This file is indexed.

/usr/share/pyshared/Epigrass/simobj.py is in epigrass 2.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
"""
This Module contains the definitions of objects for spatial simulation on geo reference spaces.
"""
import sys
import multiprocessing
import time
import json

from numpy.random import binomial
import networkx as NX
from networkx.readwrite import json_graph
import redis

from data_io import *
import epimodels


# Setup Redis database to making sharing of state between nodes efficient during parallel execution of the simulation
redisclient = redis.Redis(host='localhost', port=6379)
assert redisclient.ping()   # verify that redis server is running.

#logger = multiprocessing.log_to_stderr()
#logger.setLevel(multiprocessing.SUBDEBUG)
#logger.setLevel(logging.INFO)

sys.setrecursionlimit(3000)  # to allow pickling of custom models


class siteobj(object):
    """
    Basic site object containing attributes and methods common to all
    site objects.
    """

    def __init__(self, name, initpop, coords, geocode, values=()):
        """
        Set initial values for site attributes.

        -name: name of the locality

        -coords: site coordinates.

        -initpop: total population size.

        -geocode: integer id code for site

        -values: Tuple containing adicional values from the sites file
        """
        self.id = self #reference to site instance
        self.stochtransp = 0 #Flag for stochastic transportation
        self.pos = coords
        self.totpop = float(initpop)
        self.ts = []
        self.incidence = []
        self.infected = False
        self.infector = None
        self.sitename = name
        self.values = values
        self.centrality = None
        self.betweeness = None
        self.thidx = None
        self.degree = None
        self.parentGraph = None
        self.edges = []
        self.neighbors = []
        self.thetalist = []
        self.thetahist = [] #infected arriving per time step
        self.passlist = []
        self.totalcases = 0

        self.vaccination = [[], []] #time and coverage of vaccination event
        self.vaccineNow = 0 #flag to indicate that it is vaccination day
        self.vaccov = 0 #current vaccination coverage
        self.nVaccinated = 0
        self.quarantine = [sys.maxint, 0]
        self.nQuarantined = 0
        self.geocode = geocode
        self.painted = 0 # Flag for the graph display
        self.modtype = None
        self.migInf = [] #infectious individuals able to migrate (time series)
        self.inedges = [] #Inbound edges
        self.outedges = [] #outbound edges
        self.pdest = []
        self.infectedvisiting = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        redisclient.set("{}:totalcases".format(self.geocode), 0)


    def __call__(self):
        """
        For multiprocessing to work
        """
        t0 = time.time()
        self.runModel()
        print "Time to runModel: ", time.time() - t0
        return self

    def createModel(self, init, modtype='', name='model1', v=[], bi=None, bp=None):
        """
        Creates a model of type modtype and defines its initial parameters.
        init -- initial conditions for the state variables tuple with fractions of the total
        population in each category (state variable).
        par -- initial values for the parameters.
        v -- List of extra variables passed in the sites files
        bi, bp -- dictionaries containing all the inits and parms defined in the .epg model
        """
        Init = init  # deprecated
        N = self.totpop
        self.modtype = modtype
        self.values = v
        self.bi = bi
        self.bp = bp
        self.model = epimodels.Epimodel(self.geocode, modtype)
        self.vnames = epimodels.vnames[modtype]
        try:
            self.ts = [[bi[vn.lower()] for vn in self.vnames]]
        except KeyError as ke:
            if self.vnames == ['Exposed', 'Infectious', 'Susceptible']:
                self.ts = [[bi[vn] for vn in ['e', 'i', 's']]]
            else:
                raise KeyError('%s' % ke)
        self.bp['vaccineNow'] = 0
        self.bp['vaccov'] = 0

    #        self.model = popmodels(self.id,type=modtype,v=self.values,bi = self.bi, bp = self.bp)


    def runModel(self, parallel=True):
        """
        Iterate the model
        :Parameters:
        - parallel: run in a separate process if true
        """

        if self.parentGraph.simstep in self.vaccination[0]:
            self.vaccineNow = 1
            self.vaccov = float(self.vaccination[1][self.vaccination[0].index(self.parentGraph.simstep)])
            self.bp['vaccineNow'] = 1
            self.bp['vaccov'] = self.vaccov
        else:
            self.bp['vaccineNow'] = 0
        if self.thetalist != []:
            theta = sum([i[1] for i in self.thetalist])
            self.infector = dict(
                [i for i in self.thetalist if i[1] > 0])  # Only those that contribute at least one infected individual
        else:
            theta = 0
            self.infector = {}
        npass = sum(self.passlist)
        simstep = self.parentGraph.simstep
        inits = self.ts[-1]
        totpop = self.totpop
        #---------------------
        pipe = redisclient.pipeline()
        pipe.set("simstep", simstep)\
            .set("{}:totpop".format(self.geocode), totpop)\
            .rpush("{}:inits".format(self.geocode), inits)\
            .set("{}:npass".format(self.geocode), npass)\
            .set("{}:theta".format(self.geocode), theta)\
            .hmset("{}:bi".format(self.geocode), self.bi)\
            .hmset("{}:bp".format(self.geocode), self.bp).execute()
        #------------------------
        if parallel:

            # r = self.parentGraph.po.apply_async(self.model, args=(inits, simstep, totpop, theta, npass, self.bi,
            #                                                       self.bp, self.values), callback=self.handle)
            r = self.parentGraph.po.apply_async(self.model, args=(), callback=self.handle)
        else:
            res = self.model(inits, simstep, totpop, theta, npass, self.bi, self.bp, self.values)
            self.handle(res)
            r = None

        self.thetahist.append(theta)  # keep a record of infected passenger arriving
        return r
    #        state, Lpos, migInf = self.model.step(inits=self.ts[-1],simstep=simstep,totpop=self.totpop,theta=theta,npass=npass)

    def handle(self, res):
        pipe = redisclient.pipeline()
        last_state, Lpos, migInf = pipe.lindex("{}:ts".format(self.geocode), -1)\
            .get("{}:Lpos".format(self.geocode))\
            .get("{}:migInf".format(self.geocode)).execute()
        self.ts.append(eval(last_state))
        Lpos = float(Lpos)
        migInf = float(migInf)
        self.totalcases += Lpos
        self.incidence.append(Lpos)
        if not self.infected:
            if Lpos > 0:
                self.infected = self.parentGraph.simstep
                self.parentGraph.epipath.append((self.parentGraph.simstep, self.geocode, self.infector))
                #TODO: have infector be stated in terms of geocodes
        self.migInf.append(migInf)

    def handle_old(self, res):
        """
        Processes the output of a step updating simulation statistics
        :param res: Tuple with the output of the simulation model
        """
        state, Lpos, migInf = res
        self.ts.append(state)
        self.totalcases += Lpos
        self.incidence.append(Lpos)
        if not self.infected:
            if Lpos > 0:
                self.infected = self.parentGraph.simstep
                self.parentGraph.epipath.append((self.parentGraph.simstep, self.geocode, self.infector))
                #TODO: have infector be stated in terms of geocodes
        self.migInf.append(migInf)

    #        print len(self.migInf)
    #        self.thetalist = []   # reset self.thetalist (for the new timestep)
    #        self.passlist = []
    #        self.parentGraph.sites_done +=1

    def vaccinate(self, cov):
        """
        At time t the population will be vaccinated with coverage cov.
        """
        self.nVaccinated = self.ts[-1][2] * cov
        self.ts[-1][2] = self.ts[-1][2] * (1 - cov)

    def intervention(self, par, cov, efic):
        """
        From time t on, parameter par is changed to
        par * (1-cov*efic)
        """
        self.bp[par] = self.bp[par] * (1 - cov * efic)

    def getTheta(self, npass, delay):
        """
        Returns the number of infected individuals in this
        site commuting through the edge that called
        this function.

