/usr/include/fflas-ffpack/fflas/fflas_bounds.inl is in fflas-ffpack-common 1.6.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
/* fflas/fflas_bounds.inl
* Copyright (C) 2008 Clement Pernet
*
* Written by Clement Pernet <Clement.Pernet@imag.fr>
*
*
* ========LICENCE========
* This file is part of the library FFLAS-FFPACK.
*
* FFLAS-FFPACK is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*.
*/
#ifndef __FFLASFFPACK_fflas_bounds_INL
#define __FFLASFFPACK_fflas_bounds_INL
#define FFLAS_INT_TYPE long unsigned int
namespace FFLAS {
namespace Protected {
/** MatMulParameters.
*
* \brief Computes the threshold parameters for the cascade
* Matmul algorithm
*
*
* \param F Finite Field/Ring of the computation.
* \param k Common dimension of A and B, in the product A x B
* \param bet Computing AB + beta C
* \param delayedDim Returns the size of blocks that can be multiplied
* over Z with no overflow
* \param base Returns the type of BLAS representation to use
* \param winoRecLevel Returns the number of recursion levels of
* Strassen-Winograd's algorithm to perform
* \param winoLevelProvided tells whether the user forced the number of
* recursive level of Winograd's algorithm
*/
template <class Field>
inline void MatMulParameters (const Field& F,
const size_t k,
const typename Field::Element& beta,
size_t& delayedDim,
FFLAS_BASE& base,
size_t& winoRecLevel,
bool winoLevelProvided) {
// Strategy : determine Winograd's recursion first, then choose appropriate
// floating point representation, and finally the blocking dimension.
// Can be improved for some cases.
if (!winoLevelProvided)
winoRecLevel = WinoSteps (k);
base = BaseCompute (F, winoRecLevel);
delayedDim = DotProdBound (F, winoRecLevel, beta, base);
size_t n = k;
size_t winoDel = winoRecLevel;
// Computes the delayedDim, only depending on the recursive levels
// that must be performed over Z
while (winoDel > 0 && delayedDim < n) {
winoDel--;
delayedDim = DotProdBound (F, winoDel, beta, base);
n >>= 1;
}
delayedDim = MIN (k, delayedDim);
}
template <class Field>
unsigned long Mantissa (const Field& F, const FFLAS_BASE base)
{
return (base == FflasDouble) ? DBL_MANT_DIG : FLT_MANT_DIG;
}
/** DotProdBound computes the maximal size for delaying the modular reduction
* in a dotproduct.
*
* This is the default version assuming a conversion to a positive modular representation
*
* \param F Finite Field/Ring of the computation
* \param w Number of recusrive Strassen-Winograd levels (if any, \p 0 otherwise)
* \param beta Computing <code>AB + beta C</code>
* \param base Type of floating point representation for delayed modular computations
*
*/
template <class Field>
inline size_t DotProdBound (const Field& F,
const size_t w,
const typename Field::Element& beta,
const FFLAS_BASE base)
{
FFLAS_INT_TYPE p;
F.characteristic(p);
unsigned long mantissa = Mantissa (F, base);
//(base == FflasDouble) ? DBL_MANT_DIG : FLT_MANT_DIG;
if (p == 0)
return 1;
double kmax;
if (w > 0) {
double c = computeFactorWino (F,w);
double d = (double (1ULL << mantissa) /(c*c) + 1);
if (d < 2)
return 1;
kmax = floor (d * double(1ULL << w));
// if (kmax <= 1) return 1;
} else {
double c = computeFactorClassic(F);
double cplt=0;
if (!F.isZero (beta)){
if (F.isOne (beta) || F.areEqual (beta, F.mOne)) cplt = c;
else{
double be;
F.convert(be, beta);
cplt = fabs(be)*c;
}
}
kmax = floor ( (double (double(1ULL << mantissa) - cplt)) / (c*c));
if (kmax <= 1) return 1;
}
//kmax--; // we computed a strict upper bound
return (size_t) MIN ((unsigned long long)kmax, 1ULL << 31);
}
/** @internal
* @brief Internal function for the bound computation
* Generic implementation for positive representations
*/
template <class Field>
inline double computeFactorWino (const Field& F, const size_t w)
{
FFLAS_INT_TYPE p;
F.characteristic(p);
size_t ex=1;
for (size_t i=0; i < w; ++i) ex *= 3;
return double(p - 1) * double(1 + ex) / double(2);
}
template <class Field>
inline double computeFactorClassic (const Field& F)
{
FFLAS_INT_TYPE p;
F.characteristic(p);
return (double) (p-1);
}
} // Protected
/** WinoSteps computes the number of recursive levels to perform.
*
* \param m the common dimension in the product AxB
*
*/
inline size_t WinoSteps (const size_t m)
{
size_t w = 0;
size_t mt = m;
while (mt >= WINOTHRESHOLD) {w++; mt >>= 1;}
return w;
}
namespace Protected {
/** BaseCompute determines the type of floating point representation to
* convert to, for BLAS computations.
