>

<p>Also in the following example, no lists in the list <code class="code">l</code> are identical.</p>


<div class="example"><pre>
l := [];
for i in [1..10] do l[i] := [ 1, 2 ]; od;
</pre></div>

<p>If you assign a list to a variable no new list is created. Thus the list value of the variable on the left hand side and the list on the right hand side of the assignment are identical. So in the following example <code class="code">l1</code> and <code class="code">l2</code> are identical lists.</p>


<div class="example"><pre>
l1 := [ 1, 2 ];
l2 := l1;
</pre></div>

<p>If you pass a list as an argument, the old list and the argument of the function are identical. Also if you return a list from a function, the old list and the value of the function call are identical. So in the following example <code class="code">l1</code> and <code class="code">l2</code> are identical lists:</p>


<div class="example"><pre>
l1 := [ 1, 2 ];
f := function ( l ) return l; end;
l2 := f( l1 );
</pre></div>

<p>If you change a list it keeps its identity. Thus if two lists are identical and you change one of them, you also change the other, and they are still identical afterwards. On the other hand, two lists that are not identical will never become identical if you change one of them. So in the following example both <code class="code">l1</code> and <code class="code">l2</code> are changed, and are still identical.</p>


<div class="example"><pre>
l1 := [ 1, 2 ];
l2 := l1;
l1[1] := 2;
</pre></div>

<p><a id="X7ED7C0738495556F" name="X7ED7C0738495556F"></a></p>

<h4>21.7 <span class="Heading">Duplication of Lists</span></h4>

<p>Here we describe the meaning of <code class="func">ShallowCopy</code> (<a href="chap12.html#X846BC7107C352031"><span class="RefLink">12.7-1</span></a>) and <code class="func">StructuralCopy</code> (<a href="chap12.html#X7C1E70587EBDD2CB"><span class="RefLink">12.7-2</span></a>) for lists. For the general definition of these functions, see <a href="chap12.html#X786B942B82D684BD"><span class="RefLink">12.7</span></a>.</p>

<p>The subobjects (see <code class="func">ShallowCopy</code> (<a href="chap12.html#X846BC7107C352031"><span class="RefLink">12.7-1</span></a>)) of a list are exactly its elements.</p>

<p>This means that for any list <var class="Arg">list</var>, <code class="func">ShallowCopy</code> (<a href="chap12.html#X846BC7107C352031"><span class="RefLink">12.7-1</span></a>) returns a mutable <em>new</em> list <var class="Arg">new</var> that is <em>not identical</em> to any other list (see <a href="chap21.html#X7DD65BEA7EDB0CD7"><span class="RefLink">21.6</span></a>), and whose elements are identical to the elements of <var class="Arg">list</var>.</p>

<p>Analogously, for a <em>mutable</em> list <var class="Arg">list</var>, <code class="func">StructuralCopy</code> (<a href="chap12.html#X7C1E70587EBDD2CB"><span class="RefLink">12.7-2</span></a>) returns a mutable <em>new</em> list <var class="Arg">scp</var> that is <em>not identical</em> to any other list, and whose elements are structural copies (defined recursively) of the elements of <var class="Arg">list</var>; an element of <var class="Arg">scp</var> is mutable (and then a <em>new</em> list) if and only if the corresponding element of <var class="Arg">list</var> is mutable.</p>

<p>In both cases, modifying the copy <var class="Arg">new</var> resp. <var class="Arg">scp</var> by assignments (see <a href="chap21.html#X8611EF768210625B"><span class="RefLink">21.4</span></a>) does not modify the original object <var class="Arg">list</var>.</p>

<p><code class="func">ShallowCopy</code> (<a href="chap12.html#X846BC7107C352031"><span class="RefLink">12.7-1</span></a>) basically executes the following code for lists.</p>


<div class="example"><pre>
new := [];
for i in [ 1 .. Length( list ) ] do
  if IsBound( list[i] ) then
    new[i] := list[i];
  fi;
od;
</pre></div>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list1 := [ [ 1, 2 ], [ 3, 4 ] ];;  list2 := ShallowCopy( list1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIdenticalObj( list1, list2 );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIdenticalObj( list1[1], list2[1] );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list2[1] := 0;;  list1;  list2;</span>
[ [ 1, 2 ], [ 3, 4 ] ]
[ 0, [ 3, 4 ] ]
</pre></div>

<p><code class="func">StructuralCopy</code> (<a href="chap12.html#X7C1E70587EBDD2CB"><span class="RefLink">12.7-2</span></a>) basically executes the following code for lists.</p>


<div class="example"><pre>
new := [];
for i in [ 1 .. Length( list ) ] do
  if IsBound( list[i] ) then
    new[i] := StructuralCopy( list[i] );
  fi;
od;
</pre></div>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list1 := [ [ 1, 2 ], [ 3, 4 ] ];;  list2 := StructuralCopy( list1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIdenticalObj( list1, list2 );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIdenticalObj( list1[1], list2[1] );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list2[1][1] := 0;;  list1;  list2;</span>
[ [ 1, 2 ], [ 3, 4 ] ]
[ [ 0, 2 ], [ 3, 4 ] ]
</pre></div>

<p>The above code is not entirely correct. If the object <var class="Arg">list</var> contains a mutable object twice this object is not copied twice, as would happen with the above definition, but only once. This means that the copy <var class="Arg">new</var> and the object <var class="Arg">list</var> have exactly the same structure when viewed as a general graph.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sub := [ 1, 2 ];; list1 := [ sub, sub ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list2 := StructuralCopy( list1 );</span>
[ [ 1, 2 ], [ 1, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list2[1][1] := 0;; list2;</span>
[ [ 0, 2 ], [ 0, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list1;</span>
[ [ 1, 2 ], [ 1, 2 ] ]
</pre></div>

<p><a id="X808A207182B2F84F" name="X808A207182B2F84F"></a></p>

<h4>21.8 <span class="Heading">Membership Test for Lists</span></h4>

<p><a id="X7B914A287F88ED0A" name="X7B914A287F88ED0A"></a></p>

<h5>21.8-1 \in</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \in</code>( <var class="Arg">obj</var>, <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>This function call or the infix variant <var class="Arg">obj</var> <code class="keyw">in</code> <var class="Arg">list</var> tests whether there is a positive integer <span class="SimpleMath">i</span> such that <var class="Arg">list</var><span class="SimpleMath">[i] =</span> <var class="Arg">obj</var> holds.</p>

<p>If the list <var class="Arg">list</var> knows that it is strictly sorted (see <code class="func">IsSSortedList</code> (<a href="chap21.html#X80CDAF45782E8DCB"><span class="RefLink">21.17-4</span></a>)), the membership test is much quicker, because a binary search can be used instead of the linear search used for arbitrary lists, see <code class="func">\in</code> (<a href="chap21.html#X7B16AD597CB12305"><span class="RefLink">21.19-1</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">1 in [ 2, 2, 1, 3 ];  1 in [ 4, -1, 0, 3 ];</span>
true
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s := SSortedList( [2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">17 in s;  # uses binary search and only 4 comparisons</span>
false
</pre></div>

<p>For finding the position of an element in a list, see <a href="chap21.html#X8196FD4779BCCA0C"><span class="RefLink">21.16</span></a>.</p>

<p><a id="X84D6FC7E7E39ED33" name="X84D6FC7E7E39ED33"></a></p>

<h4>21.9 <span class="Heading">Enlarging Internally Represented Lists</span></h4>

<p>Section <a href="chap21.html#X8611EF768210625B"><span class="RefLink">21.4</span></a> told you (among other things) that it is possible to assign beyond the logical end of a mutable list, automatically enlarging the list. This section tells you how this is done for internally represented lists.</p>

<p>It would be extremely wasteful to make all lists large enough so that there is room for all assignments, because some lists may have more than 100000 elements, while most lists have less than 10 elements.</p>

<p>On the other hand suppose every assignment beyond the end of a list would be done by allocating new space for the list and copying all entries to the new space. Then creating a list of 1000 elements by assigning them in order, would take half a million copy operations and also create a lot of garbage that the garbage collector would have to reclaim.</p>

<p>So the following strategy is used. If a list is created it is created with exactly the correct size. If a list is enlarged, because of an assignment beyond the end of the list, it is enlarged by at least <code class="code"><var class="Arg">length</var>/8 + 4</code> entries. Therefore the next assignments beyond the end of the list do not need to enlarge the list. For example creating a list of 1000 elements by assigning them in order, would now take only 32 enlargements.</p>

<p>The result of this is of course that the <em>physical length</em> of a list may be larger than the <em>logical length</em>, which is usually called simply the length of the list. Aside from the implications for the performance you need not be aware of the physical length. In fact all you can ever observe, for example by calling <code class="func">Length</code> (<a href="chap21.html#X780769238600AFD1"><span class="RefLink">21.17-5</span></a>), is the logical length.</p>

<p>Suppose that <code class="func">Length</code> (<a href="chap21.html#X780769238600AFD1"><span class="RefLink">21.17-5</span></a>) would have to take the physical length and then test how many entries at the end of a list are unassigned, to compute the logical length of the list. That would take too much time. In order to make <code class="func">Length</code> (<a href="chap21.html#X780769238600AFD1"><span class="RefLink">21.17-5</span></a>), and other functions that need to know the logical length, more efficient, the length of a list is stored along with the list.</p>

<p>For fine tuning code dealing with plain lists we provide the following two functions.</p>

<p><a id="X78BF67A5802E93AD" name="X78BF67A5802E93AD"></a></p>

<h5>21.9-1 EmptyPlist</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EmptyPlist</code>( <var class="Arg">len</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: a plain list</p>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ShrinkAllocationPlist</code>( <var class="Arg">l</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: nothing</p>

<p>The function <code class="func">EmptyPlist</code> returns an empty plain list which has enough memory allocated for <var class="Arg">len</var> entries. This can be useful for creating and filling a plain list with a known number of entries.</p>

<p>The function <code class="func">ShrinkAllocationPlist</code> gives back to <strong class="pkg">GAP</strong>'s memory manager the physical memory which is allocated for the plain list <var class="Arg">l</var> but not needed by the current number of entries.</p>

<p>Note that there are similar functions <code class="func">EmptyString</code> (<a href="chap27.html#X836078DC829A8221"><span class="RefLink">27.3-4</span></a>) and <code class="func">ShrinkAllocationString</code> (<a href="chap27.html#X836078DC829A8221"><span class="RefLink">27.3-4</span></a>) for strings instead of plain lists.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l:=[]; for i in [1..160] do Add(l, i^2); od; </span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:=EmptyPlist(160); for i in [1..160] do Add(m, i^2); od;</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># now l uses about 25% more memory than the equal list m</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ShrinkAllocationPlist(l);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># now l and m use the same amount of memory</span>
</pre></div>

<p><a id="X8016D50F85147A77" name="X8016D50F85147A77"></a></p>

<h4>21.10 <span class="Heading">Comparisons of Lists</span></h4>

<p><code class="code"><var class="Arg">list1</var> = <var class="Arg">list2</var></code></p>

<p><code class="code"><var class="Arg">list1</var> &lt;&gt; <var class="Arg">list2</var></code></p>

<p>Two lists <var class="Arg">list1</var> and <var class="Arg">list2</var> are equal if and only if for every index <span class="SimpleMath">i</span>, either both entries <var class="Arg">list1</var><span class="SimpleMath">[i]</span> and <var class="Arg">list2</var><span class="SimpleMath">[i]</span> are unbound, or both are bound and are equal, i.e., <var class="Arg">list1</var><span class="SimpleMath">[i] =</span> <var class="Arg">list2</var><span class="SimpleMath">[i]</span> is <code class="keyw">true</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ 1, 2, 3 ] = [ 1, 2, 3 ];</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ , 2, 3 ] = [ 1, 2, ];</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ 1, 2, 3 ] = [ 3, 2, 1 ];</span>
false
</pre></div>

<p>This definition will cause problems with lists which are their own entries. Comparing two such lists for equality may lead to an infinite recursion in the kernel if the list comparison has to compare the list entries which are in fact the lists themselves, and then <strong class="pkg">GAP</strong> crashes.</p>

<p><code class="code"><var class="Arg">list1</var> &lt; <var class="Arg">list2</var></code></p>

<p><code class="code"><var class="Arg">list1</var> &lt;= <var class="Arg">list2</var></code></p>

<p>Lists are ordered <em>lexicographically</em>. Unbound entries are smaller than any bound entry. That implies the following behaviour. Let <span class="SimpleMath">i</span> be the smallest positive integer <span class="SimpleMath">i</span> such that <var class="Arg">list1</var> and <var class="Arg">list2</var> at position <span class="SimpleMath">i</span> differ, i.e., either exactly one of <var class="Arg">list1</var><span class="SimpleMath">[i]</span>, <var class="Arg">list2</var><span class="SimpleMath">[i]</span> is bound or both entries are bound and differ. Then <var class="Arg">list1</var> is less than <var class="Arg">list2</var> if either <var class="Arg">list1</var><span class="SimpleMath">[i]</span> is unbound (and <var class="Arg">list2</var><span class="SimpleMath">[i]</span> is not) or both are bound and <var class="Arg">list1</var><span class="SimpleMath">[i]</span> &lt; <var class="Arg">list2</var><span class="SimpleMath">[i]</span> is <code class="keyw">true</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ 1, 2, 3, 4 ] &lt; [ 1, 2, 4, 8 ]; # &lt;list1&gt;[3] &lt; &lt;list2&gt;[3]</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ 1, 2, 3 ] &lt; [ 1, 2, 3, 5 ];  # &lt;list1&gt;[4] is unbound and thus &lt; 5</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ 1, , 3, 4 ] &lt; [ 1, -1, 3 ];  # &lt;list1&gt;[2] is unbound and thus &lt; -1</span>
true
</pre></div>

<p>Note that for comparing two lists with <code class="code">&lt;</code> or <code class="code">&lt;=</code>, the (relevant) list elements must be comparable with <code class="code">&lt;</code>, which is usually <em>not</em> the case for objects in different families, see <a href="chap13.html#X846063757EC05986"><span class="RefLink">13.1</span></a>. Also for the possibility to compare lists with other objects, see <a href="chap13.html#X846063757EC05986"><span class="RefLink">13.1</span></a>.</p>

<p><a id="X845EEAF083D43CCE" name="X845EEAF083D43CCE"></a></p>

<h4>21.11 <span class="Heading">Arithmetic for Lists</span></h4>

<p>It is convenient to have arithmetic operations for lists, in particular because in <strong class="pkg">GAP</strong> row vectors and matrices are special kinds of lists. However, it is the wide variety of list objects because of which we prescribe arithmetic operations <em>not for all</em> of them. (Keep in mind that "list" means just an object in the category <code class="func">IsList</code> (<a href="chap21.html#X7C4CC4EA8299701E"><span class="RefLink">21.1-1</span></a>).)</p>

<p>(Due to the intended generality and flexibility, the definitions given in the following sections are quite technical. But for not too complicated cases such as matrices (see <a href="chap24.html#X7899335779A39A95"><span class="RefLink">24.3</span></a>) and row vectors (see <a href="chap23.html#X85516C3179C229DB"><span class="RefLink">23.2</span></a>) whose entries aren't lists, the resulting behaviour should be intuitive.)</p>

<p>For example, we want to deal with matrices which can be added and multiplied in the usual way, via the infix operators <code class="code">+</code> and <code class="code">*</code>; and we want also Lie matrices, with the same additive behaviour but with the multiplication defined by the Lie bracket. Both kinds of matrices shall be lists, with the usual access to their rows, with <code class="func">Length</code> (<a href="chap21.html#X780769238600AFD1"><span class="RefLink">21.17-5</span></a>) returning the number of rows etc.</p>

<p>For the categories and attributes that control the arithmetic behaviour of lists, see <a href="chap21.html#X84D642967B8546B7"><span class="RefLink">21.12</span></a>.</p>

<p>For the definition of return values of additive and multiplicative operations whose arguments are lists in these filters, see <a href="chap21.html#X7E6A1F66781BE923"><span class="RefLink">21.13</span></a> and <a href="chap21.html#X782ED7F27D8C7FC1"><span class="RefLink">21.14</span></a>, respectively. It should be emphasized that these sections describe only what the return values are, and not how they are computed.</p>

<p>For the mutability status of the return values, see <a href="chap21.html#X8676EFE67972FD06"><span class="RefLink">21.15</span></a>. (Note that this is not dealt with in the sections about the result values.)</p>

<p>Further details about the special cases of row vectors and matrices can be found in <a href="chap23.html#X85516C3179C229DB"><span class="RefLink">23.2</span></a> and in <a href="chap24.html#X7899335779A39A95"><span class="RefLink">24.3</span></a>, the compression status is dealt with in <a href="chap23.html#X8679F7DD7DFCBD9C"><span class="RefLink">23.3</span></a> and <a href="chap24.html#X873822B6830CE367"><span class="RefLink">24.14</span></a>.</p>

<p><a id="X84D642967B8546B7" name="X84D642967B8546B7"></a></p>

<h4>21.12 <span class="Heading">Filters Controlling the Arithmetic Behaviour of Lists</span></h4>

<p>The arithmetic behaviour of lists is controlled by their types. The following categories and attributes are used for that.</p>

<p>Note that we distinguish additive and multiplicative behaviour. For example, Lie matrices have the usual additive behaviour but not the usual multiplicative behaviour.</p>