        npass -- number of individuals leaving the node.
        """
        if delay >= len(self.migInf):
            delay = len(self.migInf) - 1
        lag = -1 - delay
        migInf = 0 if self.migInf == [] else self.migInf[lag]
        #        print "==> ",npass, lag, self.migInf,  self.totpop
        if self.stochtransp == 0:
            theta = npass * migInf / float(self.totpop) # infectious migrants

        else: #Stochastic migration
        #print lag, self.migInf
        #            print npass
            try:
                theta = binomial(int(npass), migInf / float(self.totpop))
            except ValueError: #if npass is less than one or migInf == 0
                theta = 0
            #        print theta
            # Check if site is quarantined
        if self.parentGraph.simstep > self.quarantine[0]:
            self.nQuarantined = npass * self.quarantine[1]
            return theta * (1 - self.quarantine[1]), npass * (1 - self.quarantine[1])
        else:
            return theta, npass

    def getThetaindex(self):
        """
        Returns the Theta index.
        Measures the function of a node, that is the average
        amount of traffic per intersection. The higher theta is,
        the greater the load of the network.
        """
        if self.thidx:
            return self.thidx
        self.thidx = thidx = sum([(i.fmig + i.bmig) / 2. for i in self.edges]) / len(self.parentGraph.site_list)
        return thidx

    def receiveTheta(self, thetai, npass, site):
        """
        Number of infectious individuals arriving from site i
        :param thetai: number of infected passengers
        :param npass: Number of passengers arriving
        :param site: site sending passengers
        :return:
        """
        self.thetalist.append((site, thetai))
        self.passlist.append(npass)

    # def plotItself(self):
    #     """
    #     plot site timeseries
    #     """
    #     a = transpose(array(self.ts))
    #     #figure(int(self.totpop))
    #     figure()
    #     for i in xrange(3):
    #         plot(transpose(a[i]))
    #     title(self.sitename)
    #     legend(('E', 'I', 'S'))
    #     xlabel('time(days)')
    #     savefig(str(self.geocode) + '.png')
    #     close()
        #show()

    def isNode(self):
        """
        find is given site is a node of a graph
        """
        if self.parentGraph:
            return 1
        else:
            return 0

    def getOutEdges(self):
        '''
        return a list of outbound edges
        '''
        if self.outedges:
            return self.outedges
        oe = [e for e in self.edges if self == e.source]
        self.outedges = oe
        return oe

    def getInEdges(self):
        '''
        return a list of outbound edges
        '''
        if self.inedges:
            return self.inedges
        ie = [e for e in self.edges if self == e.dest]
        self.inedges = ie
        return ie

    def getNeighbors(self):
        """
        Returns a dictionary of neighbooring sites as keys,
        and distances as values.
        """
        if not self.isNode():
            return []
        if self.neighbors:
            return self.neighbors
        neigh = {}
        for i in self.edges:
            n = [i.source, i.dest, i.length]
            idx = n.index(self)
            n.pop(idx)
            neigh[n[0]] = n[-1]

        self.neighbors = neigh
        return neigh

    def getDistanceFromNeighbor(self, neighbor):
        """
        Returns the distance in Km from a given neighbor.
        neighbor can be a siteobj object, or a geocode number
        """

        if not self.neighbors:
            self.neighbors = self.getNeighbors()

        if type(neighbor) == type(1):
            nei = [n for n in self.neighbors if int(n.geocode) == neighbor]
            if nei:
                d = [e.length for e in self.edges if nei in e.sites][0]
            else:
                sys.exit('%s is not a neighbor of %s!' % (nei[0].sitename, self.sitename))
        else:
            if neighbor in self.neighbors:
                d = [e.length for e in self.edges if neighbor in e.sites][0]
                #if d == 0:
                #print 'problem determining distance from neighboor'
            else:
                sys.exit('%s is not a neighbor of %s!' % (neighbor.sitename, self.sitename))

        return d

    def getDegree(self):
        """
        Returns the degrees of this site if it is part of a graph.
        The order (degree) of a node is the number of nodes attached to it
        and is a simple, but effective measure of nodal importance.

        The higher its value, the more a node is important in a graph
        as many links converge to it. Hub nodes have a high order,
        while terminal points have an order that can be as low as 1.

        A perfect hub would have its order equal to the summation of
        all the orders of the other nodes in the graph and a perfect
        spoke would have an order of 1.
        
        Returns an integer.
        """
        if not self.isNode():
            return 0
        else:
            return len(self.getNeighbors())

    def doStats(self):
        """
        Calculate indices describing the node and return them in a list.
        """
        self.centrality = self.getCentrality()
        self.degree = self.getDegree()
        self.thidx = self.getThetaindex()
        self.betweeness = self.getBetweeness()

        return [self.centrality, self.degree, self.thidx, self.betweeness]

    def getCentrality(self):
        """
        Also known as closeness. A measure of global centrality, is the
        inverse of the sum of the shortest paths to all other nodes
        in the graph.
        """
        #get position in the distance matrix.
        if self.centrality:
            return self.centrality
        pos = self.parentGraph.site_list.index(self)
        if not self.parentGraph.allPairs.any():
            self.parentGraph.getAllPairs()
        c = 1. / sum(self.parentGraph.allPairs[pos])
        return c

    def getBetweeness(self):
        """
        Is the number of times any node figures in the the shortest path
        between any other pair of nodes.
        """
        if self.betweeness:
            return self.betweeness
        B = 0
        for i in self.parentGraph.shortPathList:
            if not self in i:
                if self in i[2]:
                    B += 1
        return B