* \param F Finite Field/Ring of the computation
* \param w Number of recursive levels in Winograd's algorithm
*
*/
template <class Field>
inline FFLAS_BASE BaseCompute (const Field& F, const size_t w)
{
FFLAS_INT_TYPE pi;
F.characteristic(pi);
FFLAS_BASE base;
switch (w) {
case 0: base = (pi < FLOAT_DOUBLE_THRESHOLD_0)? FflasFloat : FflasDouble;
break;
case 1: base = (pi < FLOAT_DOUBLE_THRESHOLD_1)? FflasFloat : FflasDouble;
break;
case 2: base = (pi < FLOAT_DOUBLE_THRESHOLD_2)? FflasFloat : FflasDouble;
break;
default: base = FflasDouble;
break;
}
return base;
}
/*************************************************************************************
* Specializations for ModularPositive and ModularBalanced over double and float
*************************************************************************************/
template <>
inline double computeFactorWino (const FFPACK:: ModularBalanced<double>& F, const size_t w)
{
FFLAS_INT_TYPE p;
F.characteristic(p);
size_t ex=1;
for (size_t i=0; i < w; ++i) ex *= 3;
return double((p - 1) * ex / 2);
}
template <>
inline double computeFactorWino (const FFPACK:: ModularBalanced<float>& F, const size_t w)
{
FFLAS_INT_TYPE p;
F.characteristic(p);
size_t ex=1;
for (size_t i=0; i < w; ++i) ex *= 3;
return double((p - 1) * ex / 2);
}
template <>
inline double computeFactorClassic (const FFPACK:: ModularBalanced<double>& F)
{
FFLAS_INT_TYPE p;
F.characteristic(p);
return double((p-1) >> 1);
}
template <>
inline FFLAS_BASE BaseCompute (const FFPACK:: Modular<double>& ,
const size_t )
{
return FflasDouble;
}
template <>
inline FFLAS_BASE BaseCompute (const FFPACK:: Modular<float>& ,
const size_t )
{
return FflasFloat;
}
template <>
inline FFLAS_BASE BaseCompute (const FFPACK:: ModularBalanced<double>& ,
const size_t )
{
return FflasDouble;
}
template <>
inline FFLAS_BASE BaseCompute (const FFPACK:: ModularBalanced<float>& ,
const size_t )
{
return FflasFloat;
}
/**
* TRSMBound
*
* \brief computes the maximal size for delaying the modular reduction
* in a triangular system resolution
*
* This is the default version over an arbitrary field.
* It is currently never used (the recursive algorithm is run until n=1 in this case)
*
* \param F Finite Field/Ring of the computation
*
*/
template <class Field>
inline size_t TRSMBound (const Field& F)
{
return 1;
}
/**
* Specialization for positive modular representation over double
* Computes nmax s.t. (p-1)/2*(p^{nmax-1} + (p-2)^{nmax-1}) < 2^53
* See [Dumas Giorgi Pernet 06, arXiv:cs/0601133]
*/
template<>
inline size_t TRSMBound (const FFPACK:: Modular<double>& F)
{
FFLAS_INT_TYPE pi;
F.characteristic(pi);
unsigned long p = pi;
unsigned long long p1(1UL), p2(1UL);
size_t nmax = 0;
unsigned long long max = ( (1ULL << (DBL_MANT_DIG + 1) ) / ((unsigned long long)(p - 1)));
while ( (p1 + p2) < max ){
p1*=p;
p2*=p-2;
nmax++;
}
return nmax;
}
/**
* Specialization for positive modular representation over float.
* Computes nmax s.t. (p-1)/2*(p^{nmax-1} + (p-2)^{nmax-1}) < 2^24
* @pbi
* See [Dumas Giorgi Pernet 06, arXiv:cs/0601133]
*/
template<>
inline size_t TRSMBound (const FFPACK:: Modular<float>& F)
{
FFLAS_INT_TYPE pi;
F.characteristic(pi);
unsigned long p = pi;
unsigned long long p1(1UL), p2(1UL);
size_t nmax = 0;
unsigned long long max = ( (1ULL << (FLT_MANT_DIG + 1) ) / ((unsigned long long)(p - 1)));
while ( (p1 + p2) < max ){
p1*=p;
p2*=p-2;
nmax++;
}
return nmax;
}
/**
* Specialization for balanced modular representation over double.
* Computes nmax s.t. (p-1)/2*(((p+1)/2)^{nmax-1}) < 2^53
* @bib
* - Dumas Giorgi Pernet 06, arXiv:cs/0601133
*/
template<>
inline size_t TRSMBound (const FFPACK:: ModularBalanced<double>& F)
{
FFLAS_INT_TYPE pi;
F.characteristic (pi);
unsigned long p = (pi + 1) / 2;
unsigned long long p1(1UL);
size_t nmax = 0;
unsigned long long max = ((1ULL << (DBL_MANT_DIG + 1)) / ((unsigned long long)(p - 1)));
while (p1 < max){
p1 *= p;
nmax++;
}
return nmax;
}
/**
* Specialization for balanced modular representation over float
* Computes nmax s.t. (p-1)/2*(((p+1)/2)^{nmax-1}) < 2^24
* See [Dumas Giorgi Pernet 06, arXiv:cs/0601133]
*/
template<>
inline size_t TRSMBound (const FFPACK:: ModularBalanced<float>& F)
{
FFLAS_INT_TYPE pi;
F.characteristic (pi);
unsigned long p = (pi + 1) / 2;
unsigned long long p1(1UL);
size_t nmax = 0;
unsigned long long max = ((1ULL << (FLT_MANT_DIG + 1)) / ((unsigned long long) (p - 1)));
while (p1 < max){
p1 *= p;
nmax++;
}
return nmax;
}
} // Protected
} // FFLAS
#endif // __FFLASFFPACK_fflas_bounds_INL
|