<p><a id="X87ABCEE9809585A0" name="X87ABCEE9809585A0"></a></p>

<h5>21.12-1 IsGeneralizedRowVector</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsGeneralizedRowVector</code>( <var class="Arg">list</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>For a list <var class="Arg">list</var>, the value <code class="keyw">true</code> for <code class="func">IsGeneralizedRowVector</code> indicates that the additive arithmetic behaviour of <var class="Arg">list</var> is as defined in <a href="chap21.html#X7E6A1F66781BE923"><span class="RefLink">21.13</span></a>, and that the attribute <code class="func">NestingDepthA</code> (<a href="chap21.html#X8428E77B86722D52"><span class="RefLink">21.12-4</span></a>) will return a nonzero value when called with <var class="Arg">list</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsList( "abc" ); IsGeneralizedRowVector( "abc" );</span>
true
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">liemat:= LieObject( [ [ 1, 2 ], [ 3, 4 ] ] );</span>
LieObject( [ [ 1, 2 ], [ 3, 4 ] ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsGeneralizedRowVector( liemat );</span>
true
</pre></div>

<p><a id="X7FBCA5B58308C158" name="X7FBCA5B58308C158"></a></p>

<h5>21.12-2 IsMultiplicativeGeneralizedRowVector</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsMultiplicativeGeneralizedRowVector</code>( <var class="Arg">list</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>For a list <var class="Arg">list</var>, the value <code class="keyw">true</code> for <code class="func">IsMultiplicativeGeneralizedRowVector</code> indicates that the multiplicative arithmetic behaviour of <var class="Arg">list</var> is as defined in <a href="chap21.html#X782ED7F27D8C7FC1"><span class="RefLink">21.14</span></a>, and that the attribute <code class="func">NestingDepthM</code> (<a href="chap21.html#X84B383B97FD986CD"><span class="RefLink">21.12-5</span></a>) will return a nonzero value when called with <var class="Arg">list</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMultiplicativeGeneralizedRowVector( liemat );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bas:= CanonicalBasis( FullRowSpace( Rationals, 3 ) );</span>
CanonicalBasis( ( Rationals^3 ) )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMultiplicativeGeneralizedRowVector( bas );</span>
true
</pre></div>

<p>Note that the filters <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>), <code class="func">IsMultiplicativeGeneralizedRowVector</code> do <em>not</em> enable default methods for addition or multiplication (cf. <code class="func">IsListDefault</code> (<a href="chap21.html#X7BAD12E67BFC90DE"><span class="RefLink">21.12-3</span></a>)).</p>

<p><a id="X7BAD12E67BFC90DE" name="X7BAD12E67BFC90DE"></a></p>

<h5>21.12-3 IsListDefault</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsListDefault</code>( <var class="Arg">list</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>For a list <var class="Arg">list</var>, <code class="func">IsListDefault</code> indicates that the default methods for arithmetic operations of lists, such as pointwise addition and multiplication as inner product or matrix product, shall be applicable to <var class="Arg">list</var>.</p>

<p><code class="func">IsListDefault</code> implies <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>) and <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>).</p>

<p>All internally represented lists are in this category, and also all lists in the representations <code class="code">IsGF2VectorRep</code>, <code class="code">Is8BitVectorRep</code>, <code class="code">IsGF2MatrixRep</code>, and <code class="code">Is8BitMatrixRep</code> (see <a href="chap23.html#X8679F7DD7DFCBD9C"><span class="RefLink">23.3</span></a> and <a href="chap24.html#X873822B6830CE367"><span class="RefLink">24.14</span></a>). Note that the result of an arithmetic operation with lists in <code class="func">IsListDefault</code> will in general be an internally represented list, so most "wrapped list objects" will not lie in <code class="func">IsListDefault</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v:= [ 1, 2 ];;  m:= [ v, 2*v ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsListDefault( v );  IsListDefault( m );</span>
true
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsListDefault( bas );  IsListDefault( liemat );</span>
true
false
</pre></div>

<p><a id="X8428E77B86722D52" name="X8428E77B86722D52"></a></p>

<h5>21.12-4 NestingDepthA</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NestingDepthA</code>( <var class="Arg">obj</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a <strong class="pkg">GAP</strong> object <var class="Arg">obj</var>, <code class="func">NestingDepthA</code> returns the <em>additive nesting depth</em> of <var class="Arg">obj</var>. This is defined recursively as the integer <span class="SimpleMath">0</span> if <var class="Arg">obj</var> is not in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>), as the integer <span class="SimpleMath">1</span> if <var class="Arg">obj</var> is an empty list in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>), and as <span class="SimpleMath">1</span> plus the additive nesting depth of the first bound entry in <var class="Arg">obj</var> otherwise.</p>

<p><a id="X84B383B97FD986CD" name="X84B383B97FD986CD"></a></p>

<h5>21.12-5 NestingDepthM</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NestingDepthM</code>( <var class="Arg">obj</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a <strong class="pkg">GAP</strong> object <var class="Arg">obj</var>, <code class="func">NestingDepthM</code> returns the <em>multiplicative nesting depth</em> of <var class="Arg">obj</var>. This is defined recursively as the integer <span class="SimpleMath">0</span> if <var class="Arg">obj</var> is not in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>), as the integer <span class="SimpleMath">1</span> if <var class="Arg">obj</var> is an empty list in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>), and as <span class="SimpleMath">1</span> plus the multiplicative nesting depth of the first bound entry in <var class="Arg">obj</var> otherwise.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NestingDepthA( v );  NestingDepthM( v );</span>
1
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NestingDepthA( m );  NestingDepthM( m );</span>
2
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NestingDepthA( liemat );  NestingDepthM( liemat );</span>
2
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l1:= [ [ 1, 2 ], 3 ];;  l2:= [ 1, [ 2, 3 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NestingDepthA( l1 );  NestingDepthM( l1 );</span>
2
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NestingDepthA( l2 );  NestingDepthM( l2 );</span>
1
1
</pre></div>

<p><a id="X7E6A1F66781BE923" name="X7E6A1F66781BE923"></a></p>

<h4>21.13 <span class="Heading">Additive Arithmetic for Lists</span></h4>

<p>In this general context, we define the results of additive operations only in the following situations. For unary operations (zero and additive inverse), the unique argument must be in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>); for binary operations (addition and subtraction), at least one argument must be in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>), and the other either is not a list or also in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>).</p>

<p>(For non-list <strong class="pkg">GAP</strong> objects, defining the results of unary operations is not an issue here, and if at least one argument is a list not in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>), it shall be left to this argument whether the result in question is defined and what it is.)</p>

<p><a id="X86A85ADC85C451DC" name="X86A85ADC85C451DC"></a></p>

<h5>21.13-1 <span class="Heading">Zero for lists</span></h5>

<p>The zero (see <code class="func">Zero</code> (<a href="chap31.html#X8040AC7A79FFC442"><span class="RefLink">31.10-3</span></a>)) of a list <span class="SimpleMath">x</span> in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>) is defined as the list whose entry at position <span class="SimpleMath">i</span> is the zero of <span class="SimpleMath">x[i]</span> if this entry is bound, and is unbound otherwise.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Zero( [ 1, 2, 3 ] );  Zero( [ [ 1, 2 ], 3 ] );  Zero( liemat );</span>
[ 0, 0, 0 ]
[ [ 0, 0 ], 0 ]
LieObject( [ [ 0, 0 ], [ 0, 0 ] ] )
</pre></div>

<p><a id="X7B91CE4D814C2D08" name="X7B91CE4D814C2D08"></a></p>

<h5>21.13-2 <span class="Heading">AdditiveInverse for lists</span></h5>

<p>The additive inverse (see <code class="func">AdditiveInverse</code> (<a href="chap31.html#X84BB723C81D55D63"><span class="RefLink">31.10-9</span></a>)) of a list <span class="SimpleMath">x</span> in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>) is defined as the list whose entry at position <span class="SimpleMath">i</span> is the additive inverse of <span class="SimpleMath">x[i]</span> if this entry is bound, and is unbound otherwise.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AdditiveInverse( [ 1, 2, 3 ] );  AdditiveInverse( [ [ 1, 2 ], 3 ] );</span>
[ -1, -2, -3 ]
[ [ -1, -2 ], -3 ]
</pre></div>

<p><a id="X842D123E7EE5E3DB" name="X842D123E7EE5E3DB"></a></p>

<h5>21.13-3 <span class="Heading">Addition of lists</span></h5>

<p>If <span class="SimpleMath">x</span> and <span class="SimpleMath">y</span> are in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>) and have the same additive nesting depth (see <code class="func">NestingDepthA</code> (<a href="chap21.html#X8428E77B86722D52"><span class="RefLink">21.12-4</span></a>)), the sum <span class="SimpleMath">x + y</span> is defined <em>pointwise</em>, in the sense that the result is a list whose entry at position <span class="SimpleMath">i</span> is <span class="SimpleMath">x[i] + y[i]</span> if these entries are bound, is a shallow copy (see <code class="func">ShallowCopy</code> (<a href="chap12.html#X846BC7107C352031"><span class="RefLink">12.7-1</span></a>)) of <span class="SimpleMath">x[i]</span> or <span class="SimpleMath">y[i]</span> if the other argument is not bound at position <span class="SimpleMath">i</span>, and is unbound if both <span class="SimpleMath">x</span> and <span class="SimpleMath">y</span> are unbound at position <span class="SimpleMath">i</span>.</p>

<p>If <span class="SimpleMath">x</span> is in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>) and <span class="SimpleMath">y</span> is in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>) and has lower additive nesting depth, or is neither a list nor a domain, the sum <span class="SimpleMath">x + y</span> is defined as a list whose entry at position <span class="SimpleMath">i</span> is <span class="SimpleMath">x[i] + y</span> if <span class="SimpleMath">x</span> is bound at position <span class="SimpleMath">i</span>, and is unbound if not. The equivalent holds in the reversed case, where the order of the summands is kept, as addition is not always commutative.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">1 + [ 1, 2, 3 ];  [ 1, 2, 3 ] + [ 0, 2, 4 ];  [ 1, 2 ] + [ Z(2) ];</span>
[ 2, 3, 4 ]
[ 1, 4, 7 ]
[ 0*Z(2), 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l1:= [ 1, , 3, 4 ];;             l2:= [ , 2, 3, 4, 5 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l3:= [ [ 1, 2 ], , [ 5, 6 ] ];;  l4:= [ , [ 3, 4 ], [ 5, 6 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NestingDepthA( l1 );  NestingDepthA( l2 );</span>
1
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NestingDepthA( l3 );  NestingDepthA( l4 );</span>
2
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l1 + l2;</span>
[ 1, 2, 6, 8, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l1 + l3;</span>
[ [ 2, 2, 3, 4 ],, [ 6, 6, 3, 4 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l2 + l4;</span>
[ , [ 3, 6, 3, 4, 5 ], [ 5, 8, 3, 4, 5 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l3 + l4;</span>
[ [ 1, 2 ], [ 3, 4 ], [ 10, 12 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l1 + [];</span>
[ 1,, 3, 4 ]
</pre></div>

<p><a id="X7C3DC8BE78DEECDE" name="X7C3DC8BE78DEECDE"></a></p>

<h5>21.13-4 <span class="Heading">Subtraction of lists</span></h5>

<p>For two <strong class="pkg">GAP</strong> objects <span class="SimpleMath">x</span> and <span class="SimpleMath">y</span> of which one is in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>) and the other is also in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>) or is neither a list nor a domain, <span class="SimpleMath">x - y</span> is defined as <span class="SimpleMath">x + (-y)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l1 - l2;</span>
[ 1, -2, 0, 0, -5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l1 - l3;</span>
[ [ 0, -2, 3, 4 ],, [ -4, -6, 3, 4 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l2 - l4;</span>
[ , [ -3, -2, 3, 4, 5 ], [ -5, -4, 3, 4, 5 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l3 - l4;</span>
[ [ 1, 2 ], [ -3, -4 ], [ 0, 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l1 - [];</span>
[ 1,, 3, 4 ]
</pre></div>

<p><a id="X782ED7F27D8C7FC1" name="X782ED7F27D8C7FC1"></a></p>

<h4>21.14 <span class="Heading">Multiplicative Arithmetic for Lists</span></h4>

<p>In this general context, we define the results of multiplicative operations only in the following situations. For unary operations (one and inverse), the unique argument must be in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>); for binary operations (multiplication and division), at least one argument must be in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>), and the other either not a list or also in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>).</p>

<p>(For non-list <strong class="pkg">GAP</strong> objects, defining the results of unary operations is not an issue here, and if at least one argument is a list not in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>), it shall be left to this argument whether the result in question is defined and what it is.)</p>

<p><a id="X79A8A5627FD42FA5" name="X79A8A5627FD42FA5"></a></p>

<h5>21.14-1 <span class="Heading">One for lists</span></h5>

<p>The one (see <code class="func">One</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>)) of a dense list <var class="Arg">x</var> in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>) such that <var class="Arg">x</var> has even multiplicative nesting depth and has the same length as each of its rows is defined as the usual identity matrix on the outer two levels, that is, an identity matrix of the same dimensions, with diagonal entries <code class="code">One( <var class="Arg">x</var>[1][1] )</code> and off-diagonal entries <code class="code">Zero( <var class="Arg">x</var>[1][1] )</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">One( [ [ 1, 2 ], [ 3, 4 ] ] );</span>
[ [ 1, 0 ], [ 0, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">One( [ [ [ [ 1 ] ], [ [ 2 ] ] ], [ [ [ 3 ] ], [ [ 4 ] ] ] ] );</span>
[ [ [ [ 1 ] ], [ [ 0 ] ] ], [ [ [ 0 ] ], [ [ 1 ] ] ] ]
</pre></div>

<p><a id="X78C6C1E2849D303A" name="X78C6C1E2849D303A"></a></p>

<h5>21.14-2 <span class="Heading">Inverse for lists</span></h5>

<p>The inverse (see <code class="func">Inverse</code> (<a href="chap31.html#X78EE524E83624057"><span class="RefLink">31.10-8</span></a>)) of an invertible square table <var class="Arg">x</var> in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>) whose entries lie in a common field is defined as the usual inverse <span class="SimpleMath">y</span>, i.e., a square matrix over the same field such that <span class="SimpleMath"><var class="Arg">x</var> y</span> and <span class="SimpleMath">y <var class="Arg">x</var></span> is equal to <code class="code">One( <var class="Arg">x</var> )</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Inverse( [ [ 1, 2 ], [ 3, 4 ] ] );</span>
[ [ -2, 1 ], [ 3/2, -1/2 ] ]
</pre></div>

<p><a id="X84FDB95179BFE4CD" name="X84FDB95179BFE4CD"></a></p>

<h5>21.14-3 <span class="Heading">Multiplication of lists</span></h5>

<p>There are three possible computations that might be triggered by a multiplication involving a list in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>). Namely, <span class="SimpleMath">x * y</span> might be</p>


<dl>
<dt><strong class="Mark">(I)</strong></dt>
<dd><p>the inner product <span class="SimpleMath">x[1] * y[1] + x[2] * y[2] + ⋯ + x[n] * y[n]</span>, where summands are omitted for which the entry in <span class="SimpleMath">x</span> or <span class="SimpleMath">y</span> is unbound (if this leaves no summand then the multiplication is an error), or</p>

</dd>
<dt><strong class="Mark">(L)</strong></dt>
<dd><p>the left scalar multiple, i.e., a list whose entry at position <span class="SimpleMath">i</span> is <span class="SimpleMath">x * y[i]</span> if <span class="SimpleMath">y</span> is bound at position <span class="SimpleMath">i</span>, and is unbound if not, or</p>

</dd>
<dt><strong class="Mark">(R)</strong></dt>
<dd><p>the right scalar multiple, i.e., a list whose entry at position <span class="SimpleMath">i</span> is <span class="SimpleMath">x[i] * y</span> if <span class="SimpleMath">x</span> is bound at position <span class="SimpleMath">i</span>, and is unbound if not.</p>

</dd>
</dl>
<p>Our aim is to generalize the basic arithmetic of simple row vectors and matrices, so we first summarize the situations that shall be covered.</p>

<div class="pcenter"><table class="GAPDocTable">
<tr>
<td class="tdcenter"></td>
<td class="tdcenter">scl</td>
<td class="tdcenter">vec</td>
<td class="tdcenter">mat</td>
</tr>
<tr>
<td class="tdcenter">scl</td>
<td class="tdcenter"></td>
<td class="tdcenter">(L)</td>
<td class="tdcenter">(L)</td>
</tr>
<tr>
<td class="tdcenter">vec</td>
<td class="tdcenter">(R)</td>
<td class="tdcenter">(I)</td>
<td class="tdcenter">(I)</td>
</tr>
<tr>
<td class="tdcenter">mat</td>
<td class="tdcenter">(R)</td>
<td class="tdcenter">(R)</td>
<td class="tdcenter">(R)</td>
</tr>
</table><br /><p>&nbsp;</p><br />
</div>

<p>This means for example that the product of a scalar (scl) with a vector (vec) or a matrix (mat) is computed according to (L). Note that this is asymmetric.</p>

<p>Now we can state the general multiplication rules.</p>

<p>If exactly one argument is in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>) then we regard the other argument (which is then neither a list nor a domain) as a scalar, and specify result (L) or (R), depending on ordering.</p>