#class popmodels(object):
#    """
#    Defines a library of discrete time population models
#    """
#    def __init__(self,parentsite,type='',v=[],bi=None,bp=None):
#        """
#        defines which models a given site will use
#        and set variable names accordingly.
#        """
#        self.type = type
#        self.values = v
#        self.bi = bi # dictionary of inits
#        self.bp = bp # dictionary of parms
#        self.parentSite = parentsite
#        self.parentSite.vnames = ('E','I','S')
##        self.selectModel(self.type) #sets self.step
#
#    def step(self,**kwargs):
##        print kwargs
#        return self.selectModel(self.type,kwargs)
#
#    def selectModel(self,type,kwargs):
#        """
#        sets the model engine
#        """
#
#        if type=='SIR':
#            return self.stepSIR(**kwargs)
#        elif type == 'SIR_s':
#            return self.stepSIR_s(**kwargs)
#        elif type == 'SIS':
#            return self.stepSIS(**kwargs)
#        elif type == 'SIS_s':
#            return self.stepSIS_s(**kwargs)
#        elif type == 'SEIS':
#            return self.stepSEIS(**kwargs)
#        elif type == 'SEIS_s':
#            return self.stepSEIS_s(**kwargs)
#        elif type=='SEIR':
#            return self.stepSEIR(**kwargs)
#        elif type == 'SEIR_s':
#            return self.stepSEIR_s(**kwargs)
#        elif type == 'SIpRpS':
#            return self.stepSIpRpS(**kwargs)
#        elif type == 'SIpRpS_s':
#            return self.stepSIpRpS_s(**kwargs)
#        elif type == 'SEIpRpS':
#            return self.stepSEIpRpS(**kwargs)
#        elif type == 'SEIpRpS_s':
#            return self.stepSEIpRpS_s(**kwargs)
#        elif type == 'SIpR':
#            self.parentSite.incidence2 = []
#            return self.stepSIpR(**kwargs)
#        elif type == 'SIpR_s':
#            self.parentSite.incidence2 = []
#            return self.stepSIpR_s(**kwargs)
#        elif type == 'SEIpR':
#            self.parentSite.incidence2 = []
#            return self.stepSEIpR(**kwargs)
#        elif type == 'SEIpR_s':
#            self.parentSite.incidence2 = []
#            return self.stepSEIpR_s(**kwargs)
#        elif type == 'SIRS':
#            return self.stepSIRS(**kwargs)
#        elif type == 'SIRS_s':
#            return self.stepSIRS_s(**kwargs)
#        elif type == 'Influenza':
#            return self.stepFlu(**kwargs)
#        elif type == 'Custom':
#            #adds the user model as a method of instance self
#            try:
#                #TODO: move this import to the graph level
#                import CustomModel
#                return MethodType(CustomModel.Model,self)(**kwargs)
#            except ImportError:
#                print "You have to Create a CustomModel.py file before you can select\nthe Custom model type"
#        else:
#            sys.exit('Model type specified in .epg file is invalid')
#
#
#
#    def stepFlu(self,inits, simstep, totpop, theta=0,npass=0):
#        """
#        Flu model with classes S,E,I subclinical, I mild, I medium, I serious, deaths
#        """
#        tinicial = time.time()
#        print "-->", self.parentSite.sitename
#        #Variable long names to be used in the database output.
#        self.parentSite.vnames = ('Susc_age1','Incub_age1','Subc_age1','Sympt_age1','Comp_age1',
#        'Susc_age2','Incub_age2','Subc_age2','Sympt_age2','Comp_age2',
#        'Susc_age3','Incub_age3','Subc_age3','Sympt_age3','Comp_age3',
#        'Susc_age4','Incub_age4','Subc_age4','Sympt_age4','Comp_age4',)
#        if simstep == 1: #get initial values
#            S1,E1,Is1,Ic1,Ig1 = (self.bi['s1'],self.bi['e1'],self.bi['is1'],self.bi['ic1'],self.bi['ig1'])
#            S2,E2,Is2,Ic2,Ig2 = (self.bi['s2'],self.bi['e2'],self.bi['is2'],self.bi['ic2'],self.bi['ig2'])
#            S3,E3,Is3,Ic3,Ig3 = (self.bi['s3'],self.bi['e3'],self.bi['is3'],self.bi['ic3'],self.bi['ig3'])
#            S4,E4,Is4,Ic4,Ig4 = (self.bi['s4'],self.bi['e4'],self.bi['is4'],self.bi['ic4'],self.bi['ig4'])
#        else: #get values from last time step
#            S1,E1,Is1,Ic1,Ig1,S2,E2,Is2,Ic2,Ig2,S3,E3,Is3,Ic3,Ig3,S4,E4,Is4,Ic4,Ig4 = inits
#        N = totpop
#
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        #parameters: alpha,beta,r,e,c,g,d,pc1,pc2,pc3,pc4,pp1,pp2,pp3,pp4,b
#
#        #Vacination event
#        if self.parentSite.vaccineNow:
#            S1 -= self.parentSite.vaccov*S1
#            S2 -= self.parentSite.vaccov*S2
#            S3 -= self.parentSite.vaccov*S3
#            S4 -= self.parentSite.vaccov*S4
#
#        #New cases by age class
#        #beta=eval(self.values[2])
#
#        Infectantes = Ig1+Ig2+Ig3+Ig4+Ic1+Ic2+Ic3+Ic4+0.5*(Is1+Is2+Is3+Is4)+theta
#        L1pos = float(beta)*S1*(Infectantes/(N+npass))**alpha
#        L2pos = float(beta)*S2*(Infectantes/(N+npass))**alpha
#        L3pos = float(beta)*S3*(Infectantes/(N+npass))**alpha
#        L4pos = float(beta)*S4*(Infectantes/(N+npass))**alpha
#
#        ######################
#        Lpos = L1pos+L2pos+L3pos+L4pos
#        # Model
#        # 0-2 anos
#        E1pos = L1pos + (1-e)*E1
#        Is1pos = (1-(pc1*c+(1-pc1)*r))*Is1 + e*E1
#        Ic1pos = (1-(pp1*g+(1-pp1)*r))*Ic1 + pc1*c*Is1
#        Ig1pos = (1-d)*Ig1 + pp1*g*Ic1
#        S1pos = b+S1 - L1pos
#        # 3-14 anos
#        E2pos = L2pos + (1-e)*E2
#        Is2pos = (1-(pc2*c+(1-pc2)*r))*Is2 + e*E2
#        Ic2pos = (1-(pp2*g+(1-pp2)*r))*Ic2 + pc2*c*Is2
#        Ig2pos = (1-d)*Ig2 + pp2*g*Ic2
#        S2pos = b+S2 - L2pos
#        # 15-59 anos
#        E3pos = L3pos + (1-e)*E3
#        Is3pos = (1-(pc3*c+(1-pc3)*r))*Is3 + e*E3
#        Ic3pos = (1-(pp3*g+(1-pp3)*r))*Ic3 + pc3*c*Is3
#        Ig3pos = (1-d)*Ig3 + pp3*g*Ic3
#        S3pos = b+S3 - L3pos
#        # >60 anos
#        E4pos = L4pos + (1-e)*E4
#        Is4pos = (1-(pc4*c+(1-pc4)*r))*Is4 + e*E4
#        Ic4pos = (1-(pp4*g+(1-pp4)*r))*Ic4 + pc4*c*Is4
#        Ig4pos = (1-d)*Ig4 + pp4*g*Ic4
#        S4pos = b+S4 - L4pos
#
#        #Migrating infecctious
#        migInf = (Ig1pos+Ig2pos+Ig3pos+Ig4pos+Ic1pos+Ic2pos+Ic3pos+Ic4pos+0.5*(Is1pos+Is2pos+Is3pos+Is4pos))
#        # Return variable values
#        print "------> exiting in %s seconds"%(time.time()-tinicial)
#        return [S1pos,E1pos,Is1pos,Ic1pos,Ig1pos,S2pos,E2pos,Is2pos,
#        Ic2pos,Ig2pos,S3pos,E3pos,Is3pos,Ic3pos,Ig3pos,S4pos,
#        E4pos,Is4pos,Ic4pos,Ig4pos], Lpos, migInf
#
#
#    def stepSIS(self,inits,simstep, totpop,theta=0, npass=0):
#        """
#        calculates the model SIS, and return its values (no demographics)
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        #parameter: beta,alpha,e,r,delta,b,w,p
#        Lpos = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#        # Model
#        Ipos = (1-r)*I + Lpos
#        Spos = S + b - Lpos + r*I
#
#        #Migrating infecctious
#        migInf = (Ipos)
#        return [0,Ipos,Spos],Lpos,migInf
#
#    def stepSIS_s(self,inits, simstep, totpop,theta=0, npass=0,dist='poisson'):
#        """
#        Defines an stochastic model SIS:
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        # parameter: beta,alpha,e,r,delta,b,w,p
#        Lpos_esp = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#
#        if dist == 'poisson':
#            Lpos = poisson(Lpos_esp)
#        elif dist == 'negbin':
#            prob = I/(I+Lpos_esp) #convertin between parameterizations
#            Lpos = negative_binomial(I,prob)
#
#        # Model
#        Ipos = (1-r)*I + Lpos
#        Spos = S + b - Lpos + r*I
#
#        #Migrating infecctious
#        migInf = (Ipos)
#
#        return [0,Ipos,Spos], Lpos, migInf
#
#    def stepSIR(self,inits,simstep, totpop,theta=0, npass=0):
#        """
#        calculates the model SIR, and return its values (no demographics)
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        # parameters: b ,r
#        Lpos = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#
#        # Model
#        Ipos = (1-r)*I + Lpos
#        Spos = S + b - Lpos
#        Rpos = N-(Spos+Ipos)
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [0,Ipos,Spos],Lpos,migInf
#
#    def stepSIR_s(self,inits,simstep, totpop,theta=0, npass=0,dist='poisson'):
#        """
#        Defines an stochastic model SIR:
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        #parameter: beta,alpha,e,r,delta,b,w,p
#        Lpos_esp = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#
#        if dist == 'poisson':
#            Lpos = poisson(Lpos_esp)
#        elif dist == 'negbin':
#            prob = I/(I+Lpos_esp) #convertin between parameterizations
#            Lpos = negative_binomial(I,prob)
#
#        # Model
#        Ipos = (1-r)*I + Lpos
#        Spos = S + b - Lpos
#        Rpos = N-(Spos+Ipos)
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [0,Ipos,Spos], Lpos, migInf
#
#    def stepSEIS(self,inits,simstep, totpop,theta=0, npass=0):
#        """
#        Defines the model SEIS:
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        #parameters: b,e,r
#        Lpos = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#
#        #Model
#        Epos = (1-e)*E + Lpos
#        Ipos = e*E + (1-r)*I
#        Spos = S + b - Lpos + r*I
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [Epos,Ipos,Spos], Lpos, migInf
#
#    def stepSEIS_s(self,inits,simstep, totpop,theta=0, npass=0,dist='poisson'):
#        """
#        Defines an stochastic model SEIS:
#        - inits = (E,I,S)
#        - par = (Beta, alpha, E,r,delta,B,w,p) see docs.
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        #parameters: beta,alpha,e,r,delta,b,w,p
#        Lpos_esp = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#
#        if dist == 'poisson':
#            Lpos = poisson(Lpos_esp)
#        elif dist == 'negbin':
#            prob = I/(I+Lpos_esp) #converting between parameterizations
#            Lpos = negative_binomial(I,prob)
#
#        Epos = (1-e)*E + Lpos
#        Ipos = e*E + (1-r)*I
#        Spos = S + b - Lpos + r*I
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [Epos,Ipos,Spos], Lpos,migInf