<p>In the remaining cases, both <span class="SimpleMath">x</span> and <span class="SimpleMath">y</span> are in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>), and we distinguish the possibilities by their multiplicative nesting depths. An argument with <em>odd</em> multiplicative nesting depth is regarded as a vector, and an argument with <em>even</em> multiplicative nesting depth is regarded as a scalar or a matrix.</p>

<p>So if both arguments have odd multiplicative nesting depth, we specify result (I).</p>

<p>If exactly one argument has odd nesting depth, the other is treated as a scalar if it has lower multiplicative nesting depth, and as a matrix otherwise. In the former case, we specify result (L) or (R), depending on ordering; in the latter case, we specify result (L) or (I), depending on ordering.</p>

<p>We are left with the case that each argument has even multiplicative nesting depth. If the two depths are equal, we treat the computation as a matrix product, and specify result (R). Otherwise, we treat the less deeply nested argument as a scalar and the other as a matrix, and specify result (L) or (R), depending on ordering.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] * (1,4);</span>
[ (1,4), (1,4)(2,3), (1,2,4), (1,2,3,4), (1,3,2,4), (1,3,4) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ 1, 2, , 4 ] * 2;</span>
[ 2, 4,, 8 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ 1, 2, 3 ] * [ 1, 3, 5, 7 ];</span>
22
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:= [ [ 1, 2 ], 3 ];;  m * m;</span>
[ [ 7, 8 ], [ [ 3, 6 ], 9 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m * m = [ m[1] * m, m[2] * m ];</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:= [ 1, [ 2, 3 ] ];;  n * n;</span>
14
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n * n = n[1] * n[1] + n[2] * n[2];</span>
true
</pre></div>

<p><a id="X82EA2A5B786181C7" name="X82EA2A5B786181C7"></a></p>

<h5>21.14-4 <span class="Heading">Division of lists</span></h5>

<p>For two <strong class="pkg">GAP</strong> objects <span class="SimpleMath">x</span> and <span class="SimpleMath">y</span> of which one is in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>) and the other is also in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>) or is neither a list nor a domain, <span class="SimpleMath">x / y</span> is defined as <span class="SimpleMath">x * y^{-1}</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ 1, 2, 3 ] / 2;  [ 1, 2 ] / [ [ 1, 2 ], [ 3, 4 ] ];</span>
[ 1/2, 1, 3/2 ]
[ 1, 0 ]
</pre></div>

<p><a id="X7A0FD70C80B95C00" name="X7A0FD70C80B95C00"></a></p>

<h5>21.14-5 <span class="Heading">mod for lists</span></h5>

<p>If <var class="Arg">x</var> and <var class="Arg">y</var> are in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>) and have the same multiplicative nesting depth (see <code class="func">NestingDepthM</code> (<a href="chap21.html#X84B383B97FD986CD"><span class="RefLink">21.12-5</span></a>)), <code class="code"><var class="Arg">x</var> mod <var class="Arg">y</var></code> is defined <em>pointwise</em>, in the sense that the result is a list whose entry at position <span class="SimpleMath">i</span> is <code class="code"><var class="Arg">x</var>[i] mod <var class="Arg">y</var>[i]</code> if these entries are bound, is a shallow copy (see <code class="func">ShallowCopy</code> (<a href="chap12.html#X846BC7107C352031"><span class="RefLink">12.7-1</span></a>)) of <span class="SimpleMath">x[i]</span> or <span class="SimpleMath">y[i]</span> if the other argument is not bound at position <span class="SimpleMath">i</span>, and is unbound if both <span class="SimpleMath">x</span> and <span class="SimpleMath">y</span> are unbound at position <span class="SimpleMath">i</span>.</p>

<p>If <span class="SimpleMath">x</span> is in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>) and <span class="SimpleMath">y</span> is in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>) and has lower multiplicative nesting depth or is neither a list nor a domain, <code class="code"><var class="Arg">x</var> mod <var class="Arg">y</var></code> is defined as a list whose entry at position <span class="SimpleMath">i</span> is <code class="code"><var class="Arg">x</var>[i] mod <var class="Arg">y</var></code> if <var class="Arg">x</var> is bound at position <span class="SimpleMath">i</span>, and is unbound if not. The equivalent holds in the reversed case, where the order of the arguments is kept.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">4711 mod [ 2, 3,, 5, 7 ];</span>
[ 1, 1,, 1, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ 2, 3, 4, 5, 6 ] mod 3;</span>
[ 2, 0, 1, 2, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">[ 10, 12, 14, 16 ] mod [ 3, 5, 7 ];</span>
[ 1, 2, 0, 16 ]
</pre></div>

<p><a id="X84BB2DFB8432A1A4" name="X84BB2DFB8432A1A4"></a></p>

<h5>21.14-6 <span class="Heading">Left quotients of lists</span></h5>

<p>For two <strong class="pkg">GAP</strong> objects <span class="SimpleMath">x</span> and <span class="SimpleMath">y</span> of which one is in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>) and the other is also in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>) or is neither a list nor a domain, <code class="code">LeftQuotient( <var class="Arg">x</var>, <var class="Arg">y</var> )</code> is defined as <span class="SimpleMath">x^{-1} * y</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LeftQuotient( [ [ 1, 2 ], [ 3, 4 ] ], [ 1, 2 ] );</span>
[ 0, 1/2 ]
</pre></div>

<p><a id="X8676EFE67972FD06" name="X8676EFE67972FD06"></a></p>

<h4>21.15 <span class="Heading">Mutability Status and List Arithmetic</span></h4>

<p>Many results of arithmetic operations, when applied to lists, are again lists, and it is of interest whether their entries are mutable or not (if applicable). Note that the mutability status of the result itself is already defined by the general rule for any result of an arithmetic operation, not only for lists (see <a href="chap12.html#X7F0C119682196D65"><span class="RefLink">12.6</span></a>).</p>

<p>However, we do <em>not</em> define exactly the mutability status for each element on each level of a nested list returned by an arithmetic operation. (Of course it would be possible to define this recursively, but since the methods used are in general not recursive, in particular for efficient multiplication of compressed matrices, such a general definition would be a burden in these cases.) Instead we consider, for a list <span class="SimpleMath">x</span> in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>), the sequence <span class="SimpleMath">x = x_1, x_2, ... x_n</span> where <span class="SimpleMath">x_{i+1}</span> is the first bound entry in <span class="SimpleMath">x_i</span> if exists (that is, if <span class="SimpleMath">x_i</span> is a nonempty list), and <span class="SimpleMath">n</span> is the largest <span class="SimpleMath">i</span> such that <span class="SimpleMath">x_i</span> lies in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>). The <em>immutability level</em> of <span class="SimpleMath">x</span> is defined as infinity if <span class="SimpleMath">x</span> is immutable, and otherwise the number of <span class="SimpleMath">x_i</span> which are immutable. (So the immutability level of a mutable empty list is <span class="SimpleMath">0</span>.)</p>

<p>Thus a fully mutable matrix has immutability level <span class="SimpleMath">0</span>, and a mutable matrix with immutable first row has immutability level <span class="SimpleMath">1</span> (independent of the mutability of other rows).</p>

<p>The immutability level of the result of any of the binary operations discussed here is the minimum of the immutability levels of the arguments, provided that objects of the required mutability status exist in <strong class="pkg">GAP</strong>.</p>

<p>Moreover, the results have a "homogeneous" mutability status, that is, if the first bound entry at nesting depth <span class="SimpleMath">i</span> is immutable (mutable) then all entries at nesting depth <span class="SimpleMath">i</span> are immutable (mutable, provided that a mutable version of this entry exists in <strong class="pkg">GAP</strong>).</p>

<p>Thus the sum of two mutable matrices whose first rows are mutable is a matrix all of whose rows are mutable, and the product of two matrices whose first rows are immutable is a matrix all of whose rows are immutable, independent of the mutability status of the other rows of the arguments.</p>

<p>For example, the sum of a matrix (mutable or immutable, i.e., of immutability level one of <span class="SimpleMath">0</span>, <span class="SimpleMath">1</span>, or <span class="SimpleMath">2</span>) and a mutable row vector (i.e., immutability level <span class="SimpleMath">0</span>) is a fully mutable matrix. The product of two mutable row vectors of integers is an integer, and since <strong class="pkg">GAP</strong> does not support mutable integers, the result is immutable.</p>

<p>For unary arithmetic operations, there are three operations available, an attribute that returns an immutable result (<code class="func">Zero</code> (<a href="chap31.html#X8040AC7A79FFC442"><span class="RefLink">31.10-3</span></a>), <code class="func">AdditiveInverse</code> (<a href="chap31.html#X84BB723C81D55D63"><span class="RefLink">31.10-9</span></a>), <code class="func">One</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>), <code class="func">Inverse</code> (<a href="chap31.html#X78EE524E83624057"><span class="RefLink">31.10-8</span></a>)), an operation that returns a result that is mutable (<code class="func">ZeroOp</code> (<a href="chap31.html#X8040AC7A79FFC442"><span class="RefLink">31.10-3</span></a>), <code class="func">AdditiveInverseOp</code> (<a href="chap31.html#X84BB723C81D55D63"><span class="RefLink">31.10-9</span></a>), <code class="func">OneOp</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>), <code class="func">InverseOp</code> (<a href="chap31.html#X78EE524E83624057"><span class="RefLink">31.10-8</span></a>)), and an operation whose result has the same immutability level as the argument (<code class="func">ZeroSM</code> (<a href="chap31.html#X8040AC7A79FFC442"><span class="RefLink">31.10-3</span></a>), <code class="func">AdditiveInverseSM</code> (<a href="chap31.html#X84BB723C81D55D63"><span class="RefLink">31.10-9</span></a>), <code class="func">OneSM</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>), <code class="func">InverseSM</code> (<a href="chap31.html#X78EE524E83624057"><span class="RefLink">31.10-8</span></a>)). The last kind of operations is equivalent to the corresponding infix operations <code class="code">0 * <var class="Arg">list</var></code>, <code class="code">- <var class="Arg">list</var></code>, <code class="code"><var class="Arg">list</var>^0</code>, and <code class="code"><var class="Arg">list</var>^-1</code>. (This holds not only for lists, see <a href="chap12.html#X7F0C119682196D65"><span class="RefLink">12.6</span></a>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMutable( l1 );  IsMutable( 2 * Immutable( [ 1, 2, 3 ] ) );</span>
true
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMutable( l2 );  IsMutable( l3 );</span>
true
true
</pre></div>

<p>An example motivating the mutability rule is the use of syntactic constructs such as <code class="code"><var class="Arg">obj</var> * <var class="Arg">list</var></code> and <code class="code">- <var class="Arg">list</var></code> as an elegant and efficient way to create mutable lists needed for further manipulations from mutable lists. In particular one can construct a mutable zero vector of length <span class="SimpleMath">n</span> by <code class="code">0 * [ 1 .. </code><span class="SimpleMath">n</span><code class="code"> ]</code>. The latter can be done also using <code class="func">ListWithIdenticalEntries</code> (<a href="chap21.html#X80FDB1457FF582E7"><span class="RefLink">21.15-1</span></a>).</p>

<p><a id="X80FDB1457FF582E7" name="X80FDB1457FF582E7"></a></p>

<h5>21.15-1 ListWithIdenticalEntries</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ListWithIdenticalEntries</code>( <var class="Arg">n</var>, <var class="Arg">obj</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>is a list <var class="Arg">list</var> of length <var class="Arg">n</var> that has the object <var class="Arg">obj</var> stored at each of the positions from <code class="code">1</code> to <var class="Arg">n</var>. Note that all elements of <var class="Arg">lists</var> are identical, see <a href="chap21.html#X7DD65BEA7EDB0CD7"><span class="RefLink">21.6</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ListWithIdenticalEntries( 10, 0 );</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>

<p><a id="X8196FD4779BCCA0C" name="X8196FD4779BCCA0C"></a></p>

<h4>21.16 <span class="Heading">Finding Positions in Lists</span></h4>

<p><a id="X79975EC6783B4293" name="X79975EC6783B4293"></a></p>

<h5>21.16-1 Position</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Position</code>( <var class="Arg">list</var>, <var class="Arg">obj</var>[, <var class="Arg">from</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the position of the first occurrence <var class="Arg">obj</var> in <var class="Arg">list</var>, or <code class="keyw">fail</code> if <var class="Arg">obj</var> is not contained in <var class="Arg">list</var>. If a starting index <var class="Arg">from</var> is given, it returns the position of the first occurrence starting the search <em>after</em> position <var class="Arg">from</var>.</p>

<p>Each call to the two argument version is translated into a call of the three argument version, with third argument the integer zero <code class="code">0</code>. (Methods for the two argument version must be installed as methods for the version with three arguments, the third being described by <code class="code">IsZeroCyc</code>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Position( [ 2, 2, 1, 3 ], 1 );</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Position( [ 2, 1, 1, 3 ], 1 );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Position( [ 2, 1, 1, 3 ], 1, 2 );</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Position( [ 2, 1, 1, 3 ], 1, 3 );</span>
fail
</pre></div>

<p><a id="X7FA9648883AE1B88" name="X7FA9648883AE1B88"></a></p>

<h5>21.16-2 Positions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Positions</code>( <var class="Arg">list</var>, <var class="Arg">obj</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PositionsOp</code>( <var class="Arg">list</var>, <var class="Arg">obj</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the positions of <em>all</em> occurrences of <var class="Arg">obj</var> in <var class="Arg">list</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Positions([1,2,1,2,3,2,2],2);</span>
[ 2, 4, 6, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Positions([1,2,1,2,3,2,2],4);</span>
[  ]
</pre></div>

<p><a id="X7B4B10AE81602D4E" name="X7B4B10AE81602D4E"></a></p>

<h5>21.16-3 PositionCanonical</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PositionCanonical</code>( <var class="Arg">list</var>, <var class="Arg">obj</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the position of the canonical associate of <var class="Arg">obj</var> in <var class="Arg">list</var>. The definition of this associate depends on <var class="Arg">list</var>. For internally represented lists it is defined as the element itself (and <code class="func">PositionCanonical</code> thus defaults to <code class="func">Position</code> (<a href="chap21.html#X79975EC6783B4293"><span class="RefLink">21.16-1</span></a>), but for example for certain enumerators (see <a href="chap21.html#X7EA3ACE27E43D174"><span class="RefLink">21.23</span></a>) other canonical associates can be defined.</p>

<p>For example <code class="func">RightTransversal</code> (<a href="chap39.html#X85C65D06822E716F"><span class="RefLink">39.8-1</span></a>) defines the canonical associate to be the element in the transversal defining the same coset of a subgroup in a group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2));;u:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rt:=RightTransversal(g,u);;AsList(rt);</span>
[ (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Position(rt,(1,2));</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionCanonical(rt,(1,2));</span>
2
</pre></div>

<p><a id="X7D2B25B484591506" name="X7D2B25B484591506"></a></p>

<h5>21.16-4 PositionNthOccurrence</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PositionNthOccurrence</code>( <var class="Arg">list</var>, <var class="Arg">obj</var>, <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the position of the <var class="Arg">n</var>-th occurrence of <var class="Arg">obj</var> in <var class="Arg">list</var> and returns <code class="keyw">fail</code> if <var class="Arg">obj</var> does not occur <var class="Arg">n</var> times.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionNthOccurrence([1,2,3,2,4,2,1],1,1);</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionNthOccurrence([1,2,3,2,4,2,1],1,2);</span>
7
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionNthOccurrence([1,2,3,2,4,2,1],2,3);</span>
6
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionNthOccurrence([1,2,3,2,4,2,1],2,4);</span>
fail
</pre></div>

<p><a id="X7A122E848464E534" name="X7A122E848464E534"></a></p>

<h5>21.16-5 PositionSorted</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PositionSorted</code>( <var class="Arg">list</var>, <var class="Arg">elm</var>[, <var class="Arg">func</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>Called with two arguments, <code class="func">PositionSorted</code> returns the position of the element <var class="Arg">elm</var> in the sorted list <var class="Arg">list</var>.</p>

<p>Called with three arguments, <code class="func">PositionSorted</code> returns the position of the element <var class="Arg">elm</var> in the list <var class="Arg">list</var>, which must be sorted with respect to <var class="Arg">func</var>. <var class="Arg">func</var> must be a function of two arguments that returns <code class="keyw">true</code> if the first argument is less than the second argument, and <code class="keyw">false</code> otherwise.</p>

<p><code class="func">PositionSorted</code> returns <var class="Arg">pos</var> such that <span class="SimpleMath"><var class="Arg">list</var>[<var class="Arg">pos</var>-1] &lt; <var class="Arg">elm</var></span> and <span class="SimpleMath"><var class="Arg">elm</var><var class="Arg">list</var>[<var class="Arg">pos</var>]</span>. That means, if <var class="Arg">elm</var> appears once in <var class="Arg">list</var>, its position is returned. If <var class="Arg">elm</var> appears several times in <var class="Arg">list</var>, the position of the first occurrence is returned. If <var class="Arg">elm</var> is not an element of <var class="Arg">list</var>, the index where <var class="Arg">elm</var> must be inserted to keep the list sorted is returned.</p>