#
#    def stepSEIR(self,inits,simstep, totpop,theta=0, npass=0):
#        """
#        Defines the model SEIR:
#        - inits = (E,I,S)
#        - par = (Beta, alpha, E,r,delta,B,w,p) see docs.
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        #parameters: beta,alpha,e,r,delta,B,w,p
#        Lpos = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#
#        #Model
#        Epos = (1-e)*E + Lpos
#        Ipos = e*E + (1-r)*I
#        Spos = S + b - Lpos
#        Rpos = N-(Spos+Epos+Ipos)
#        #self.parentSite.totpop = Spos+Epos+Ipos+Rpos
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [Epos,Ipos,Spos], Lpos, migInf
#
#    def stepSEIR_s(self,inits,simstep, totpop,theta=0, npass=0,dist='poisson'):
#        """
#        Defines an stochastic model SEIR:
#        - inits = (E,I,S)
#        - par = (Beta, alpha, E,r,delta,B,w,p) see docs.
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = self.parentSite.totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        #parameters: beta,alpha,e,r,delta,B,w,p
#        Lpos_esp = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#
#        if dist == 'poisson':
#            Lpos = poisson(Lpos_esp) #poisson(Lpos_esp)
###            if theta == 0 and Lpos_esp == 0 and Lpos > 0:
###                print Lpos,Lpos_esp,S,I,theta,N,self.parentSite.sitename
#        elif dist == 'negbin':
#            prob = I/(I+Lpos_esp) #convertin between parameterizations
#            Lpos = negative_binomial(I,prob)
#
#        Epos = (1-e)*E + Lpos
#        Ipos = e*E + (1-r)*I
#        Spos = S + b - Lpos
#        Rpos = N-(Spos+Epos+Ipos)
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [Epos,Ipos,Spos],Lpos, migInf
#
#    def stepSIpRpS(self,inits,simstep, totpop,theta=0, npass=0):
#        """
#        calculates the model SIpRpS, and return its values (no demographics)
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        # parameter: beta,alpha,e,r,delta,b,w,p
#        Lpos = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#
#        # Model
#        Ipos = (1-r)*I + Lpos
#        Spos = S + b - Lpos + (1-delta)*r*I
#        Rpos = N-(Spos+Ipos) + delta*r*I
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [0,Ipos,Spos], Lpos, migInf
#
#    def stepSIpRpS_s(self,inits,simstep, totpop,theta=0, npass=0,dist='poisson'):
#        """
#        Defines an stochastic model SIpRpS:
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        # parameter: beta,alpha,e,r,delta,B,w,p
#        Lpos_esp = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#
#        if dist == 'poisson':
#            Lpos = poisson(Lpos_esp)
#        elif dist == 'negbin':
#            prob = I/(I+Lpos_esp) #convertin between parameterizations
#            Lpos = negative_binomial(I,prob)
#
#        # Model
#        Ipos = (1-r)*I + Lpos
#        Spos = S + b - Lpos + (1-delta)*r*I
#        Rpos = N-(Spos+Ipos) + delta*r*I
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [0,Ipos,Spos], Lpos, migInf
#
#    def stepSEIpRpS(self,inits,simstep, totpop,theta=0, npass=0):
#        """
#        Defines the model SEIpRpS:
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = self.parentSite.totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        # parameter: beta,alpha,e,r,delta,b,w,p
#
#        Lpos = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#
#        Epos = (1-e)*E + Lpos
#        Ipos = e*E + (1-r)*I
#        Spos = S + b - Lpos + (1-delta)*r*I
#        Rpos = N-(Spos+Epos+Ipos) + delta*r*I
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [Epos,Ipos,Spos], Lpos, migInf
#
#    def stepSEIpRpS_s(self,inits,simstep, totpop,theta=0, npass=0,dist='poisson'):
#        """
#        Defines an stochastic model SEIpRpS:
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = self.parentSite.totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        # parameter: beta,alpha,e,r,delta,b,w,p
#        Lpos_esp = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#
#        if dist == 'poisson':
#            Lpos = poisson(Lpos_esp)
#        elif dist == 'negbin':
#            prob = I/(I+Lpos_esp) #convertin between parameterizations
#            Lpos = negative_binomial(I,prob)
#
#        Epos = (1-e)*E + Lpos
#        Ipos = e*E + (1-r)*I
#        Spos = S + b - Lpos + (1-delta)*r*I
#        Rpos = N-(Spos+Epos+Ipos) + delta*r*I
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [Epos,Ipos,Spos], Lpos, migInf
#
#    def stepSIpR(self,inits,simstep, totpop,theta=0, npass=0):
#        """
#        calculates the model SIpR, and return its values (no demographics)
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        R = N-E-I-S
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        #parameter: beta,alpha,e,r,delta,b,w,p
#        Lpos = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#        Lpos2 = p*float(beta)*R*((I+theta)/(N+npass))**alpha #number of secondary Infections
#
#        # Model
#        Ipos = (1-r)*I + Lpos + Lpos2
#        Spos = S + b - Lpos
#        Rpos = N-(Spos+Ipos) - Lpos2
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [0,Ipos,Spos], Lpos+Lpos2, migInf
#
#    def stepSIpR_s(self,inits,simstep, totpop,theta=0, npass=0,dist='poisson'):
#        """
#        Defines an stochastic model SIpRs:
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        #parameter: beta,alpha,e,r,delta,b,w,p
#        R = N-E-I-S
#
#        Lpos_esp = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#        Lpos2_esp = p*float(beta)*R*((I+theta)/(N+npass))**alpha #number of secondary Infections
#
#        if dist == 'poisson':
#            Lpos = poisson(Lpos_esp)
#            Lpos2 = poisson(Lpos2_esp)
#        elif dist == 'negbin':
#            prob = I/(I+Lpos_esp) #convertin between parameterizations
#            Lpos = negative_binomial(I,prob)
#            prob = I/(I+Lpos2_esp) #convertin between parameterizations
#            Lpos2 = negative_binomial(I,prob)
#
#        # Model
#        Ipos = (1-r)*I + Lpos + Lpos2
#        Spos = S + b - Lpos
#        Rpos = N-(Spos+Ipos) - Lpos2
#
#        #Migrating infecctious
#        migInf = Ipos
#        return [0,Ipos,Spos], Lpos+Lpos2, migInf
#
#    def stepSEIpR(self,inits,simstep, totpop,theta=0, npass=0):
#        """
#        calculates the model SEIpR, and return its values (no demographics)
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        R = N-E-I-S
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        # parameters: beta,alpha,e,r,delta,b,w,p
#
#        Lpos = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#        Lpos2 = p*float(beta)*R*((I+theta)/(N+npass))**alpha # secondary infections
#
#        # Model
#        Epos = (1-e)*E + Lpos + Lpos2
#        Ipos = e*E+ (1-r)*I
#        Spos = S + b - Lpos
#        Rpos = N-(Spos+Ipos) - Lpos2
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [0,Ipos,Spos], Lpos+Lpos2, migInf
#
#    def stepSEIpR_s(self,inits,simstep, totpop,theta=0, npass=0,dist='poisson'):
#        """
#        Defines an stochastic model SEIpRs:
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        # parameter: beta,alpha,e,r,delta,B,w,p
#        R = N-E-I-S
#
#        Lpos_esp = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#        Lpos2_esp = p*float(beta)*R*((I+theta)/(N+npass))**alpha # secondary infections
#
#        if dist == 'poisson':
#            Lpos = poisson(Lpos_esp)
#            Lpos2 = poisson(Lpos2_esp)
#        elif dist == 'negbin':
#            prob = I/(I+Lpos_esp) #converting between parameterizations
#            Lpos = negative_binomial(I,prob)
#            prob = I/(I+Lpos2_esp) #converting between parameterizations
#            Lpos2 = negative_binomial(I,prob)
#
#        # Model
#        Epos = (1-e)*E + Lpos + Lpos2
#        Ipos = e*E+ (1-r)*I
#        Spos = S + b - Lpos
#        Rpos = N-(Spos+Ipos) - Lpos2
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [0,Ipos,Spos], Lpos+Lpos2, migInf
#
#    def stepSIRS(self,inits,simstep, totpop,theta=0, npass=0):
#        """
#        calculates the model SIRS, and return its values (no demographics)
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        R = N - E + I + S
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        #parameter: beta,alpha,e,r,delta,b,w,p
#        Lpos = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#
#        # Model
#        Ipos = (1-r)*I + Lpos
#        Spos = S + b - Lpos + w*R
#        Rpos = N-(Spos+Ipos) - w*R
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [0,Ipos,Spos], Lpos, migInf
#
#    def stepSIRS_s(self,inits,simstep, totpop,theta=0, npass=0,dist='poisson'):
#        """
#        Defines an stochastic model SIR:
#        - inits = (E,I,S)
#        - theta = infectious individuals from neighbor sites
#        """
#        if simstep == 1: #get initial values
#            E,I,S = (self.bi['e'],self.bi['i'],self.bi['s'])
#        else:
#            E,I,S = inits
#        N = totpop
#        R = N - E + I + S
#        for k, v in self.bp.items():
#            exec('%s = %s'%(k, v))
#        # parameter: beta,alpha,e,r,delta,b,w,p
#        Lpos_esp = float(beta)*S*((I+theta)/(N+npass))**alpha #Number of new cases
#
#        if dist == 'poisson':
#            Lpos = poisson(Lpos_esp)
#        elif dist == 'negbin':
#            prob = I/(I+Lpos_esp) #convertin between parameterizations
#            Lpos = negative_binomial(I,prob)
#
#        # Model
#        Ipos = (1-r)*I + Lpos
#        Spos = S + b - Lpos + w*R
#        Rpos = N-(Spos+Ipos) - w*R
#
#        #Migrating infecctious
#        migInf = Ipos
#
#        return [0,Ipos,Spos], Lpos, migInf