<p><code class="func">PositionSorted</code> uses binary search, whereas <code class="func">Position</code> (<a href="chap21.html#X79975EC6783B4293"><span class="RefLink">21.16-1</span></a>) can in general use only linear search, see the remark at the beginning of <a href="chap21.html#X80ABC25582343910"><span class="RefLink">21.19</span></a>. For sorting lists, see <a href="chap21.html#X83E558E37D1B44D4"><span class="RefLink">21.18</span></a>, for testing whether a list is sorted, see <code class="func">IsSortedList</code> (<a href="chap21.html#X7BAA9B0E81D4A884"><span class="RefLink">21.17-3</span></a>) and <code class="func">IsSSortedList</code> (<a href="chap21.html#X80CDAF45782E8DCB"><span class="RefLink">21.17-4</span></a>).</p>

<p>Specialized functions for certain kinds of lists must be installed as methods for the operation <code class="code">PositionSortedOp</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionSorted( [1,4,5,5,6,7], 0 );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionSorted( [1,4,5,5,6,7], 2 );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionSorted( [1,4,5,5,6,7], 4 );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionSorted( [1,4,5,5,6,7], 5 );</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionSorted( [1,4,5,5,6,7], 8 );</span>
7
</pre></div>

<p><a id="X78BFE9D78347C0DA" name="X78BFE9D78347C0DA"></a></p>

<h5>21.16-6 PositionSet</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PositionSet</code>( <var class="Arg">list</var>, <var class="Arg">obj</var>[, <var class="Arg">func</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">PositionSet</code> is a slight variation of <code class="func">PositionSorted</code> (<a href="chap21.html#X7A122E848464E534"><span class="RefLink">21.16-5</span></a>). The only difference to <code class="func">PositionSorted</code> (<a href="chap21.html#X7A122E848464E534"><span class="RefLink">21.16-5</span></a>) is that <code class="func">PositionSet</code> returns <code class="keyw">fail</code> if <var class="Arg">obj</var> is not in <var class="Arg">list</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionSet( [1,4,5,5,6,7], 0 );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionSet( [1,4,5,5,6,7], 2 );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionSet( [1,4,5,5,6,7], 4 );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionSet( [1,4,5,5,6,7], 5 );</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionSet( [1,4,5,5,6,7], 8 );</span>
fail
</pre></div>

<p><a id="X7E6C763A82C6153B" name="X7E6C763A82C6153B"></a></p>

<h5>21.16-7 PositionProperty</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PositionProperty</code>( <var class="Arg">list</var>, <var class="Arg">func</var>[, <var class="Arg">from</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the position of the first entry in the list <var class="Arg">list</var> for which the property tester function <var class="Arg">func</var> returns <code class="keyw">true</code>, or <code class="keyw">fail</code> if no such entry exists. If a starting index <var class="Arg">from</var> is given, it returns the position of the first entry satisfying <var class="Arg">func</var>, starting the search <em>after</em> position <var class="Arg">from</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionProperty( [10^7..10^8], IsPrime );</span>
20
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionProperty( [10^5..10^6],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       n -&gt; not IsPrime(n) and IsPrimePowerInt(n) );</span>
490
</pre></div>

<p><code class="func">First</code> (<a href="chap21.html#X82801DFA84E11272"><span class="RefLink">21.20-22</span></a>) allows you to extract the first element of a list that satisfies a certain property.</p>

<p><a id="X7DA94D278304EC3D" name="X7DA94D278304EC3D"></a></p>

<h5>21.16-8 PositionsProperty</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PositionsProperty</code>( <var class="Arg">list</var>, <var class="Arg">func</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the list of all those positions in the dense list <var class="Arg">list</var> for which the property tester function <var class="Arg">func</var> returns <code class="keyw">true</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l:= [ -5 .. 5 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( l, IsPosInt );</span>
[ 7, 8, 9, 10, 11 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionsProperty( l, IsPrimeInt );</span>
[ 1, 3, 4, 8, 9, 11 ]
</pre></div>

<p><code class="func">PositionProperty</code> (<a href="chap21.html#X7E6C763A82C6153B"><span class="RefLink">21.16-7</span></a>) allows you to extract the position of the first element in a list that satisfies a certain property.</p>

<p><a id="X86C9E5C3863B3C03" name="X86C9E5C3863B3C03"></a></p>

<h5>21.16-9 PositionBound</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PositionBound</code>( <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the first index for which an element is bound in the list <var class="Arg">list</var>. For the empty list it returns <code class="keyw">fail</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionBound([1,2,3]);</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionBound([,1,2,3]);</span>
2
</pre></div>

<p><a id="X865EF45D87ED1384" name="X865EF45D87ED1384"></a></p>

<h5>21.16-10 PositionNot</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PositionNot</code>( <var class="Arg">list</var>, <var class="Arg">val</var>[, <var class="Arg">from</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>For a list <var class="Arg">list</var> and an object <var class="Arg">val</var>, <code class="func">PositionNot</code> returns the smallest nonnegative integer <span class="SimpleMath">n</span> such that <span class="SimpleMath"><var class="Arg">list</var>[n]</span> is either unbound or not equal to <var class="Arg">val</var>. If a starting index <var class="Arg">from</var> is given, it returns the first position with this property starting the search <em>after</em> position <var class="Arg">from</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l:= [ 1, 1, 2, 3, 2 ];;  PositionNot( l, 1 );</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionNot( l, 1, 4 );  PositionNot( l, 2, 4 );</span>
5
6
</pre></div>

<p><a id="X7F42E5AD87EC9D5A" name="X7F42E5AD87EC9D5A"></a></p>

<h5>21.16-11 PositionNonZero</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PositionNonZero</code>( <var class="Arg">vec</var>[, <var class="Arg">from</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>For a row vector <var class="Arg">vec</var>, <code class="func">PositionNonZero</code> returns the position of the first non-zero element of <var class="Arg">vec</var>, or <code class="code">Length(</code> <var class="Arg">vec</var> <code class="code">)+1</code> if all entries of <var class="Arg">vec</var> are zero.</p>

<p>If a starting index <var class="Arg">from</var> is given, it returns the position of the first occurrence starting the search <em>after</em> position <var class="Arg">from</var>.</p>

<p><code class="func">PositionNonZero</code> implements a special case of <code class="func">PositionNot</code> (<a href="chap21.html#X865EF45D87ED1384"><span class="RefLink">21.16-10</span></a>). Namely, the element to be avoided is the zero element, and the list must be (at least) homogeneous because otherwise the zero element cannot be specified implicitly.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionNonZero( [ 1, 1, 2, 3, 2 ] );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PositionNonZero( [ 2, 3, 4, 5 ] * Z(2) );</span>
2
</pre></div>

<p><a id="X87A8C62A867D6DA4" name="X87A8C62A867D6DA4"></a></p>

<h5>21.16-12 PositionSublist</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PositionSublist</code>( <var class="Arg">list</var>, <var class="Arg">sub</var>[, <var class="Arg">from</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the smallest index in the list <var class="Arg">list</var> at which a sublist equal to <var class="Arg">sub</var> starts. If <var class="Arg">sub</var> does not occur the operation returns <code class="keyw">fail</code>. The version with given <var class="Arg">from</var> starts searching <em>after</em> position <var class="Arg">from</var>.</p>

<p>To determine whether <var class="Arg">sub</var> matches <var class="Arg">list</var> at a particular position, use <code class="func">IsMatchingSublist</code> (<a href="chap21.html#X83F8EC7C7BF27EFC"><span class="RefLink">21.17-1</span></a>) instead.</p>

<p><a id="X8132A2F5823F0CC0" name="X8132A2F5823F0CC0"></a></p>

<h5>21.16-13 PositionFirstComponent</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PositionFirstComponent</code>( <var class="Arg">list</var>, <var class="Arg">obj</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the index <var class="Arg">i</var> in <var class="Arg">list</var> such that <var class="Arg">list</var><code class="code">[</code><var class="Arg">i</var><code class="code">][1] = </code><var class="Arg">obj</var> or the place where such an entry should be added (cf. <code class="func">PositionSorted</code> (<a href="chap21.html#X7A122E848464E534"><span class="RefLink">21.16-5</span></a>)).</p>

<p><a id="X7865747A7CCF5812" name="X7865747A7CCF5812"></a></p>

<h4>21.17 <span class="Heading">Properties and Attributes for Lists</span></h4>

<p>A list that contains mutable objects (like lists or records) <em>cannot</em> store attribute values that depend on the values of its entries, such as whether it is homogeneous, sorted, or strictly sorted, as changes in any of its entries could change such property values, like the following example shows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l:=[[1],[2]];</span>
[ [ 1 ], [ 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSSortedList(l);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l[1][1]:=3;</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSSortedList(l);</span>
false
</pre></div>

<p>For such lists these property values must be computed anew each time the property is asked for. For example, if <var class="Arg">list</var> is a list of mutable row vectors then the call of <code class="func">Position</code> (<a href="chap21.html#X79975EC6783B4293"><span class="RefLink">21.16-1</span></a>) with <var class="Arg">list</var> as first argument cannot take advantage of the fact that <var class="Arg">list</var> is in fact sorted. One solution is to call explicitly <code class="func">PositionSorted</code> (<a href="chap21.html#X7A122E848464E534"><span class="RefLink">21.16-5</span></a>) in such a situation, another solution is to replace <var class="Arg">list</var> by an immutable copy using <code class="func">Immutable</code> (<a href="chap12.html#X7F0ABF2C870B0CBB"><span class="RefLink">12.6-3</span></a>).</p>

<p><a id="X83F8EC7C7BF27EFC" name="X83F8EC7C7BF27EFC"></a></p>

<h5>21.17-1 IsMatchingSublist</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsMatchingSublist</code>( <var class="Arg">list</var>, <var class="Arg">sub</var>[, <var class="Arg">at</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if <var class="Arg">sub</var> matches a sublist of <var class="Arg">list</var> from position <code class="code">1</code> (or position <var class="Arg">at</var>, in the case of three arguments), or <code class="keyw">false</code>, otherwise. If <var class="Arg">sub</var> is empty <code class="keyw">true</code> is returned. If <var class="Arg">list</var> is empty but <var class="Arg">sub</var> is non-empty <code class="keyw">false</code> is returned.</p>

<p>If you actually want to know whether there is an <var class="Arg">at</var> for which <code class="code">IsMatchingSublist( <var class="Arg">list</var>, <var class="Arg">sub</var>, <var class="Arg">at</var> )</code> is true, use a construction like <code class="code">PositionSublist( <var class="Arg">list</var>, <var class="Arg">sub</var> ) &lt;&gt; fail</code> instead (see <code class="func">PositionSublist</code> (<a href="chap21.html#X87A8C62A867D6DA4"><span class="RefLink">21.16-12</span></a>)); it's more efficient.</p>

<p><a id="X7FA892828252BB3B" name="X7FA892828252BB3B"></a></p>

<h5>21.17-2 IsDuplicateFree</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsDuplicateFree</code>( <var class="Arg">obj</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsDuplicateFreeList</code>( <var class="Arg">obj</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p><code class="func">IsDuplicateFree</code> returns <code class="keyw">true</code> if <var class="Arg">obj</var> is both a list or collection, and it is duplicate free; otherwise it returns <code class="keyw">false</code>. <code class="func">IsDuplicateFreeList</code> is a synonym for <code class="code">IsDuplicateFree and IsList</code>.</p>

<p>A list is <em>duplicate free</em> if it is dense and does not contain equal entries in different positions. Every domain (see <a href="chap12.html#X7BAF69417BB925F6"><span class="RefLink">12.4</span></a>) is duplicate free.</p>

<p>Note that <strong class="pkg">GAP</strong> cannot compare arbitrary objects (by equality). This can cause that <code class="func">IsDuplicateFree</code> runs into an error, if <var class="Arg">obj</var> is a list with some non-comparable entries.</p>

<p><a id="X7BAA9B0E81D4A884" name="X7BAA9B0E81D4A884"></a></p>

<h5>21.17-3 IsSortedList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSortedList</code>( <var class="Arg">obj</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if <var class="Arg">obj</var> is a list and it is sorted, and <code class="keyw">false</code> otherwise.</p>

<p>A list <var class="Arg">list</var> is <em>sorted</em> if it is dense (see <code class="func">IsDenseList</code> (<a href="chap21.html#X870AA9D8798C93DD"><span class="RefLink">21.1-2</span></a>)) and satisfies the relation <span class="SimpleMath"><var class="Arg">list</var>[i] ≤ <var class="Arg">list</var>[j]</span> whenever <span class="SimpleMath">i &lt; j</span>. Note that a sorted list is not necessarily duplicate free (see <code class="func">IsDuplicateFree</code> (<a href="chap21.html#X7FA892828252BB3B"><span class="RefLink">21.17-2</span></a>) and <code class="func">IsSSortedList</code> (<a href="chap21.html#X80CDAF45782E8DCB"><span class="RefLink">21.17-4</span></a>)).</p>

<p>Many sorted lists are in fact homogeneous (see <code class="func">IsHomogeneousList</code> (<a href="chap21.html#X7C71596C82B6EF35"><span class="RefLink">21.1-3</span></a>)), but also non-homogeneous lists may be sorted (see <a href="chap31.html#X7B3BC7BA7BB2646D"><span class="RefLink">31.11</span></a>).</p>

<p>In sorted lists, membership test and computing of positions can be done by binary search, see <a href="chap21.html#X80ABC25582343910"><span class="RefLink">21.19</span></a>.</p>

<p>Note that <strong class="pkg">GAP</strong> cannot compare (by less than) arbitrary objects. This can cause that <code class="func">IsSortedList</code> runs into an error, if <var class="Arg">obj</var> is a list with some non-comparable entries.</p>

<p><a id="X80CDAF45782E8DCB" name="X80CDAF45782E8DCB"></a></p>

<h5>21.17-4 IsSSortedList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSSortedList</code>( <var class="Arg">obj</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSet</code>( <var class="Arg">obj</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if <var class="Arg">obj</var> is a list and it is strictly sorted, and <code class="keyw">false</code> otherwise. <code class="func">IsSSortedList</code> is short for "is strictly sorted list"; <code class="func">IsSet</code> is just a synonym for <code class="func">IsSSortedList</code>.</p>

<p>A list <var class="Arg">list</var> is <em>strictly sorted</em> if it is sorted (see <code class="func">IsSortedList</code> (<a href="chap21.html#X7BAA9B0E81D4A884"><span class="RefLink">21.17-3</span></a>)) and satisfies the relation <span class="SimpleMath"><var class="Arg">list</var>[i] &lt; <var class="Arg">list</var>[j]</span> whenever <span class="SimpleMath">i &lt; j</span>. In particular, such lists are duplicate free (see <code class="func">IsDuplicateFree</code> (<a href="chap21.html#X7FA892828252BB3B"><span class="RefLink">21.17-2</span></a>)).</p>

<p>(Currently there is little special treatment of lists that are sorted but not strictly sorted. In particular, internally represented lists will <em>not</em> store that they are sorted but not strictly sorted.)</p>

<p>Note that <strong class="pkg">GAP</strong> cannot compare (by less than) arbitrary objects. This can cause that <code class="func">IsSSortedList</code> runs into an error, if <var class="Arg">obj</var> is a list with some non-comparable entries.</p>

<p><a id="X780769238600AFD1" name="X780769238600AFD1"></a></p>

<h5>21.17-5 Length</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Length</code>( <var class="Arg">list</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the <em>length</em> of the list <var class="Arg">list</var>, which is defined to be the index of the last bound entry in <var class="Arg">list</var>.</p>

<p><a id="X7B55FB967CDEF468" name="X7B55FB967CDEF468"></a></p>

<h5>21.17-6 ConstantTimeAccessList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ConstantTimeAccessList</code>( <var class="Arg">list</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p><code class="func">ConstantTimeAccessList</code> returns an immutable list containing the same elements as the list <var class="Arg">list</var> (which may have holes) in the same order. If <var class="Arg">list</var> is already a constant time access list, <code class="func">ConstantTimeAccessList</code> returns an immutable copy of <var class="Arg">list</var> directly. Otherwise it puts all elements and holes of <var class="Arg">list</var> into a new list and makes that list immutable.</p>

<p><a id="X83E558E37D1B44D4" name="X83E558E37D1B44D4"></a></p>

<h4>21.18 <span class="Heading">Sorting Lists</span></h4>

<p><a id="X7FE4975F8166884D" name="X7FE4975F8166884D"></a></p>

<h5>21.18-1 Sort</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Sort</code>( <var class="Arg">list</var>[, <var class="Arg">func</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>sorts the list <var class="Arg">list</var> in increasing order. In the one argument form <code class="func">Sort</code> uses the operator <code class="code">&lt;</code> to compare the elements. (If the list is not homogeneous it is the users responsibility to ensure that <code class="code">&lt;</code> is defined for all element pairs, see <a href="chap31.html#X7B3BC7BA7BB2646D"><span class="RefLink">31.11</span></a>) In the two argument form <code class="func">Sort</code> uses the function <var class="Arg">func</var> to compare elements. <var class="Arg">func</var> must be a function taking two arguments that returns <code class="keyw">true</code> if the first is regarded as strictly smaller than the second, and <code class="keyw">false</code> otherwise.</p>

<p>Note that, in cases where it is applicable, <code class="func">SortBy</code> is likely to be more efficient.</p>

<p><code class="func">Sort</code> does not return anything, it just changes the argument <var class="Arg">list</var>. Use <code class="func">ShallowCopy</code> (<a href="chap12.html#X846BC7107C352031"><span class="RefLink">12.7-1</span></a>) if you want to keep <var class="Arg">list</var>. Use <code class="func">Reversed</code> (<a href="chap21.html#X7C4FDB007C3F54A1"><span class="RefLink">21.20-7</span></a>) if you want to get a new list that is sorted in decreasing order.</p>