class edge(object):
    """
    Defines an edge connecting two nodes (node source to node dest).
    with attributes given by value.
    """

    def __init__(self, source, dest, fmig=0, bmig=0, Leng=0):
        """
        Main attributes of *Edge*.

        source -- Source site object.

        dest -- Destination site object.

        fmig -- forward migration rate in number of indiv./day.

        bmig -- backward migration rate in number of indiv./day.

        Length -- Length in kilometers of this route
        """
        if not isinstance(source, siteobj):
            raise TypeError, 'source received a non siteobj class object'
        if not isinstance(dest, siteobj):
            raise TypeError, 'destination received a non siteobj class object'
        self.dest = dest
        self.source = source
        self.sites = [source, dest]
        self.fmig = float(fmig) #daily migration from source to destination
        self.bmig = float(bmig) #daily migration from destination to source
        self.parentGraph = None
        self.length = Leng
        self.delay = 0
        self.ftheta = [] #time series of number of infected individuals travelling forward
        self.btheta = [] #time series of number of infected individuals travelling backwards
        dest.edges.append(self) #add itself to edge list of dest site
        source.edges.append(self) #add itself to edge list of source site


    def calcDelay(self):
        """
        calculate the Transportation delay given the speed and length.
        """
        if self.parentGraph.speed > 0:
            self.delay = int(float(self.length) / self.parentGraph.speed)

    def migrate(self):
        """
        Get infectious individuals commuting from source node and inform them to destination.
        this is done for both directions of the edge
        """
        # Forward Migration
        theta, npass = self.source.getTheta(self.fmig, self.delay)
        self.ftheta.append(theta)
        self.dest.receiveTheta(theta, npass, self.source)
        #        print "F -->", theta,npass
        #Backwards Migration
        theta, npass = self.dest.getTheta(self.bmig, self.delay)
        self.btheta.append(theta)
        self.source.receiveTheta(theta, npass, self.dest)

#        print "B -->", theta,npass



class graph(object):
    """
    Defines a graph with sites and edges
    """

    def __init__(self, graph_name, digraph=0):
        self.name = graph_name
        self.digraph = digraph
        self.site_dict = {} #geocode as keys
        self.site_list = property(fget=lambda self: self.site_dict.values()) #only for backwards compatibility
        self.edge_dict = {} #geocode tuple as key
        self.edge_list = property(fget=lambda self: self.edge_dict.values()) #only for backwards compatibility
        self.speed = 0 # speed of the transportation system
        self.simstep = 1 #current step in the simulation
        self.maxstep = 100 #maximum number of steps in the simulation
        self.epipath = []
        self.graphdict = {}
        self.shortPathList = []
        self.parentGraph = self
        self.allPairs = zeros(1)
        self.cycles = None
        self.wienerD = None
        self.meanD = None
        self.diameter = None
        self.length = None
        self.weight = None
        self.iotaidx = None
        self.piidx = None
        self.betaidx = None
        self.alphaidx = None
        self.gammaidx = None
        self.connmatrix = None
        self.shortDistMatrix = None
        self.episize = 0 # total number of people infected
        self.epispeed = [] # new cities pre unit of time
        self.infectedcities = 0 #total number of cities infected.
        self.spreadtime = 0
        self.mediansurvival = None
        self.totVaccinated = 0
        self.totQuarantined = 0
        self.dmap = 0 #draw the map in the background?
        self.printed = 0 #Printed the custom model docstring?
        self.po = multiprocessing.Pool(multiprocessing.cpu_count())


    def addSite(self, sitio):
        """
        Adds a site object to the graph.
        It takes a siteobj object as its only argument and returns
        None.
        """

        if not isinstance(sitio, siteobj):
            raise Error, 'add_site received a non siteobj class object'
        self.site_dict[sitio.geocode] = sitio
        #        self.site_list.append(sitio)
        sitio.parentGraph = self

    def dijkstra(self, G, start, end=None):
        """
        Find shortest paths from the start vertex to all
        vertices nearer than or equal to the end.

        The input graph G is assumed to have the following
        representation: A vertex can be any object that can
        be used as an index into a dictionary.  G is a
        dictionary, indexed by vertices.  For any vertex v,
        G[v] is itself a dictionary, indexed by the neighbors
        of v.  For any edge v->w, G[v][w] is the length of
        the edge.  This is related to the representation in
        <http://www.python.org/doc/essays/graphs.html>
        where Guido van Rossum suggests representing graphs
        as dictionaries mapping vertices to lists of neighbors,
        however dictionaries of edges have many advantages
        over lists: they can store extra information (here,
        the lengths), they support fast existence tests,
        and they allow easy modification of the graph by edge
        insertion and removal.  Such modifications are not
        needed here but are important in other graph algorithms.
        Since dictionaries obey iterator protocol, a graph
        represented as described here could be handed without
        modification to an algorithm using Guido's representation.

        Of course, G and G[v] need not be Python dict objects;
        they can be any other object that obeys dict protocol,
        for instance a wrapper in which vertices are URLs
        and a call to G[v] loads the web page and finds its links.

        The output is a pair (D,P) where D[v] is the distance
        from start to v and P[v] is the predecessor of v along
        the shortest path from s to v.

        Dijkstra's algorithm is only guaranteed to work correctly
        when all edge lengths are positive. This code does not
        verify this property for all edges (only the edges seen
        before the end vertex is reached), but will correctly
        compute shortest paths even for some graphs with negative
        edges, and will raise an exception if it discovers that
        a negative edge has caused it to make a mistake.
        """

        D = {}  # dictionary of final distances
        P = {}  # dictionary of predecessors
        Q = priorityDictionary()   # est.dist. of non-final vert.
        Q[start] = 0

        for v in Q:
            D[v] = Q[v]
            if v == end: break

            for w in G[v]:
                vwLength = D[v] + G[v][w]
                if w in D:
                    #print vwLength
                    if vwLength < D[w]:
                        raise ValueError, \
                            "Dijkstra: found better path to already-final vertex"
                elif w not in Q or vwLength < Q[w]:
                    Q[w] = vwLength
                    P[w] = v

        return (D, P)

    def getSite(self, name):
        """Retrieved a site from the graph.

        Given a site's name the corresponding Siteobj
        instance will be returned.

        If multiple sites exist with that name, a list of
        Siteobj instances is returned.

        If only one site exists, the instance is returned.
        None is returned otherwise.
        """

        match = [sitio for sitio in self.site_list if sitio.name() == str(name)]

        l = len(match)
        if l == 1:
            return match[0]
        elif l > 1:
            return match
        else:
            return None


    def addEdge(self, graph_edge):
        """Adds an edge object to the graph.

        It takes a edge object as its only argument and returns
        None.
        """

        if not isinstance(graph_edge, edge):
            raise TypeError('add_edge received a non edge class object')

        if not graph_edge.source.geocode in self.site_dict:
            raise KeyError('Edge source does not belong to the graph')

        if not graph_edge.dest.geocode in self.site_dict:
            raise KeyError('Edge destination does not belong to the graph')
        #        self.edge_list.append(graph_edge)
        self.edge_dict[(graph_edge.source.geocode, graph_edge.dest.geocode)] = graph_edge
        graph_edge.parentGraph = self
        graph_edge.calcDelay()


    def getGraphdict(self):
        """
        Generates a dictionary of the graph for use in the shortest path function.
        """
        G = {}
        for i in self.site_dict.itervalues():
            G[i] = i.getNeighbors()
        self.graphdict = G
        return G

    def getEdge(self, src, dst):
        """
        Retrieved an edge from the graph.

        Given an edge's source and destination the corresponding
        Edge instance will be returned.

        If multiple edges exist with that source and destination,
        a list of Edge instances is returned.

        If only one edge exists, the instance is returned.
        None is returned otherwise.
        """

        match = [edge for edge in self.edge_list if edge.source == src and edge.dest == dst]

        l = len(match)
        if l == 1:
            return match[0]
        elif l > 1:
            return match
        else:
            return None

    def getSiteNames(self):
        """
        returns list of site names for a given graph.
        """
        sitenames = [s.sitename for s in self.site_dict.itervalues()]

        return sitenames


    def getCycles(self):
        """
        The maximum number of independent cycles in a graph.

        This number (u) is estimated by knowing the number of nodes (v),
        links (e) and of sub-graphs (p); u = e-v+p.

        Trees and simple networks will have a value of 0 since they have
        no cycles.

        The more complex a network is, the higher the value of u,
        so it can be used as an indicator of the level of development
        of a transport system.
        """
        u = len(self.edge_list) - len(self.site_list) + 1
        return u

    def shortestPath(self, G, start, end):
        """
        Find a single shortest path from the given start node
        to the given end node.
        The input has the same conventions as self.dijkstra().
        'G' is the graph's dictionary self.graphdict.
        'start' and 'end' are site objects.
        The output is a list of the vertices in order along
        the shortest path.
        """

        D, P = self.dijkstra(G, start, end)
        Path = []
        while 1:
            Path.append(end)
            if end == start: break
            end = P[end]
        Path.reverse()
        return Path

    def drawGraph(self):
        """
        Draws the network using pylab
        """
        from matplotlib.collections import LineCollection
        from matplotlib.colors import ColorConverter

        colorConverter = ColorConverter()
        names = [i.sitename for i in self.site_list]
        x = array([i.pos[1] for i in self.site_list])
        y = array([i.pos[0] for i in self.site_list])
        #edge data
        xs = array([e.source.pos[1] for e in self.edge_list])
        ys = array([e.source.pos[0] for e in self.edge_list])
        xd = array([e.dest.pos[1] for e in self.edge_list])
        yd = array([e.dest.pos[0] for e in self.edge_list])
        edge_list = [((a, b), (c, d)) for a, b, c, d in zip(xs, ys, xd, yd)]

        ax = axes()
        ax.set_xticks([])
        ax.set_yticks([])
        #plotting nodes
        node_plot = ax.scatter(x, y)
        node_plot.set_zorder(2)
        #Plotting edges
        kolor = colorConverter.to_rgba('k')
        ed_colors = [kolor for i in edge_list]
        edge_coll = LineCollection(edge_list, colors=ed_colors, linestyle='solid')
        edge_coll.set_zorder(1)
        ax.add_collection(edge_coll)
        #plotting labels
        ##        for x,y,l in zip(x,y,names):
        ##            ax.text(x,y,l,transform=ax.transData)
        minx = amin(x)
        maxx = amax(x)
        miny = amin(y)
        maxy = amax(y)
        w = maxx - minx
        h = maxy - miny
        padx, pady = 0.05 * w, 0.05 * h
        corners = (minx - padx, miny - pady), (maxx + padx, maxy + pady)
        ax.update_datalim(corners)

        ax.autoscale_view()