<p>It is possible to sort lists that contain multiple elements which compare equal. It is not guaranteed that those elements keep their relative order, i.e., <code class="func">Sort</code> is not stable.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list := [ 5, 4, 6, 1, 7, 5 ];; Sort( list ); list;</span>
[ 1, 4, 5, 5, 6, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list := [ [0,6], [1,2], [1,3], [1,5], [0,4], [3,4] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sort( list, function(v,w) return v*v &lt; w*w; end );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list;  # sorted according to the Euclidean distance from [0,0]</span>
[ [ 1, 2 ], [ 1, 3 ], [ 0, 4 ], [ 3, 4 ], [ 1, 5 ], [ 0, 6 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list := [ [0,6], [1,3], [3,4], [1,5], [1,2], [0,4], ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sort( list, function(v,w) return v[1] &lt; w[1]; end );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># note the random order of the elements with equal first component:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list;</span>
[ [ 0, 6 ], [ 0, 4 ], [ 1, 3 ], [ 1, 5 ], [ 1, 2 ], [ 3, 4 ] ]
</pre></div>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SortBy</code>( <var class="Arg">list</var>, <var class="Arg">func</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>sorts the list <var class="Arg">list</var> into an order such that <code class="code">func(list[i]) &lt;= func(list[i+1])</code> for all relevant <var class="Arg">i</var>. <var class="Arg">func</var> must thus be a function on one argument which returns values that can be compared. Each <code class="code">func(list[i])</code> is computed just once and stored, making this more efficient than using the two-argument version of <code class="func">Sort</code> in many cases.</p>

<p><a id="X791F2B2C7E9B9A46" name="X791F2B2C7E9B9A46"></a></p>

<h5>21.18-2 SortParallel</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SortParallel</code>( <var class="Arg">list1</var>, <var class="Arg">list2</var>[, <var class="Arg">func</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>sorts the list <var class="Arg">list1</var> in increasing order just as <code class="func">Sort</code> (<a href="chap21.html#X7FE4975F8166884D"><span class="RefLink">21.18-1</span></a>) does. In parallel it applies the same exchanges that are necessary to sort <var class="Arg">list1</var> to the list <var class="Arg">list2</var>, which must of course have at least as many elements as <var class="Arg">list1</var> does.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list1 := [ 5, 4, 6, 1, 7, 5 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list2 := [ 2, 3, 5, 7, 8, 9 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SortParallel( list1, list2 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list1;</span>
[ 1, 4, 5, 5, 6, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list2;</span>
[ 7, 3, 2, 9, 5, 8 ]
</pre></div>

<p>Note that <code class="code">[ 7, 3, 2, 9, 5, 8 ]</code> or <code class="code">[ 7, 3, 9, 2, 5, 8 ]</code> are possible results.</p>

<p><a id="X87287FCA81E2B06A" name="X87287FCA81E2B06A"></a></p>

<h5>21.18-3 Sortex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Sortex</code>( <var class="Arg">list</var>[, <var class="Arg">func</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>sorts the list <var class="Arg">list</var> and returns a permutation that can be applied to <var class="Arg">list</var> to obtain the sorted list. The one argument form sorts via the operator <code class="code">&lt;</code>, the two argument form sorts w.r.t. the function <var class="Arg">func</var>. (If the list is not homogeneous it is the user's responsibility to ensure that <code class="code">&lt;</code> is defined for all element pairs, see <a href="chap31.html#X7B3BC7BA7BB2646D"><span class="RefLink">31.11</span></a>)</p>

<p><code class="func">Permuted</code> (<a href="chap21.html#X7B5A19098406347A"><span class="RefLink">21.20-18</span></a>) allows you to rearrange a list according to a given permutation.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list1 := [ 5, 4, 6, 1, 7, 5 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list2 := ShallowCopy( list1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">perm := Sortex( list1 );</span>
(1,3,5,6,4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list1;</span>
[ 1, 4, 5, 5, 6, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Permuted( list2, perm );</span>
[ 1, 4, 5, 5, 6, 7 ]
</pre></div>

<p><a id="X800209E881E7CECB" name="X800209E881E7CECB"></a></p>

<h5>21.18-4 SortingPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SortingPerm</code>( <var class="Arg">list</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p><code class="func">SortingPerm</code> returns the same as <code class="func">Sortex</code> (<a href="chap21.html#X87287FCA81E2B06A"><span class="RefLink">21.18-3</span></a>) but does <em>not</em> change the argument.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list1 := [ 5, 4, 6, 1, 7, 5 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list2 := ShallowCopy( list1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">perm := SortingPerm( list1 );</span>
(1,3,5,6,4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list1;</span>
[ 5, 4, 6, 1, 7, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Permuted( list2, perm );</span>
[ 1, 4, 5, 5, 6, 7 ]
</pre></div>

<p>The default methods for all of these sorting operations currently use Shell sort as it has a comparable performance to Quicksort for lists of length at most a few thousands, and has better worst-case behaviour.</p>

<p><a id="X80ABC25582343910" name="X80ABC25582343910"></a></p>

<h4>21.19 <span class="Heading">Sorted Lists and Sets</span></h4>

<p>Searching objects in a list works much quicker if the list is known to be sorted. Currently <strong class="pkg">GAP</strong> exploits the sortedness of a list automatically only if the list is <em>strictly sorted</em>, which is indicated by the property <code class="func">IsSSortedList</code> (<a href="chap21.html#X80CDAF45782E8DCB"><span class="RefLink">21.17-4</span></a>).</p>

<p>Remember that a list of <em>mutable</em> objects cannot store that it is strictly sorted but has to test it anew whenever it is asked whether it is sorted, see the remark in <a href="chap21.html#X7865747A7CCF5812"><span class="RefLink">21.17</span></a>. Therefore <strong class="pkg">GAP</strong> cannot take advantage of the sortedness of a list if this list has mutable entries. Moreover, if a sorted list <var class="Arg">list</var> with mutable elements is used as an argument of a function that <em>expects</em> this argument to be sorted, for example <code class="func">UniteSet</code> (<a href="chap21.html#X7B3469CD7EFC1A87"><span class="RefLink">21.19-6</span></a>) or <code class="func">RemoveSet</code> (<a href="chap21.html#X7FCA282E789A4F4B"><span class="RefLink">21.19-5</span></a>), then it is checked whether <var class="Arg">list</var> is in fact sorted; this check can have the effect actually to slow down the computations, compared to computations with sorted lists of immutable elements or computations that do not involve functions that do automatically check sortedness.</p>

<p>Strictly sorted lists are used to represent <em>sets</em> in <strong class="pkg">GAP</strong>. More precisely, a strictly sorted list is called a <em>proper set</em> in the following, in order to avoid confusion with domains (see <a href="chap12.html#X7BAF69417BB925F6"><span class="RefLink">12.4</span></a>) which also represent sets.</p>

<p>In short proper sets are represented by sorted lists without holes and duplicates in <strong class="pkg">GAP</strong>. Note that we guarantee this representation, so you may make use of the fact that a set is represented by a sorted list in your functions.</p>

<p>In some contexts (for example see <a href="chap16.html#X7BDA99EE7CEADA7C"><span class="RefLink">16</span></a>), we also want to talk about multisets. A <em>multiset</em> is like a set, except that an element may appear several times in a multiset. Such multisets are represented by sorted lists without holes that may have duplicates.</p>

<p>This section lists only those functions that are defined exclusively for proper sets. Set theoretic functions for general collections, such as <code class="func">Intersection</code> (<a href="chap30.html#X851069107CACF98E"><span class="RefLink">30.5-2</span></a>) and <code class="func">Union</code> (<a href="chap30.html#X799F0E2F7A502DBA"><span class="RefLink">30.5-3</span></a>), are described in Chapter <a href="chap30.html#X8050A8037984E5B6"><span class="RefLink">30</span></a>. In particular, for the construction of proper sets, see <code class="func">SSortedList</code> (<a href="chap30.html#X7E399AC97FD98217"><span class="RefLink">30.3-7</span></a>) and <code class="func">AsSSortedList</code> (<a href="chap30.html#X856D927378C33548"><span class="RefLink">30.3-10</span></a>). For finding positions in sorted lists, see <code class="func">PositionSorted</code> (<a href="chap21.html#X7A122E848464E534"><span class="RefLink">21.16-5</span></a>).</p>

<p>There are nondestructive counterparts of the functions <code class="func">UniteSet</code> (<a href="chap21.html#X7B3469CD7EFC1A87"><span class="RefLink">21.19-6</span></a>), <code class="func">IntersectSet</code> (<a href="chap21.html#X8473AA657FEC3D4D"><span class="RefLink">21.19-7</span></a>), and <code class="func">SubtractSet</code> (<a href="chap21.html#X80B427537EB07D09"><span class="RefLink">21.19-8</span></a>) available for proper sets. These are <code class="code">UnionSet</code>, <code class="code">IntersectionSet</code>, and <code class="func">Difference</code> (<a href="chap30.html#X825AC0F07E010B07"><span class="RefLink">30.5-4</span></a>). The former two are methods for the more general operations <code class="func">Union</code> (<a href="chap30.html#X799F0E2F7A502DBA"><span class="RefLink">30.5-3</span></a>) and <code class="func">Intersection</code> (<a href="chap30.html#X851069107CACF98E"><span class="RefLink">30.5-2</span></a>), the latter is itself an operation (see <code class="func">Difference</code> (<a href="chap30.html#X825AC0F07E010B07"><span class="RefLink">30.5-4</span></a>)).</p>

<p>The result of <code class="code">IntersectionSet</code> and <code class="code">UnionSet</code> is always a new list, that is not identical to any other list. The elements of that list however are identical to the corresponding elements of the first argument <var class="Arg">set</var>. If <var class="Arg">set</var> is not a proper set it is not specified to which of a number of equal elements in <var class="Arg">set</var> the element in the result is identical (see <a href="chap21.html#X7DD65BEA7EDB0CD7"><span class="RefLink">21.6</span></a>). The following functions, if not explicitly stated differently, take two arguments, <var class="Arg">set</var> and <var class="Arg">obj</var>, where <var class="Arg">set</var> must be a proper set, otherwise an error is signalled; If the second argument <var class="Arg">obj</var> is a list that is not a proper set then <code class="func">Set</code> (<a href="chap30.html#X7E399AC97FD98217"><span class="RefLink">30.3-7</span></a>) is silently applied to it first.</p>

<p><a id="X7B16AD597CB12305" name="X7B16AD597CB12305"></a></p>

<h5>21.19-1 \in</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \in</code>( <var class="Arg">obj</var>, <var class="Arg">list</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>For a list <var class="Arg">list</var> that stores that it is strictly sorted, the test with <code class="func">\in</code> whether the object <var class="Arg">obj</var> is an entry of <var class="Arg">list</var> uses binary search. This test can be entered also with the infix notation <var class="Arg">obj</var> <code class="keyw">in</code> <var class="Arg">list</var>.</p>

<p><a id="X7B4C0FEE7CDF6F2A" name="X7B4C0FEE7CDF6F2A"></a></p>

<h5>21.19-2 IsEqualSet</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsEqualSet</code>( <var class="Arg">list1</var>, <var class="Arg">list2</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>tests whether <var class="Arg">list1</var> and <var class="Arg">list2</var> are equal <em>when viewed as sets</em>, that is if every element of <var class="Arg">list1</var> is an element of <var class="Arg">list2</var> and vice versa. Either argument of <code class="func">IsEqualSet</code> may also be a list that is not a proper set, in which case <code class="func">Set</code> (<a href="chap30.html#X7E399AC97FD98217"><span class="RefLink">30.3-7</span></a>) is applied to it first.</p>

<p>If both lists are proper sets then they are of course equal if and only if they are also equal as lists. Thus <code class="code">IsEqualSet( <var class="Arg">list1</var>, <var class="Arg">list2</var> )</code> is equivalent to <code class="code">Set( <var class="Arg">list1</var> ) = Set( <var class="Arg">list2</var> )</code> (see <code class="func">Set</code> (<a href="chap30.html#X7E399AC97FD98217"><span class="RefLink">30.3-7</span></a>)), but the former is more efficient.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsEqualSet( [2,3,5,7,11], [11,7,5,3,2] );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsEqualSet( [2,3,5,7,11], [2,3,5,7,11,13] );</span>
false
</pre></div>

<p><a id="X79B940567A849216" name="X79B940567A849216"></a></p>

<h5>21.19-3 IsSubsetSet</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSubsetSet</code>( <var class="Arg">list1</var>, <var class="Arg">list2</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>tests whether every element of <var class="Arg">list2</var> is contained in <var class="Arg">list1</var>. Either argument of <code class="func">IsSubsetSet</code> may also be a list that is not a proper set, in which case <code class="func">Set</code> (<a href="chap30.html#X7E399AC97FD98217"><span class="RefLink">30.3-7</span></a>) is applied to it first.</p>

<p><a id="X832C23CC7FCD8892" name="X832C23CC7FCD8892"></a></p>

<h5>21.19-4 AddSet</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AddSet</code>( <var class="Arg">set</var>, <var class="Arg">obj</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>adds the element <var class="Arg">obj</var> to the proper set <var class="Arg">set</var>. If <var class="Arg">obj</var> is already contained in <var class="Arg">set</var> then <var class="Arg">set</var> is not changed. Otherwise <var class="Arg">obj</var> is inserted at the correct position such that <var class="Arg">set</var> is again a proper set afterwards.</p>

<p>Note that <var class="Arg">obj</var> must be in the same family as each element of <var class="Arg">set</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s := [2,3,7,11];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AddSet( s, 5 );  s;</span>
[ 2, 3, 5, 7, 11 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AddSet( s, 13 );  s;</span>
[ 2, 3, 5, 7, 11, 13 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AddSet( s, 3 );  s;</span>
[ 2, 3, 5, 7, 11, 13 ]
</pre></div>

<p><a id="X7FCA282E789A4F4B" name="X7FCA282E789A4F4B"></a></p>

<h5>21.19-5 RemoveSet</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RemoveSet</code>( <var class="Arg">set</var>, <var class="Arg">obj</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>removes the element <var class="Arg">obj</var> from the proper set <var class="Arg">set</var>. If <var class="Arg">obj</var> is not contained in <var class="Arg">set</var> then <var class="Arg">set</var> is not changed. If <var class="Arg">obj</var> is an element of <var class="Arg">set</var> it is removed and all the following elements in the list are moved one position forward.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s := [ 2, 3, 4, 5, 6, 7 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RemoveSet( s, 6 ); s;</span>
[ 2, 3, 4, 5, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RemoveSet( s, 10 ); s;</span>
[ 2, 3, 4, 5, 7 ]
</pre></div>

<p><a id="X7B3469CD7EFC1A87" name="X7B3469CD7EFC1A87"></a></p>

<h5>21.19-6 UniteSet</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UniteSet</code>( <var class="Arg">set</var>, <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>unites the proper set <var class="Arg">set</var> with <var class="Arg">list</var>. This is equivalent to adding all elements of <var class="Arg">list</var> to <var class="Arg">set</var> (see <code class="func">AddSet</code> (<a href="chap21.html#X832C23CC7FCD8892"><span class="RefLink">21.19-4</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">set := [ 2, 3, 5, 7, 11 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UniteSet( set, [ 4, 8, 9 ] );  set;</span>
[ 2, 3, 4, 5, 7, 8, 9, 11 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UniteSet( set, [ 16, 9, 25, 13, 16 ] );  set;</span>
[ 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 25 ]
</pre></div>

<p><a id="X8473AA657FEC3D4D" name="X8473AA657FEC3D4D"></a></p>

<h5>21.19-7 IntersectSet</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IntersectSet</code>( <var class="Arg">set</var>, <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>intersects the proper set <var class="Arg">set</var> with <var class="Arg">list</var>. This is equivalent to removing from <var class="Arg">set</var> all elements of <var class="Arg">set</var> that are not contained in <var class="Arg">list</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">set := [ 2, 3, 4, 5, 7, 8, 9, 11, 13, 16 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IntersectSet( set, [ 3, 5, 7, 9, 11, 13, 15, 17 ] );  set;</span>
[ 3, 5, 7, 9, 11, 13 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IntersectSet( set, [ 9, 4, 6, 8 ] );  set;</span>
[ 9 ]
</pre></div>

<p><a id="X80B427537EB07D09" name="X80B427537EB07D09"></a></p>

<h5>21.19-8 SubtractSet</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SubtractSet</code>( <var class="Arg">set</var>, <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>subtracts <var class="Arg">list</var> from the proper set <var class="Arg">set</var>. This is equivalent to removing from <var class="Arg">set</var> all elements of <var class="Arg">list</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">set := [ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SubtractSet( set, [ 6, 10 ] );  set;</span>
[ 2, 3, 4, 5, 7, 8, 9, 11 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SubtractSet( set, [ 9, 4, 6, 8 ] );  set;</span>
[ 2, 3, 5, 7, 11 ]
</pre></div>

<p><a id="X7DF510F7848CBBFD" name="X7DF510F7848CBBFD"></a></p>

<h4>21.20 <span class="Heading">Operations for Lists</span></h4>

<p>Several of the following functions expect the first argument to be either a list or a collection (see <a href="chap30.html#X8050A8037984E5B6"><span class="RefLink">30</span></a>), with possibly slightly different meaning for lists and non-list collections.</p>

<p><a id="X840C55A77D1BB2E1" name="X840C55A77D1BB2E1"></a></p>

<h5>21.20-1 Concatenation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Concatenation</code>( <var class="Arg">list1</var>, <var class="Arg">list2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Concatenation</code>( <var class="Arg">list</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In the first form <code class="func">Concatenation</code> returns the concatenation of the lists <var class="Arg">list1</var>, <var class="Arg">list2</var>, etc. The <em>concatenation</em> is the list that begins with the elements of <var class="Arg">list1</var>, followed by the elements of <var class="Arg">list2</var>, and so on. Each list may also contain holes, in which case the concatenation also contains holes at the corresponding positions.</p>

<p>In the second form <var class="Arg">list</var> must be a dense list of lists <var class="Arg">list1</var>, <var class="Arg">list2</var>, etc., and <code class="func">Concatenation</code> returns the concatenation of those lists.</p>

<p>The result is a new mutable list, that is not identical to any other list. The elements of that list however are identical to the corresponding elements of <var class="Arg">list1</var>, <var class="Arg">list2</var>, etc. (see <a href="chap21.html#X7DD65BEA7EDB0CD7"><span class="RefLink">21.6</span></a>).</p>

<p>Note that <code class="func">Concatenation</code> creates a new list and leaves its arguments unchanged, while <code class="func">Append</code> (<a href="chap21.html#X79E31DB27C82D6E1"><span class="RefLink">21.4-5</span></a>) changes its first argument. For computing the union of proper sets, <code class="func">Union</code> (<a href="chap30.html#X799F0E2F7A502DBA"><span class="RefLink">30.5-3</span></a>) can be used, see also <a href="chap21.html#X80ABC25582343910"><span class="RefLink">21.19</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Concatenation( [ 1, 2, 3 ], [ 4, 5 ] );</span>
[ 1, 2, 3, 4, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Concatenation( [2,3,,5,,7], [11,,13,,,,17,,19] );</span>
[ 2, 3,, 5,, 7, 11,, 13,,,, 17,, 19 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Concatenation( [ [1,2,3], [2,3,4], [3,4,5] ] );</span>
[ 1, 2, 3, 2, 3, 4, 3, 4, 5 ]
</pre></div>

<p><a id="X7CB0A6AF87C7FAF7" name="X7CB0A6AF87C7FAF7"></a></p>

<h5>21.20-2 Compacted</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Compacted</code>( <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a new mutable list that contains the elements of <var class="Arg">list</var> in the same order but omitting the holes.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l:=[,1,,,3,,,4,[5,,,6],7];;  Compacted( l );</span>
[ 1, 3, 4, [ 5,,, 6 ], 7 ]
</pre></div>

<p><a id="X7ECE9056792F28BA" name="X7ECE9056792F28BA"></a></p>

<h5>21.20-3 Collected</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Collected</code>( <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a new list <var class="Arg">new</var> that contains for each element <var class="Arg">elm</var> of the list <var class="Arg">list</var> a list of length two, the first element of this is <var class="Arg">elm</var> itself and the second element is the number of times <var class="Arg">elm</var> appears in <var class="Arg">list</var>. The order of those pairs in <var class="Arg">new</var> corresponds to the ordering of the elements elm, so that the result is sorted.</p>

<p>For all pairs of elements in <var class="Arg">list</var> the comparison via <code class="code">&lt;</code> must be defined.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Factors( Factorial( 10 ) );</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( last );</span>
[ [ 2, 8 ], [ 3, 4 ], [ 5, 2 ], [ 7, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( last );</span>
[ [ [ 2, 8 ], 1 ], [ [ 3, 4 ], 1 ], [ [ 5, 2 ], 1 ], [ [ 7, 1 ], 1 ] ]
</pre></div>

<p><a id="X8727F2928467C2F9" name="X8727F2928467C2F9"></a></p>

<h5>21.20-4 DuplicateFreeList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DuplicateFreeList</code>( <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Unique</code>( <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a new mutable list whose entries are the elements of the list <var class="Arg">list</var> with duplicates removed. <code class="func">DuplicateFreeList</code> only uses the <code class="code">=</code> comparison and will not sort the result. Therefore <code class="func">DuplicateFreeList</code> can be used even if the elements of <var class="Arg">list</var> do not lie in the same family. Otherwise, if <var class="Arg">list</var> contains objects that can be compared with <code class="func">\&lt;</code> (<a href="chap31.html#X7EF67D047F03CA6F"><span class="RefLink">31.11-1</span></a>) then it is much more efficient to use <code class="func">Set</code> (<a href="chap30.html#X7E399AC97FD98217"><span class="RefLink">30.3-7</span></a>) instead of <code class="func">DuplicateFreeList</code>.</p>

<p><code class="func">Unique</code> is a synonym for <code class="func">DuplicateFreeList</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l:=[1,Z(3),1,"abc",Group((1,2,3),(1,2)),Z(3),Group((1,2),(2,3))];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DuplicateFreeList( l );</span>
[ 1, Z(3), "abc", Group([ (1,2,3), (1,2) ]) ]
</pre></div>

<p><a id="X7F5D4DD87E4378AC" name="X7F5D4DD87E4378AC"></a></p>

<h5>21.20-5 AsDuplicateFreeList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsDuplicateFreeList</code>( <var class="Arg">list</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the same result as <code class="func">DuplicateFreeList</code> (<a href="chap21.html#X8727F2928467C2F9"><span class="RefLink">21.20-4</span></a>), except that the result is immutable.</p>

<p><a id="X7FA272D984EF82ED" name="X7FA272D984EF82ED"></a></p>

<h5>21.20-6 Flat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Flat</code>( <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the list of all elements that are contained in the list <var class="Arg">list</var> or its sublists. That is, <code class="func">Flat</code> first makes a new empty list <var class="Arg">new</var>. Then it loops over the elements <var class="Arg">elm</var> of <var class="Arg">list</var>. If <var class="Arg">elm</var> is not a list it is added to <var class="Arg">new</var>, otherwise <code class="func">Flat</code> appends <code class="code">Flat( <var class="Arg">elm</var> )</code> to <var class="Arg">new</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Flat( [ 1, [ 2, 3 ], [ [ 1, 2 ], 3 ] ] );</span>
[ 1, 2, 3, 1, 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Flat( [ ] );</span>
[  ]
</pre></div>

<p>To reconstruct a matrix from the list obtained by applying <code class="func">Flat</code> to the matrix, the sublist operator can be used, as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l:=[9..14];;w:=2;; # w is the length of each row</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sub:=[1..w];;List([1..Length(l)/w],i-&gt;l{(i-1)*w+sub});</span>
[ [ 9, 10 ], [ 11, 12 ], [ 13, 14 ] ]
</pre></div>

<p><a id="X7C4FDB007C3F54A1" name="X7C4FDB007C3F54A1"></a></p>

<h5>21.20-7 Reversed</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Reversed</code>( <var class="Arg">list</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a new mutable list, containing the elements of the dense list <var class="Arg">list</var> in reversed order.</p>

<p>The argument list is unchanged. The result list is a new list, that is not identical to any other list. The elements of that list however are identical to the corresponding elements of the argument list (see <a href="chap21.html#X7DD65BEA7EDB0CD7"><span class="RefLink">21.6</span></a>).</p>

<p><code class="func">Reversed</code> implements a special case of list assignment, which can also be formulated in terms of the <code class="code">{}</code> operator (see <a href="chap21.html#X8611EF768210625B"><span class="RefLink">21.4</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Reversed( [ 1, 4, 9, 5, 6, 7 ] );</span>
[ 7, 6, 5, 9, 4, 1 ]
</pre></div>

<p><a id="X8057372F83374193" name="X8057372F83374193"></a></p>

<h5>21.20-8 Shuffle</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Shuffle</code>( <var class="Arg">list</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>The argument <var class="Arg">list</var> must be a dense mutable list. This operation permutes the entries of <var class="Arg">list</var> randomly (in place), and returns <var class="Arg">list</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Reset(GlobalMersenneTwister, 12345);; # make manual tester happy</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l := [1..20];</span>
[ 1 .. 20 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m := Shuffle(ShallowCopy(l));</span>
[ 15, 13, 3, 19, 8, 11, 14, 7, 16, 4, 17, 18, 5, 1, 10, 6, 2, 9, 12, 
  20 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l;</span>
[ 1 .. 20 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Shuffle(l);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l;</span>
[ 3, 4, 18, 13, 10, 7, 9, 8, 14, 17, 16, 6, 19, 12, 1, 11, 20, 2, 15, 
  5 ]
</pre></div>

<p><a id="X7BA5EF2181DD78D7" name="X7BA5EF2181DD78D7"></a></p>

<h5>21.20-9 IsLexicographicallyLess</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsLexicographicallyLess</code>( <var class="Arg">list1</var>, <var class="Arg">list2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">list1</var> and <var class="Arg">list2</var> be two dense, but not necessarily homogeneous lists (see <code class="func">IsDenseList</code> (<a href="chap21.html#X870AA9D8798C93DD"><span class="RefLink">21.1-2</span></a>), <code class="func">IsHomogeneousList</code> (<a href="chap21.html#X7C71596C82B6EF35"><span class="RefLink">21.1-3</span></a>)), such that for each <span class="SimpleMath">i</span>, the entries in both lists at position <span class="SimpleMath">i</span> can be compared via <code class="code">&lt;</code>. <code class="func">IsLexicographicallyLess</code> returns <code class="keyw">true</code> if <var class="Arg">list1</var> is smaller than <var class="Arg">list2</var> w.r.t. lexicographical ordering, and <code class="keyw">false</code> otherwise.</p>

<p><a id="X8075FBDE7B81B4C8" name="X8075FBDE7B81B4C8"></a></p>

<h5>21.20-10 Apply</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Apply</code>( <var class="Arg">list</var>, <var class="Arg">func</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">Apply</code> applies the function <var class="Arg">func</var> to every element of the dense and mutable list <var class="Arg">list</var>, and replaces each element entry by the corresponding return value.</p>

<p><code class="func">Apply</code> changes its argument. The nondestructive counterpart of <code class="func">Apply</code> is <code class="func">List</code> (<a href="chap30.html#X7F12F40E87F3C3A7"><span class="RefLink">30.3-5</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l:= [ 1, 2, 3 ];;  Apply( l, i -&gt; i^2 );  l;</span>
[ 1, 4, 9 ]
</pre></div>

<p><a id="X7EF6E2BC81DBF6FB" name="X7EF6E2BC81DBF6FB"></a></p>

<h5>21.20-11 Perform</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Perform</code>( <var class="Arg">list</var>, <var class="Arg">func</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">Perform</code> applies the function <var class="Arg">func</var> to every element of the list <var class="Arg">list</var>, discarding any return values. It does not return a value.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l := [1, 2, 3];; Perform(l, </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">function(x) if IsPrimeInt(x) then Print(x,"\n"); fi; end);</span>
2
3
</pre></div>

<p><a id="X8763882A7D65F979" name="X8763882A7D65F979"></a></p>

<h5>21.20-12 PermListList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermListList</code>( <var class="Arg">list1</var>, <var class="Arg">list2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a permutation <span class="SimpleMath">p</span> of <code class="code">[ 1 .. Length( <var class="Arg">list1</var> ) ]</code> such that <var class="Arg">list1</var><span class="SimpleMath">[i</span><code class="code">^</code><span class="SimpleMath">p] =</span> <var class="Arg">list2</var><span class="SimpleMath">[i]</span>. It returns <code class="keyw">fail</code> if there is no such permutation.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list1 := [ 5, 4, 6, 1, 7, 5 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">list2 := [ 4, 1, 7, 5, 5, 6 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">perm := PermListList(list1, list2);</span>
(1,2,4)(3,5,6)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Permuted( list2, perm );</span>
[ 5, 4, 6, 1, 7, 5 ]
</pre></div>

<p><a id="X82CE0DE8828E4303" name="X82CE0DE8828E4303"></a></p>

<h5>21.20-13 <span class="Heading">Maximum</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Maximum</code>( <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Maximum</code>( <var class="Arg">list</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In the first form <code class="func">Maximum</code> returns the <em>maximum</em> of its arguments, i.e., one argument <var class="Arg">obj</var> for which <span class="SimpleMath"><var class="Arg">obj</var><var class="Arg">obj1</var></span>, <span class="SimpleMath"><var class="Arg">obj</var><var class="Arg">obj2</var></span> etc.</p>

<p>In the second form <code class="func">Maximum</code> takes a homogeneous list <var class="Arg">list</var> and returns the maximum of the elements in this list.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( -123, 700, 123, 0, -1000 );</span>
700
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( [ -123, 700, 123, 0, -1000 ] );</span>
700
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># lists are compared elementwise:</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Maximum( [1,2], [0,15], [1,5], [2,-11] );  </span>
[ 2, -11 ]
</pre></div>

<p><a id="X82F133EC7F89665F" name="X82F133EC7F89665F"></a></p>

<h5>21.20-14 <span class="Heading">Minimum</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Minimum</code>( <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Minimum</code>( <var class="Arg">list</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In the first form <code class="func">Minimum</code> returns the <em>minimum</em> of its arguments, i.e., one argument <var class="Arg">obj</var> for which <span class="SimpleMath"><var class="Arg">obj</var><var class="Arg">obj1</var></span>, <span class="SimpleMath"><var class="Arg">obj</var><var class="Arg">obj2</var></span> etc.</p>

<p>In the second form <code class="func">Minimum</code> takes a homogeneous list <var class="Arg">list</var> and returns the minimum of the elements in this list.</p>

<p>Note that for both <code class="func">Maximum</code> (<a href="chap21.html#X82CE0DE8828E4303"><span class="RefLink">21.20-13</span></a>) and <code class="func">Minimum</code> the comparison of the objects <var class="Arg">obj1</var>, <var class="Arg">obj2</var> etc. must be defined; for that, usually they must lie in the same family (see <a href="chap13.html#X846063757EC05986"><span class="RefLink">13.1</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Minimum( -123, 700, 123, 0, -1000 );</span>
-1000
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Minimum( [ -123, 700, 123, 0, -1000 ] );</span>
-1000
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Minimum( [ 1, 2 ], [ 0, 15 ], [ 1, 5 ], [ 2, -11 ] );</span>
[ 0, 15 ]
</pre></div>

<p><a id="X842851EB7E0969F7" name="X842851EB7E0969F7"></a></p>

<h5>21.20-15 <span class="Heading">MaximumList and MinimumList</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MaximumList</code>( <var class="Arg">list</var>[, <var class="Arg">seed</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MinimumList</code>( <var class="Arg">list</var>[, <var class="Arg">seed</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>return the maximum resp. the minimum of the elements in the list <var class="Arg">list</var>. They are the operations called by <code class="func">Maximum</code> (<a href="chap21.html#X82CE0DE8828E4303"><span class="RefLink">21.20-13</span></a>) resp. <code class="func">Minimum</code> (<a href="chap21.html#X82F133EC7F89665F"><span class="RefLink">21.20-14</span></a>). Methods can be installed for special kinds of lists. For example, there are special methods to compute the maximum resp. the minimum of a range (see <a href="chap21.html#X79596BDE7CAF8491"><span class="RefLink">21.22</span></a>).</p>

<p>If a second argument <var class="Arg">seed</var> is supplied, then the result is the maximum resp. minimum of the union of <var class="Arg">list</var> and <var class="Arg">seed</var>. In this manner, the operations may be applied to empty lists.</p>

<p><a id="X7E1593B979BDF2CD" name="X7E1593B979BDF2CD"></a></p>

<h5>21.20-16 <span class="Heading">Cartesian</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Cartesian</code>( <var class="Arg">list1</var>, <var class="Arg">list2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Cartesian</code>( <var class="Arg">list</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In the first form <code class="func">Cartesian</code> returns the cartesian product of the lists <var class="Arg">list1</var>, <var class="Arg">list2</var>, etc.</p>

<p>In the second form <var class="Arg">list</var> must be a list of lists <var class="Arg">list1</var>, <var class="Arg">list2</var>, etc., and <code class="func">Cartesian</code> returns the cartesian product of those lists.</p>

<p>The <em>cartesian product</em> is a list <var class="Arg">cart</var> of lists <var class="Arg">tup</var>, such that the first element of <var class="Arg">tup</var> is an element of <var class="Arg">list1</var>, the second element of <var class="Arg">tup</var> is an element of <var class="Arg">list2</var>, and so on. The total number of elements in <var class="Arg">cart</var> is the product of the lengths of the argument lists. In particular <var class="Arg">cart</var> is empty if and only if at least one of the argument lists is empty. Also <var class="Arg">cart</var> contains duplicates if and only if no argument list is empty and at least one contains duplicates.</p>

<p>The last index runs fastest. That means that the first element <var class="Arg">tup1</var> of <var class="Arg">cart</var> contains the first element from <var class="Arg">list1</var>, from <var class="Arg">list2</var> and so on. The second element <var class="Arg">tup2</var> of <var class="Arg">cart</var> contains the first element from <var class="Arg">list1</var>, the first from <var class="Arg">list2</var>, an so on, but the last element of <var class="Arg">tup2</var> is the second element of the last argument list. This implies that <var class="Arg">cart</var> is a proper set if and only if all argument lists are proper sets (see <a href="chap21.html#X80ABC25582343910"><span class="RefLink">21.19</span></a>).</p>