        #saving
        savefig('graph.png')
        close()

    def getAllPairs(self):
        """
        Returns a distance matrix for the graph nodes where
        the distance is the shortest path. Creates another
        distance matrix where the distances are the lengths of the paths.
        """
        if self.allPairs.any(): #don't run twice
            return self.allPairs
        if self.graphdict:
            g = self.graphdict
        else:
            g = self.getGraphdict()

        d = len(g)
        dm = zeros((d, d), float)
        ap = zeros((d, d), float)
        i = 0
        for sitei in g.iterkeys():
            j = 0
            for sitej in g.keys()[:i]: #calculates only the lower triangle
                sp = self.shortestPath(g, sitei, sitej)
                lsp = self.getShortestPathLength(sitei, sp) #length of the shortestpath
                self.shortPathList.append((sitei, sitej, sp, lsp))
                #fill the entire allpairs matrix
                ap[i, j] = ap[j, i] = len(sp) - 1
                dm[i, j] = dm[j, i] = lsp
                j += 1
            i += 1
        self.shortDistMatrix = dm
        #print ap,dm
        self.allPairs = ap
        return ap

    def getShortestPathLength(self, origin, sp):
        """
        Returns sp Length
        """
        Length = 0
        i = 0
        for s in sp[:-1]:
            Length += s.getDistanceFromNeighbor(sp[i + 1])
            i += 1
        return Length

    def getConnMatrix(self):
        """
        The most basic measure of accessibility involves network connectivity
        where a network is represented as a  connectivity matrix (C1), which
        expresses the connectivity of each node with its adjacent nodes.

        The number of columns and rows in this matrix is equal to the number
        of nodes in the network and a value of 1 is given for each cell where
        this is a connected pair and a value of 0 for each cell where there
        is an unconnected pair. The summation of this matrix provides a very
        basic measure of accessibility, also known as the degree of a node.
        """
        try:
            if self.connmatrix.any(): return self.connmatrix #don't run twice
        except:
            pass
        if not self.graphdict: #this generates site neighbors lists
            self.getGraphdict()
        site_list = self.site_dict.values()
        nsites = len(self.site_dict)
        cm = zeros((nsites, nsites), float)
        for i, sitei in enumerate(site_list):
            for j, sitej in enumerate(site_list[:i]):#calculates only lower triangle
                if sitei == sitej:
                    pass
                else:
                    cm[i, j] = float(sitej in sitei.neighbors)
                    #map results to the upper triangle
                cm[j, i] = cm[i, j]
            #print sum(cm), type(cm)
        return cm

    def getWienerD(self):
        """
        Returns the Wiener distance for a graph.
        """
        if self.wienerD: # Check if it has been calculated.
            return self.wienerD

        if self.allPairs.any():
            return sum(self.allPairs.flat)

        return sum(self.getAllPairs().flat)

    def getMeanD(self):
        """
        Returns the mean distance for a graph.
        """
        if self.meanD:
            return self.meanD

        if self.allPairs.any():
            return mean(compress(greater(self.allPairs.flat, 0), self.allPairs.flat))

        return mean(compress(greater(self.getAllPairs().flat, 0), self.getAllPairs().flat))


    def getDiameter(self):
        """
        Returns the diameter of the graph: longest shortest path.
        """
        if self.diameter:
            return self.diameter

        if self.allPairs.any():
            return max(self.allPairs.flat)

        return max(self.getAllPairs().flat)


    def getIotaindex(self):
        """
        Returns the Iota index of the graph

        Measures the ratio between the network and its weighed vertices.
        It considers the structure, the length and the function
        of a graph and it is mainly used when data about traffic
        is not available.

        It divides the length of a graph (L(G)) by its weight (W(G)).
        The lower its value, the more efficient the network is.
        This measure is based on the fact that an intersection
        (represented as a node) of a high order is able to handle
        large amounts of traffic.

        The weight of all nodes in the graph (W(G)) is the summation
        of each node's order (o) multiplied by 2 for all orders above 1.
        """

        iota = self.getLength() / self.getWeight()
        return iota

    def getWeight(self):
        """
        The weight of all nodes in the graph (W(G)) is the summation
        of each node's order (o) multiplied by 2 for all orders above 1.
        """
        degrees = [i.getDegree() for i in self.site_dict.itervalues()]
        W = sum([i * 2 for i in degrees if i > 1]) + sum([i for i in degrees if i < 2])
        return float(W)


    def getLength(self):
        """
        Sum of the length in kilometers of all edges in the graph.
        """
        L = sum([i.length for i in self.edge_list])
        return float(L)

    def getPiIndex(self):
        """
        Returns the Pi index of the graph.

        The relationship between the total length of the graph L(G)
        and the distance along the diameter D(d).

        It is labeled as Pi because of its similarity with the
        real Pi (3.14), which is expressing the ratio between
        the circumference and the diameter of a circle.

        A high index shows a developed network. It is a measure
        of distance per units of diameter and an indicator of
        the  shape of a network.
        """
        if self.length:
            l = self.length
        else:
            l = self.getLength()

        lsp = [len(i[2]) for i in self.shortPathList] #list of lenghts of shortest paths.
        lpidx = lsp.index(max(lsp))#position of the longest sp.
        lp = self.shortPathList[lpidx][2] #longest shortest path
        Dd = 0
        for i in range(len(lp) - 1): #calculates distance in km along lp
            Dd += lp[i].getDistanceFromNeighbor(lp[i + 1])

        #pi = l/self.getDiameter()
        pi = l / Dd
        return float(pi)

    def getBetaIndex(self):
        """
        The Beta index
        measures the level of connectivity in a graph and is
        expressed by the relationship between the number of
        links (e) over the number of nodes (v).

        Trees and simple networks have Beta value of less than one.
        A connected network with one cycle has a value of 1.
        More complex networks have a value greater than 1.
        In a network with a fixed number of nodes, the higher the
        number of links, the higher the number of paths possible in
        the network. Complex networks have a high value of Beta.
        """
        B = len(self.edge_dict) / float(len(self.site_dict))
        return B

    def getAlphaIndex(self):
        """
        The Alpha index is a measure of connectivity which evaluates
        the number of cycles in a graph in comparison with the maximum
        number of cycles. The higher the alpha index, the more a network
        is connected. Trees and simple networks will have a value of 0.
        A value of 1 indicates a completely connected network.

        Measures the level of connectivity independently of the number of
        nodes. It is very rare that a network will have an alpha value of 1,
        because this would imply very serious redundancies.
        """
        nsites = float(len(self.site_dict))
        A = self.getCycles() / (2. * nsites - 5)
        return A

    def getGammaIndex(self):
        """
        The Gamma index is a A measure of connectivity that considers
        the relationship between the number of observed links and the
        number of possible links.