<p>The function <code class="func">Tuples</code> (<a href="chap16.html#X86A3CA0F7CC8C320"><span class="RefLink">16.2-8</span></a>) computes the <var class="Arg">k</var>-fold cartesian product of a list.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cartesian( [1,2], [3,4], [5,6] );</span>
[ [ 1, 3, 5 ], [ 1, 3, 6 ], [ 1, 4, 5 ], [ 1, 4, 6 ], [ 2, 3, 5 ], 
  [ 2, 3, 6 ], [ 2, 4, 5 ], [ 2, 4, 6 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cartesian( [1,2,2], [1,1,2] );</span>
[ [ 1, 1 ], [ 1, 1 ], [ 1, 2 ], [ 2, 1 ], [ 2, 1 ], [ 2, 2 ], 
  [ 2, 1 ], [ 2, 1 ], [ 2, 2 ] ]
</pre></div>

<p><a id="X7E76F5A782184823" name="X7E76F5A782184823"></a></p>

<h5>21.20-17 <span class="Heading">IteratorOfCartesianProduct</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IteratorOfCartesianProduct</code>( <var class="Arg">list1</var>, <var class="Arg">list2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IteratorOfCartesianProduct</code>( <var class="Arg">list</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In the first form <code class="func">IteratorOfCartesianProduct</code> returns an iterator (see <a href="chap30.html#X85A3F00985453F95"><span class="RefLink">30.8</span></a>) of all elements of the cartesian product (see <code class="func">Cartesian</code> (<a href="chap21.html#X7E1593B979BDF2CD"><span class="RefLink">21.20-16</span></a>)) of the lists <var class="Arg">list1</var>, <var class="Arg">list2</var>, etc.</p>

<p>In the second form <var class="Arg">list</var> must be a list of lists <var class="Arg">list1</var>, <var class="Arg">list2</var>, etc., and <code class="func">IteratorOfCartesianProduct</code> returns an iterator of the cartesian product of those lists.</p>

<p>Resulting tuples will be returned in the lexicographic order. Usage of iterators of cartesian products is recommended in the case when the resulting cartesian product is big enough, so its generating and storage will require essential amount of runtime and memory. For smaller cartesian products it is faster to generate the full set of tuples using <code class="func">Cartesian</code> (<a href="chap21.html#X7E1593B979BDF2CD"><span class="RefLink">21.20-16</span></a>) and then loop over its elements (with some minor overhead of needing more memory).</p>

<p><a id="X7B5A19098406347A" name="X7B5A19098406347A"></a></p>

<h5>21.20-18 Permuted</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Permuted</code>( <var class="Arg">list</var>, <var class="Arg">perm</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a new list <var class="Arg">new</var> that contains the elements of the list <var class="Arg">list</var> permuted according to the permutation <var class="Arg">perm</var>. That is <code class="code"><var class="Arg">new</var>[<var class="Arg">i</var>^<var class="Arg">perm</var>] = <var class="Arg">list</var>[<var class="Arg">i</var>]</code>.</p>

<p><code class="func">Sortex</code> (<a href="chap21.html#X87287FCA81E2B06A"><span class="RefLink">21.18-3</span></a>) allows you to compute a permutation that must be applied to a list in order to get the sorted list.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Permuted( [ 5, 4, 6, 1, 7, 5 ], (1,3,5,6,4) );</span>
[ 1, 4, 5, 5, 6, 7 ]
</pre></div>

<p><a id="X86CB7DCE8510F977" name="X86CB7DCE8510F977"></a></p>

<h5>21.20-19 List</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; List</code>( <var class="Arg">list</var>[, <var class="Arg">func</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function returns a new mutable list <code class="code">new</code> of the same length as the list <var class="Arg">list</var> (which may have holes). The entry <code class="code">new[i]</code> is unbound if <code class="code"><var class="Arg">list</var>[i]</code> is unbound. Otherwise <code class="code">new[i] = <var class="Arg">func</var>(<var class="Arg">list</var>[i])</code>. If the argument <var class="Arg">func</var> is omitted, its default is <code class="func">IdFunc</code> (<a href="chap5.html#X810325697BDEF899"><span class="RefLink">5.3-4</span></a>), so this function does the same as <code class="func">ShallowCopy</code> (<a href="chap12.html#X846BC7107C352031"><span class="RefLink">12.7-1</span></a>) (see also <a href="chap21.html#X7ED7C0738495556F"><span class="RefLink">21.7</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [1,2,3], i -&gt; i^2 );</span>
[ 1, 4, 9 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [1..10], IsPrime );</span>
[ false, true, true, false, true, false, true, false, false, false ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([,1,,3,4], x-&gt; x &gt; 2);</span>
[ , false,, true, true ]
</pre></div>

<p>(See also <code class="func">List</code> (<a href="chap30.html#X7F12F40E87F3C3A7"><span class="RefLink">30.3-5</span></a>).)</p>

<p><a id="X7C86D7F7795125F0" name="X7C86D7F7795125F0"></a></p>

<h5>21.20-20 Filtered</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Filtered</code>( <var class="Arg">listorcoll</var>, <var class="Arg">func</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a new list that contains those elements of the list or collection <var class="Arg">listorcoll</var> (see <a href="chap30.html#X8050A8037984E5B6"><span class="RefLink">30</span></a>), respectively, for which the unary function <var class="Arg">func</var> returns <code class="keyw">true</code>.</p>

<p>If the first argument is a list, the order of the elements in the result is the same as the order of the corresponding elements of this list. If an element for which <var class="Arg">func</var> returns <code class="keyw">true</code> appears several times in the list it will also appear the same number of times in the result. The argument list may contain holes, they are ignored by <code class="func">Filtered</code>.</p>

<p>For each element of <var class="Arg">listorcoll</var>, <var class="Arg">func</var> must return either <code class="keyw">true</code> or <code class="keyw">false</code>, otherwise an error is signalled.</p>

<p>The result is a new list that is not identical to any other list. The elements of that list however are identical to the corresponding elements of the argument list (see <a href="chap21.html#X7DD65BEA7EDB0CD7"><span class="RefLink">21.6</span></a>).</p>

<p>List assignment using the operator <code class="func">\{\}</code> (<a href="chap21.html#X78791B8B838A8BA0"><span class="RefLink">21.3-1</span></a>) (see <a href="chap21.html#X8611EF768210625B"><span class="RefLink">21.4</span></a>) can be used to extract elements of a list according to indices given in another list.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Filtered( [1..20], IsPrime );</span>
[ 2, 3, 5, 7, 11, 13, 17, 19 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Filtered( [ 1, 3, 4, -4, 4, 7, 10, 6 ], IsPrimePowerInt );</span>
[ 3, 4, 4, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Filtered( [ 1, 3, 4, -4, 4, 7, 10, 6 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             n -&gt; IsPrimePowerInt(n) and n mod 2 &lt;&gt; 0 );</span>
[ 3, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Filtered( Group( (1,2), (1,2,3) ), x -&gt; Order( x ) = 2 );</span>
[ (2,3), (1,2), (1,3) ]
</pre></div>

<p><a id="X8179B13D80E935FC" name="X8179B13D80E935FC"></a></p>

<h5>21.20-21 Number</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Number</code>( <var class="Arg">listorcoll</var>[, <var class="Arg">func</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>Called with a list <var class="Arg">listorcoll</var>, <code class="func">Number</code> returns the number of bound entries in this list. For dense lists <code class="func">Number</code>, <code class="func">Length</code> (<a href="chap21.html#X780769238600AFD1"><span class="RefLink">21.17-5</span></a>), and <code class="func">Size</code> (<a href="chap30.html#X858ADA3B7A684421"><span class="RefLink">30.4-6</span></a>) return the same value; for lists with holes <code class="func">Number</code> returns the number of bound entries, <code class="func">Length</code> (<a href="chap21.html#X780769238600AFD1"><span class="RefLink">21.17-5</span></a>) returns the largest index of a bound entry, and <code class="func">Size</code> (<a href="chap30.html#X858ADA3B7A684421"><span class="RefLink">30.4-6</span></a>) signals an error.</p>

<p>Called with two arguments, a list or collection <var class="Arg">listorcoll</var> and a unary function <var class="Arg">func</var>, <code class="func">Number</code> returns the number of elements of <var class="Arg">listorcoll</var> for which <var class="Arg">func</var> returns <code class="keyw">true</code>. If an element for which <var class="Arg">func</var> returns <code class="keyw">true</code> appears several times in <var class="Arg">listorcoll</var> it will also be counted the same number of times.</p>

<p>For each element of <var class="Arg">listorcoll</var>, <var class="Arg">func</var> must return either <code class="keyw">true</code> or <code class="keyw">false</code>, otherwise an error is signalled.</p>

<p><code class="func">Filtered</code> (<a href="chap21.html#X7C86D7F7795125F0"><span class="RefLink">21.20-20</span></a>) allows you to extract the elements of a list that have a certain property.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Number( [ 2, 3, 5, 7 ] );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Number( [, 2, 3,, 5,, 7,,,, 11 ] );</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Number( [1..20], IsPrime );</span>
8
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Number( [ 1, 3, 4, -4, 4, 7, 10, 6 ], IsPrimePowerInt );</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Number( [ 1, 3, 4, -4, 4, 7, 10, 6 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           n -&gt; IsPrimePowerInt(n) and n mod 2 &lt;&gt; 0 );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Number( Group( (1,2), (1,2,3) ), x -&gt; Order( x ) = 2 );</span>
3
</pre></div>

<p><a id="X82801DFA84E11272" name="X82801DFA84E11272"></a></p>

<h5>21.20-22 First</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; First</code>( <var class="Arg">list</var>, <var class="Arg">func</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="func">First</code> returns the first element of the list <var class="Arg">list</var> for which the unary function <var class="Arg">func</var> returns <code class="keyw">true</code>. <var class="Arg">list</var> may contain holes. <var class="Arg">func</var> must return either <code class="keyw">true</code> or <code class="keyw">false</code> for each element of <var class="Arg">list</var>, otherwise an error is signalled. If <var class="Arg">func</var> returns <code class="keyw">false</code> for all elements of <var class="Arg">list</var> then <code class="func">First</code> returns <code class="keyw">fail</code>.</p>

<p><code class="func">PositionProperty</code> (<a href="chap21.html#X7E6C763A82C6153B"><span class="RefLink">21.16-7</span></a>) allows you to find the position of the first element in a list that satisfies a certain property.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">First( [10^7..10^8], IsPrime );</span>
10000019
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">First( [10^5..10^6],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">     n -&gt; not IsPrime(n) and IsPrimePowerInt(n) );</span>
100489
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">First( [ 1 .. 20 ], x -&gt; x &lt; 0 );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">First( [ fail ], x -&gt; x = fail );</span>
fail
</pre></div>

<p><a id="X7F06961278166671" name="X7F06961278166671"></a></p>

<h5>21.20-23 ForAll</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ForAll</code>( <var class="Arg">listorcoll</var>, <var class="Arg">func</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>tests whether the unary function <var class="Arg">func</var> returns <code class="keyw">true</code> for all elements in the list or collection <var class="Arg">listorcoll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( [1..20], IsPrime );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( [2,3,4,5,8,9], IsPrimePowerInt );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( [2..14], n -&gt; IsPrimePowerInt(n) or n mod 2 = 0 );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAll( Group( (1,2), (1,2,3) ), i -&gt; SignPerm(i) = 1 );</span>
false
</pre></div>

<p><a id="X7AF82E747A8BDA75" name="X7AF82E747A8BDA75"></a></p>

<h5>21.20-24 ForAny</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ForAny</code>( <var class="Arg">listorcoll</var>, <var class="Arg">func</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>tests whether the unary function <var class="Arg">func</var> returns <code class="keyw">true</code> for at least one element in the list or collection <var class="Arg">listorcoll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAny( [1..20], IsPrime );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAny( [2,3,4,5,8,9], IsPrimePowerInt );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAny( [2..14],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   n -&gt; IsPrimePowerInt(n) and n mod 5 = 0 and not IsPrime(n) );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ForAny( Integers, i -&gt;     i &gt; 0</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                          and ForAll( [0,2..4], j -&gt; IsPrime(i+j) ) );</span>
true
</pre></div>

<p><a id="X7E5C72F27B657948" name="X7E5C72F27B657948"></a></p>

<h5>21.20-25 Product</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Product</code>( <var class="Arg">listorcoll</var>[, <var class="Arg">func</var>][, <var class="Arg">init</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>Called with one argument, a dense list or collection <var class="Arg">listorcoll</var>, <code class="func">Product</code> returns the product of the elements of <var class="Arg">listorcoll</var> (see <a href="chap30.html#X8050A8037984E5B6"><span class="RefLink">30</span></a>).</p>

<p>Called with a dense list or collection <var class="Arg">listorcoll</var> and a function <var class="Arg">func</var>, which must be a function taking one argument, <code class="func">Product</code> applies the function <var class="Arg">func</var> to the elements of <var class="Arg">listorcoll</var>, and returns the product of the results. In either case <code class="func">Product</code> returns <code class="code">1</code> if the first argument is empty.</p>

<p>The general rules for arithmetic operations apply (see <a href="chap21.html#X8676EFE67972FD06"><span class="RefLink">21.15</span></a>), so the result is immutable if and only if all summands are immutable.</p>

<p>If <var class="Arg">listorcoll</var> contains exactly one element then this element (or its image under <var class="Arg">func</var> if applicable) itself is returned, not a shallow copy of this element.</p>

<p>If an additional initial value <var class="Arg">init</var> is given, <code class="func">Product</code> returns the product of <var class="Arg">init</var> and the elements of the first argument resp. of their images under the function <var class="Arg">func</var>. This is useful for example if the first argument is empty and a different identity than <code class="code">1</code> is desired, in which case <var class="Arg">init</var> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Product( [ 2, 3, 5, 7, 11, 13, 17, 19 ] );</span>
9699690
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Product( [1..10], x-&gt;x^2 );</span>
13168189440000
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Product( [ (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) ] );</span>
(1,4)(2,3)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Product( GF(8) );</span>
0*Z(2)
</pre></div>

<p><a id="X7A04B71C84CFCC2D" name="X7A04B71C84CFCC2D"></a></p>

<h5>21.20-26 Sum</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Sum</code>( <var class="Arg">listorcoll</var>[, <var class="Arg">func</var>][, <var class="Arg">init</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>Called with one argument, a dense list or collection <var class="Arg">listorcoll</var>, <code class="func">Sum</code> returns the sum of the elements of <var class="Arg">listorcoll</var> (see <a href="chap30.html#X8050A8037984E5B6"><span class="RefLink">30</span></a>).</p>

<p>Called with a dense list or collection <var class="Arg">listorcoll</var> and a function <var class="Arg">func</var>, which must be a function taking one argument, <code class="func">Sum</code> applies the function <var class="Arg">func</var> to the elements of <var class="Arg">listorcoll</var>, and returns the sum of the results. In either case <code class="func">Sum</code> returns <code class="code">0</code> if the first argument is empty.</p>

<p>The general rules for arithmetic operations apply (see <a href="chap21.html#X8676EFE67972FD06"><span class="RefLink">21.15</span></a>), so the result is immutable if and only if all summands are immutable.</p>

<p>If <var class="Arg">listorcoll</var> contains exactly one element then this element (or its image under <var class="Arg">func</var> if applicable) itself is returned, not a shallow copy of this element.</p>

<p>If an additional initial value <var class="Arg">init</var> is given, <code class="func">Sum</code> returns the sum of <var class="Arg">init</var> and the elements of the first argument resp. of their images under the function <var class="Arg">func</var>. This is useful for example if the first argument is empty and a different zero than <code class="code">0</code> is desired, in which case <var class="Arg">init</var> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sum( [ 2, 3, 5, 7, 11, 13, 17, 19 ] );</span>
77
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sum( [1..10], x-&gt;x^2 );</span>
385
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sum( [ [1,2], [3,4], [5,6] ] );</span>
[ 9, 12 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Sum( GF(8) );</span>
0*Z(2)
</pre></div>

<p><a id="X834E4DF57F3A20F0" name="X834E4DF57F3A20F0"></a></p>

<h5>21.20-27 Iterated</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Iterated</code>( <var class="Arg">list</var>, <var class="Arg">f</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the result of the iterated application of the function <var class="Arg">f</var>, which must take two arguments, to the elements of the list <var class="Arg">list</var>. More precisely, if <var class="Arg">list</var> has length <span class="SimpleMath">n</span> then <code class="func">Iterated</code> returns the result of the following application, <span class="SimpleMath"><var class="Arg">f</var>( ... <var class="Arg">f</var>( <var class="Arg">f</var>( <var class="Arg">list</var>[1], <var class="Arg">list</var>[2] ), <var class="Arg">list</var>[3] ), ..., <var class="Arg">list</var>[n] )</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Iterated( [ 126, 66, 105 ], Gcd );</span>
3
</pre></div>

<p><a id="X7D150C2881881139" name="X7D150C2881881139"></a></p>

<h5>21.20-28 ListN</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ListN</code>( <var class="Arg">list1</var>, <var class="Arg">list2</var>, <var class="Arg">...</var>, <var class="Arg">listn</var>, <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>applies the <span class="SimpleMath">n</span>-argument function <var class="Arg">f</var> to the lists. That is, <code class="func">ListN</code> returns the list whose <span class="SimpleMath">i</span>-th entry is <span class="SimpleMath"><var class="Arg">f</var>(<var class="Arg">list1</var>[i], <var class="Arg">list2</var>[i], ..., <var class="Arg">listn</var>[i])</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ListN( [1,2], [3,4], \+ );</span>
[ 4, 6 ]
</pre></div>

<p><a id="X805CA0B68029B47A" name="X805CA0B68029B47A"></a></p>

<h4>21.21 <span class="Heading">Advanced List Manipulations</span></h4>

<p>The following functions are generalizations of <code class="func">List</code> (<a href="chap30.html#X7F12F40E87F3C3A7"><span class="RefLink">30.3-5</span></a>), <code class="func">Set</code> (<a href="chap30.html#X7E399AC97FD98217"><span class="RefLink">30.3-7</span></a>), <code class="func">Sum</code> (<a href="chap21.html#X7A04B71C84CFCC2D"><span class="RefLink">21.20-26</span></a>), and <code class="func">Product</code> (<a href="chap21.html#X7E5C72F27B657948"><span class="RefLink">21.20-25</span></a>).</p>

<p><a id="X8258477D7F72171B" name="X8258477D7F72171B"></a></p>

<h5>21.21-1 ListX</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ListX</code>( <var class="Arg">arg1</var>, <var class="Arg">arg2</var>, <var class="Arg">...</var>, <var class="Arg">argn</var>, <var class="Arg">func</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">ListX</code> returns a new list constructed from the arguments.</p>

<p>Each of the arguments <var class="Arg">arg1</var>, <var class="Arg">arg2</var>, <span class="SimpleMath">...</span> <var class="Arg">argn</var> must be one of the following:</p>


<dl>
<dt><strong class="Mark">a list or collection</strong></dt>
<dd><p>this introduces a new for-loop in the sequence of nested for-loops and if-statements;</p>

</dd>
<dt><strong class="Mark">a function returning a list or collection</strong></dt>
<dd><p>this introduces a new for-loop in the sequence of nested for-loops and if-statements, where the loop-range depends on the values of the outer loop-variables; or</p>

</dd>
<dt><strong class="Mark">a function returning <code class="keyw">true</code> or <code class="keyw">false</code></strong></dt>
<dd><p>this introduces a new if-statement in the sequence of nested for-loops and if-statements.</p>

</dd>
</dl>
<p>The last argument <var class="Arg">func</var> must be a function, it is applied to the values of the loop-variables and the results are collected.</p>

<p>Thus <code class="code">ListX( <var class="Arg">list</var>, <var class="Arg">func</var> )</code> is the same as <code class="code">List( <var class="Arg">list</var>, <var class="Arg">func</var> )</code>, and <code class="code">ListX( <var class="Arg">list</var>, <var class="Arg">func</var>, x -&gt; x )</code> is the same as <code class="code">Filtered( <var class="Arg">list</var>, <var class="Arg">func</var> )</code>.</p>

<p>As a more elaborate example, assume <var class="Arg">arg1</var> is a list or collection, <var class="Arg">arg2</var> is a function returning <code class="keyw">true</code> or <code class="keyw">false</code>, <var class="Arg">arg3</var> is a function returning a list or collection, and <var class="Arg">arg4</var> is another function returning <code class="keyw">true</code> or <code class="keyw">false</code>, then</p>

<p><code class="code"><var class="Arg">result</var> := ListX( <var class="Arg">arg1</var>, <var class="Arg">arg2</var>, <var class="Arg">arg3</var>, <var class="Arg">arg4</var>, <var class="Arg">func</var> );</code></p>

<p>is equivalent to</p>


<div class="example"><pre>
result := [];
for v1 in arg1 do
  if arg2( v1 ) then
    for v2 in arg3( v1 ) do
      if arg4( v1, v2 ) then
        Add( result, func( v1, v2 ) );
      fi;
    od;
  fi;
od;
</pre></div>

<p>The following example shows how <code class="func">ListX</code> can be used to compute all pairs and all strictly sorted pairs of elements in a list.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l:= [ 1, 2, 3, 4 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pair:= function( x, y ) return [ x, y ]; end;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ListX( l, l, pair );</span>
[ [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 1 ], [ 2, 2 ], 
  [ 2, 3 ], [ 2, 4 ], [ 3, 1 ], [ 3, 2 ], [ 3, 3 ], [ 3, 4 ], 
  [ 4, 1 ], [ 4, 2 ], [ 4, 3 ], [ 4, 4 ] ]
</pre></div>

<p>In the following example, <code class="func">\&lt;</code> (<a href="chap31.html#X7EF67D047F03CA6F"><span class="RefLink">31.11-1</span></a>) is the comparison operation:</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ListX( l, l, \&lt;, pair );</span>
[ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 3 ], [ 2, 4 ], [ 3, 4 ] ]
</pre></div>

<p><a id="X7AC321B87A2DCAF5" name="X7AC321B87A2DCAF5"></a></p>

<h5>21.21-2 SetX</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SetX</code>( <var class="Arg">arg1</var>, <var class="Arg">arg2</var>, <var class="Arg">...</var>, <var class="Arg">func</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>The only difference between <code class="func">SetX</code> and <code class="func">ListX</code> (<a href="chap21.html#X8258477D7F72171B"><span class="RefLink">21.21-1</span></a>) is that the result list of <code class="func">SetX</code> is strictly sorted.</p>

<p><a id="X82B1411E7FBE925F" name="X82B1411E7FBE925F"></a></p>

<h5>21.21-3 SumX</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SumX</code>( <var class="Arg">arg1</var>, <var class="Arg">arg2</var>, <var class="Arg">...</var>, <var class="Arg">func</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">SumX</code> returns the sum of the elements in the list obtained by <code class="func">ListX</code> (<a href="chap21.html#X8258477D7F72171B"><span class="RefLink">21.21-1</span></a>) when this is called with the same arguments.</p>

<p><a id="X7FB318B47D8783DA" name="X7FB318B47D8783DA"></a></p>

<h5>21.21-4 ProductX</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ProductX</code>( <var class="Arg">arg1</var>, <var class="Arg">arg2</var>, <var class="Arg">...</var>, <var class="Arg">func</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">ProductX</code> returns the product of the elements in the list obtained by <code class="func">ListX</code> (<a href="chap21.html#X8258477D7F72171B"><span class="RefLink">21.21-1</span></a>) when this is called with the same arguments.</p>

<p><a id="X79596BDE7CAF8491" name="X79596BDE7CAF8491"></a></p>

<h4>21.22 <span class="Heading">Ranges</span></h4>

<p>A <em>range</em> is a dense list of integers in arithmetic progression (or degression). This is a list of integers such that the difference between consecutive elements is a nonzero constant. Ranges can be abbreviated with the syntactic construct</p>

<p><code class="code">[ <var class="Arg">first</var>, <var class="Arg">second</var> .. <var class="Arg">last</var> ]</code></p>

<p>or, if the difference between consecutive elements is 1, as</p>

<p><code class="code">[ <var class="Arg">first</var> .. <var class="Arg">last</var> ]</code>.</p>

<p>If <code class="code"><var class="Arg">first</var> &gt; <var class="Arg">last</var></code>, <code class="code">[ <var class="Arg">first</var> .. <var class="Arg">last</var> ]</code> is the empty list, which by definition is also a range; also, if <code class="code"><var class="Arg">second</var> &gt; <var class="Arg">first</var> &gt; <var class="Arg">last</var></code> or <code class="code"><var class="Arg">second</var> &lt; <var class="Arg">first</var> &lt; <var class="Arg">last</var></code>, then <code class="code">[ <var class="Arg">first</var>, <var class="Arg">second</var> .. <var class="Arg">last</var> ]</code> is the empty list. If <code class="code"><var class="Arg">first</var> = <var class="Arg">last</var></code>, <code class="code">[ <var class="Arg">first</var>, <var class="Arg">second</var> .. <var class="Arg">last</var> ]</code> is a singleton list, which is a range, too. Note that <code class="code"><var class="Arg">last</var> - <var class="Arg">first</var></code> must be divisible by the increment <code class="code"><var class="Arg">second</var> - <var class="Arg">first</var></code>, otherwise an error is signalled.</p>

<p>Currently, the integers <var class="Arg">first</var>, <var class="Arg">second</var> and <var class="Arg">last</var> and the length of a range must be small integers, that is at least <span class="SimpleMath">-2^d</span> and at most <span class="SimpleMath">2^d - 1</span> with <span class="SimpleMath">d = 28</span> on 32-bit architectures and <span class="SimpleMath">d = 60</span> on 64-bit architectures.</p>

<p>Note also that a range is just a special case of a list. Thus you can access elements in a range (see <a href="chap21.html#X7921047F83F5FA28"><span class="RefLink">21.3</span></a>), test for membership etc. You can even assign to such a range if it is mutable (see <a href="chap21.html#X8611EF768210625B"><span class="RefLink">21.4</span></a>). Of course, unless you assign <code class="code"><var class="Arg">last</var> + <var class="Arg">second</var> - <var class="Arg">first</var></code> to the entry <code class="code"><var class="Arg">range</var>[ Length( <var class="Arg">range</var> ) + 1 ]</code>, the resulting list will no longer be a range.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">r := [10..20];</span>
[ 10 .. 20 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( r );</span>
11
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">r[3];</span>
12
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">17 in r;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">r[12] := 25;; r;  # r is no longer a range</span>
[ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">r := [1,3..17];</span>
[ 1, 3 .. 17 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( r );</span>
9
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">r[4];</span>
7
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">r := [0,-1..-9];</span>
[ 0, -1 .. -9 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">r[5];</span>
-4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">r := [ 1, 4 .. 32 ];</span>
Error, Range: &lt;last&gt;-&lt;first&gt; (31) must be divisible by &lt;inc&gt; (3)
</pre></div>

<p>Most often ranges are used in connection with the <code class="keyw">for</code>-loop see <a href="chap4.html#X78783E777867638A"><span class="RefLink">4.20</span></a>). Here the construct</p>

<p><code class="code">for <var class="Arg">var</var> in [ <var class="Arg">first</var> .. <var class="Arg">last</var> ] do <var class="Arg">statements</var> od</code></p>

<p>replaces the</p>

<p><code class="code">for <var class="Arg">var</var> from <var class="Arg">first</var> to <var class="Arg">last</var> do <var class="Arg">statements</var> od</code></p>

<p>which is more usual in other programming languages.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s := [];; for i in [10..20] do Add( s, i^2 ); od; s;</span>
[ 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400 ]
</pre></div>

<p>Note that a range with <code class="code"><var class="Arg">last</var> &gt;= <var class="Arg">first</var></code> is at the same time also a proper set (see <a href="chap21.html#X80ABC25582343910"><span class="RefLink">21.19</span></a>), because it contains no holes or duplicates and is sorted, and also a row vector (see <a href="chap23.html#X82C7E6CF7BA03391"><span class="RefLink">23</span></a>), because it contains no holes and all elements are integers.</p>

<p><a id="X86DDC2FF7A50FBEE" name="X86DDC2FF7A50FBEE"></a></p>

<h5>21.22-1 IsRange</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsRange</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>tests if the object <var class="Arg">obj</var> is a range, i.e. is a dense list of integers that is also a range (see <a href="chap21.html#X79596BDE7CAF8491"><span class="RefLink">21.22</span></a> for a definition of "range").</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRange( [1,2,3] );  IsRange( [7,5,3,1] );</span>
true
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRange( [1,2,4,5] );  IsRange( [1,,3,,5,,7] );</span>
false
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsRange( [] );  IsRange( [1] );</span>
true
true
</pre></div>

<p><a id="X7D22B2298167A58F" name="X7D22B2298167A58F"></a></p>

<h5>21.22-2 ConvertToRangeRep</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ConvertToRangeRep</code>( <var class="Arg">list</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>For some lists the <strong class="pkg">GAP</strong> kernel knows that they are in fact ranges. Those lists are represented internally in a compact way instead of the ordinary way.</p>

<p>If <var class="Arg">list</var> is a range then <code class="func">ConvertToRangeRep</code> changes the representation of <var class="Arg">list</var> to this compact representation.</p>

<p>This is important since this representation needs only 12 bytes for the entire range while the ordinary representation needs <span class="SimpleMath">4 length</span> bytes.</p>

<p>Note that a list that is represented in the ordinary way might still be a range. It is just that <strong class="pkg">GAP</strong> does not know this. The following rules tell you under which circumstances a range is represented in the compact way, so you can write your program in such a way that you make best use of this compact representation for ranges.</p>

<p>Lists created by the syntactic construct <code class="code">[ <var class="Arg">first</var>, <var class="Arg">second</var> .. <var class="Arg">last</var> ]</code> are of course known to be ranges and are represented in the compact way.</p>

<p>If you call <code class="func">ConvertToRangeRep</code> for a list represented the ordinary way that is indeed a range, the representation is changed from the ordinary to the compact representation. A call of <code class="func">ConvertToRangeRep</code> for a list that is not a range is ignored.</p>

<p>If you change a mutable range that is represented in the compact way, by assignment, <code class="func">Add</code> (<a href="chap21.html#X795EC9D67E34DAB0"><span class="RefLink">21.4-2</span></a>) or <code class="func">Append</code> (<a href="chap21.html#X79E31DB27C82D6E1"><span class="RefLink">21.4-5</span></a>), the range will be converted to the ordinary representation, even if the change is such that the resulting list is still a proper range.</p>

<p>Suppose you have built a proper range in such a way that it is represented in the ordinary way and that you now want to convert it to the compact representation to save space. Then you should call <code class="func">ConvertToRangeRep</code> with that list as an argument. You can think of the call to <code class="func">ConvertToRangeRep</code> as a hint to <strong class="pkg">GAP</strong> that this list is a proper range.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">r:= [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConvertToRangeRep( r );  r;</span>
[ 1 .. 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">l:= [ 1, 2, 4, 5 ];;  ConvertToRangeRep( l );  l;</span>
[ 1, 2, 4, 5 ]
</pre></div>

<p><a id="X7EA3ACE27E43D174" name="X7EA3ACE27E43D174"></a></p>

<h4>21.23 <span class="Heading">Enumerators</span></h4>

<p>An <em>enumerator</em> is an immutable list that need not store its elements explicitly but knows, from a set of basic data, how to determine the <span class="SimpleMath">i</span>-th element and the position of a given object. A typical example of this is a vector space over a finite field with <span class="SimpleMath">q</span> elements, say, for which it is very easy to enumerate all elements using <span class="SimpleMath">q</span>-adic expansions of integers.</p>

<p>Using this enumeration can be even quicker than a binary search in a sorted list of vectors, see <code class="func">IsQuickPositionList</code> (<a href="chap21.html#X7BB462C17962647F"><span class="RefLink">21.23-1</span></a>).</p>

<p>On the one hand, element access to an enumerator may take more time than element access to an internally represented list containing the same elements. On the other hand, an enumerator may save a vast amount of memory. Take for example a permutation group of size a few millions. Even for moderate degree it is unlikely that a list of all its elements will fit into memory whereas it is no problem to construct an enumerator from a stabilizer chain (see <a href="chap43.html#X7FA58C3A8283F3BD"><span class="RefLink">43.6</span></a>).</p>

<p>There are situations where one only wants to loop over the elements of a domain, without using the special facilities of an enumerator, namely the particular order of elements and the possibility to find the position of elements. For such cases, <strong class="pkg">GAP</strong> provides iterators (see <a href="chap30.html#X85A3F00985453F95"><span class="RefLink">30.8</span></a>).</p>

<p>The functions <code class="func">Enumerator</code> (<a href="chap30.html#X7EF8910F82B45EC7"><span class="RefLink">30.3-2</span></a>) and <code class="func">EnumeratorSorted</code> (<a href="chap30.html#X80CD7DDC7D0C60D5"><span class="RefLink">30.3-3</span></a>) return enumerators of domains. Most of the special implementations of enumerators in the <strong class="pkg">GAP</strong> library are based on the general interface that is provided by <code class="func">EnumeratorByFunctions</code> (<a href="chap30.html#X85E149177AC547C3"><span class="RefLink">30.3-4</span></a>); one generic example is <code class="func">EnumeratorByBasis</code> (<a href="chap61.html#X7EB0D16A7EC2DEE3"><span class="RefLink">61.6-5</span></a>), which can be used to get an enumerator of a finite dimensional free module.</p>

<p>Also enumerators for non-domains can be implemented via <code class="func">EnumeratorByFunctions</code> (<a href="chap30.html#X85E149177AC547C3"><span class="RefLink">30.3-4</span></a>); for a discussion, see <a href="chap79.html#X849D8BC278649EA5"><span class="RefLink">79.12</span></a>.</p>

<p><a id="X7BB462C17962647F" name="X7BB462C17962647F"></a></p>

<h5>21.23-1 IsQuickPositionList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsQuickPositionList</code>( <var class="Arg">list</var> )</td><td class="tdright">( filter )</td></tr></table></div>
<p>This filter indicates that a position test in <var class="Arg">list</var> is quicker than about 5 or 6 element comparisons for "smaller". If this is the case it can be beneficial to use <code class="func">Position</code> (<a href="chap21.html#X79975EC6783B4293"><span class="RefLink">21.16-1</span></a>) in <var class="Arg">list</var> and a bit list than ordered lists to represent subsets of <var class="Arg">list</var>.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap20.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap22.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>