        The value of gamma is between 0 and 1 where a value of 1
        indicates a completely connected network and would be extremely
        unlikely in reality. Gamma is an efficient value to measure
        the progression of a network in time.
        """
        nedg = float(len(self.edge_dict))
        nsites = float(len(self.site_dict))
        G = nedg / 3 * (nsites - 2)
        return G

    def doStats(self):
        """
        Generate the descriptive stats about the graph.
        """
        self.allPairs = self.getAllPairs()
        self.cycles = self.getCycles()
        self.wienerD = self.getWienerD()
        self.meanD = self.getMeanD()
        self.diameter = self.getDiameter()
        self.length = self.getLength()
        self.weight = self.getWeight()
        self.iotaidx = self.getIotaindex()
        self.piidx = self.getPiIndex()
        self.betaidx = self.getBetaIndex()
        self.alphaidx = self.getAlphaIndex()
        self.gammaidx = self.getGammaIndex()
        self.connmatrix = self.getConnMatrix()

        return [self.allPairs, self.cycles, self.wienerD, self.meanD, self.diameter, self.length,
                self.weight, self.iotaidx, self.piidx, self.betaidx, self.alphaidx, self.gammaidx,
                self.connmatrix]

    # def plotDegreeDist(self, cum=False):
    #     """
    #     Plots the Degree distribution of the graph
    #     maybe cumulative or not.
    #     """
    #     nn = len(self.site_dict)
    #     ne = len(self.edge_dict)
    #     deglist = [i.getDegree() for i in self.site_dict.itervalues()]
    #     if not cum:
    #         hist(deglist)
    #         title('Degree Distribution (N=%s, E=%s)' % (nn, ne))
    #         xlabel('Degree')
    #         ylabel('Frequency')
    #     else:
    #         pass
    #     savefig('degdist.png')
    #     close()

    def getMedianSurvival(self):
        """
        Returns the time taken by the epidemic to reach 50% of the nodes.
        """
        n = len(self.site_dict)
        try:
            median = self.epipath[int(n / 2)][0]
        except: # In the case the epidemic does not reach 50% of nodes
            median = 'NA'
        return median

    def getTotVaccinated(self):
        """
        Returns the total number of vaccinated.
        """
        tot = sum([i.nVaccinated for i in self.site_dict.itervalues()])
        return tot

    def getTotQuarantined(self):
        """
        Returns the total number of quarantined individuals.
        """
        tot = sum([i.nQuarantined for i in self.site_dict.itervalues()])
        return tot

    def getEpistats(self):
        """
        Returns a list of all epidemiologically related stats.
        """
        self.episize = self.getEpisize()
        self.epispeed = self.getEpispeed()
        self.infectedcities = self.getInfectedCities()
        self.spreadtime = 0 #self.getSpreadTime()
        self.mediansurvival = self.getMedianSurvival()
        self.totVaccinated = self.getTotVaccinated()
        self.totQuarantined = self.getTotQuarantined()

        return [self.episize, self.epispeed, self.infectedcities,
                self.spreadtime, self.mediansurvival, self.totVaccinated, self.totQuarantined]

    def getInfectedCities(self):
        """
        Returns the number of infected cities.
        """
        res = len(self.epipath)
        return res

    def getEpisize(self):
        """
        Returns the size of the epidemic
        """
        N = sum([site.totalcases for site in self.site_dict.itervalues()])

        return N

    def getEpispeed(self):
        """
        Returns the epidemic spreading speed.
        """
        tl = [i[0] for i in self.epipath]
        nspt = []
        for j in range(self.simstep):
            nspt.append(tl.count(j)) #new sites per time step
            #Speed = [nspt[i+1]-nspt[i] for i in range(len(nspt))]
        return nspt

    def getSpreadTime(self):
        """
        Returns the duration of the epidemic in units of time.
        """
        tl = [i[0] for i in self.epipath]
        if not tl:
            dur = 'NA'
        else:
            dur = tl[-1] - tl[0]
        return dur

    def save_topology(self, pa):
        """
        Saves graph structure to a graphml file for visualization
        :Parameters:
        :pa: path in which to save the graphml file
        """

        g = NX.MultiDiGraph()
        for gc, n in self.site_dict.iteritems():
            g.add_node(gc, attr_dict={
                'name': n.sitename,
            })
        for ed, e in self.edge_dict.iteritems():
            g.add_edge(ed[0], ed[1], weight=e.fmig + e.bmig)
        NX.write_graphml(g, pa)
        nl = json_graph.node_link_data(g)
        jsonpath = pa.replace('graphml', 'json')
        with open(jsonpath, 'w') as f:
            json.dump(nl, f)

    def resetStats(self):
        """
        Resets all graph related stats
        """
        self.allPairs = None
        self.cycles = None
        self.wienerD = None
        self.meanD = None
        self.diameter = None
        self.length = None
        self.weight = None
        self.iotaidx = None
        self.piidx = None
        self.betaidx = None
        self.alphaidx = None
        self.gammaidx = None


class priorityDictionary(dict):
    def __init__(self):
        '''
        by David Eppstein.
        <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/117228>
        Initialize priorityDictionary by creating binary heap
        of pairs (value,key).  Note that changing or removing a dict entry will
        not remove the old pair from the heap until it is found by smallest() or
        until the heap is rebuilt.
        '''
        self.__heap = []
        dict.__init__(self)

    def smallest(self):
        '''
        Find smallest item after removing deleted items from heap.
        '''
        if len(self) == 0:
            raise IndexError, "smallest of empty priorityDictionary"
        heap = self.__heap
        while heap[0][1] not in self or self[heap[0][1]] != heap[0][0]:
            lastItem = heap.pop()
            insertionPoint = 0
            while 1:
                smallChild = 2 * insertionPoint + 1
                if smallChild + 1 < len(heap) and \
                                heap[smallChild] > heap[smallChild + 1]:
                    smallChild += 1
                if smallChild >= len(heap) or lastItem <= heap[smallChild]:
                    heap[insertionPoint] = lastItem
                    break
                heap[insertionPoint] = heap[smallChild]
                insertionPoint = smallChild
        return heap[0][1]

    def __iter__(self):
        '''
        Create destructive sorted iterator of priorityDictionary.
        '''

        def iterfn():
            while len(self) > 0:
                x = self.smallest()
                yield x
                del self[x]

        return iterfn()

    def __setitem__(self, key, val):
        '''
        Change value stored in dictionary and add corresponding
        pair to heap.  Rebuilds the heap if the number of deleted
        items grows too large, to avoid memory leakage.
        '''
        dict.__setitem__(self, key, val)
        heap = self.__heap
        if len(heap) > 2 * len(self):
            self.__heap = [(v, k) for k, v in self.iteritems()]
            self.__heap.sort()  # builtin sort likely faster than O(n) heapify
        else:
            newPair = (val, key)
            insertionPoint = len(heap)
            heap.append(None)
            while insertionPoint > 0 and \
                            newPair < heap[(insertionPoint - 1) // 2]:
                heap[insertionPoint] = heap[(insertionPoint - 1) // 2]
                insertionPoint = (insertionPoint - 1) // 2
            heap[insertionPoint] = newPair

    def update(self, other):
        for key in other.keys():
            self[key] = other[key]

    def setdefault(self, key, val):
        '''Reimplement setdefault to call our customized __setitem__.'''
        if key not in self:
            self[key] = val
        return self[key]

    #---main----------------------------------------------------------------------------


    #if __name__ == '__main__':
    #    sitioA = siteobj("Penedo",2000)
    #    sitioB = siteobj("Itatiaia",3020)
    #    linhaA = edge(sitioA,sitioB,4)
    #    sitioA.createModel((.3,.3,.3),(1,1))
    #   sitioA.runModel()
    #lista_de_sitios = (i=siteobj(10) for i = range(10))